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Introduction 

Along with the nervous system, the immune system has served as prime examples of complex biological 
systems. Both have the capabilities of pattern recognition, learning, and memory. These complex tasks in 
the immune system involve cooperation among large number of different clones of cells that 
communicate via cell-cell contact and the secretion of molecules. Apart from this, the dynamical nature of 
the immune system imparts the capability of affinity maturation with time. In this work, an attempt has 
been made to develop quantitative immune response models to explain how the cells of the immune 
system behave and how they interact with each other to generate the coordinated activity observed. The 
immune system contains more than 107 different clones of cells that communicate via cell - cell contact 
and secretion of molecules that provide us with a basic defense against pathogenic organisms. The 
interactions among the components of the immune system are extremely intricate and not fully 
understood. Further, there are no equivalents of the Hodgkin-Huxley (1952) equations in 
neurophysiology. Yet the ’macroscopic behavior’ of the immune system, as probed in a specific 
experiment, can be well characterized. The problem then arises of selecting the sample representation for 
the elementary interactions that would give rise to the organized behavior observed in the immune 
system. 

Some of the most intriguing aspects of the immune system that manifest themselves at the macroscopic 
level :Clonal Selection (Clonal selection is the idea that only those cells that recognize the antigen 
proliferate, thus being selected against those which do not.) ; Learning and Memory (Learning in the 
immune system involves biasing the repertoire from random towards a repertoire that more clearly 
reflects the actual antigenic environment developed by previous encounters with the antigen) ; Self and 
Non Self Discrimination (The completeness of the repertoire presents a fundamental paradox for the 
immune system. Because all shapes can be recognized, the immune system can recognize molecules and 
cells of our body as well as foreign ones. For the immune system to function properly it needs to be able 
to distinguish between these two classes of molecules and cells, which are a priori indistinguishable, so as 
to avoid triggering an immune response against self antigens). 

 

Network Models 

Jerne (1974) hypothesized that the immune system, rather than being a set of discrete clones that respond 
only when triggered by antigen, is a regulated network of molecules and cells that recognize one another 
even in the absence of antigen. Because antibodies are created in part by random genetic mechanisms, 
they must look like novel molecules to the rest of the immune system and thus should be treated like 
antigens. The novel or idiosyncratic parts of an antibody are called idiotopes. The set of idiotopes that 
characterizes an antibody is called it’s idiotype. Due to completeness of the repertoire, immune system 
should recognize the idiotopes on it’s own antibodies and make antibodies against them. Jerne suggested 
that during an immune response antigen would directly elicit the production of the first set of antibodies 
Ab1. These antibodies would then act as antigens and elicit the production of a second set of "anti-
idiotypic" (anti-id) antibodies Ab2 which recognize idiotopes of Ab1.Similarly, a third set antibodies Ab3 
would be elicited that recognize Ab2, and so forth. 

The B cell model 

It  is one of the simplest models that can be conceived, yet it still exhibits interesting properties. We call it 
the B model since it deals only with B cells. The time evolution of -the population x, of clone i is 
described by the following differential equation: 
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where m is a source term corresponding to newly generated cells coming into the system from the bone 
marrow, p is the rate of cell proliferation, the function f(hi) defines the fraction of cells proliferating as a 



function of the "field" hi, and d specifies the per capita rate of cell death. Because cells only proliferate 
when they are activated, f(hi) is called an activation function or sometimes proliferation function. For each 
clone i, the total amount of stimulation is considered to be a linear combination of the populations other 
interacting clones j. This linear combination is called the field hi, acting on clone xi, i.e., 
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where Jij specifies the interaction strength (or affinity) between clones xi, and xj. The choice of a J matrix 
describes the topology of the network. For simplicity , Jij values are typically chosen as 0 and 1. The most 
crucial feature of this model is the shape of activation function, f(hi), which is taken to be a log-shaped 
dose-response function [figure 1] 
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where θ1 and θ2 chosen such that θ2 >>θ1. 

De Boer (1988), De Boer and Hogeweg (1989), Weisbuch, De Boer, and Perelson (1990), De Boer and 
Perelson (1991), Perelson and Weisbuch (1992), and Stadler, Schuster, and Perelson (1994), all 
considered variations of the following model for B-cell clonal dynamics. 
In this paper, first I have considered the simplest network of two interacting populations for 
understanding  the response of immune system models in the presence of an antigen A. Antigen is 
eliminated by reacting with antibody and hence as a simple model one might assume, where k is the rate 
constant. 

1kAx
dt

dA −=        (4) 

Then, the robustness of the two clone model is checked for variation in initial size of Antigen A0, rate 
constant of idiotype-antigen interaction (k), and production rate of B cells (m). Then, I tried simulating an 
idealistic immune topology with Cayley tree configuration [figure 2]. The immune response model 
equations were solved numerically using Fourth order Runga Kutta method with the help of XPP, 
freeware for solving simultaneous differential equations (Ermentrout, www.math.pitt.edu/~bard/xpp/). 

 

Results and Discussions 

The Two Clone Network simulations were based on model parameters estimated either from 
physiological properties and immunological assumptions or estimated so that the simulations match the 
selected nominal immune response. 

The simulation of the set of equations (1), (2), (4) with the activation function calculated by equation (3) 
provided for the two clone model with the set of parameters estimated in. As reported previously in B 
cells models, that employ a log-bell-shaped activation function, three possible equilibrium levels for each 
B cell population have been identified: 

1. a virgin, or unstimulated level, m/d. 
2. a large population level corresponding to cells in an ’immune’ state, that experience a low 

activating field, (d/(p-d))θ1, [figure 3(a)] and 
3. an intermediate population level corresponding to the cells in a 'suppressed' or ‘tolerant’ state, 

that experience a high suppressive field, ((p-d)/d)θ2 due to the high population of the anti-
idiotype. [figure 3(b)] 

The robustness analysis (Appendix C) along with the phase diagrams [figure 4]  indicate that the immune 
response models are stable under physiological deviations in the values of antigen infection size A0, rate 
constant of idiotype-antigen interaction (k), and production rate of B cells (m).  



The Cayley tree configuration with 3 nodes with no loops and full rotational symmetry was studied to 
analysis the effect of the network topology on the attractors of the model proposed. The Cayley network 
also approaches, according to the parameter set-up, one of the following attractors: 

• the virgin attractor, Xi = m/d; 
• a vaccination attractor where X1 = H, X2 = L/z and all other Xi ~ m/d. [figure 6(a)] 
• a tolerant attractor where X1~ m/d, X2 = H, X3 = L/(z-I). [figure 6(b)] 
• a percolation attractor, when the response to the antigen does not remain localized, but spreads and 

excites clones all over the network. A percolation configuration can be, for instance: 
X3 = X7 = X11 =......=H 
X4 = X8  = X12  =......=L/(z-1) 
and all other Xi ~ m/d. [figure 6(c)]  

 

Conclusion 

The mathematical or qualitative models proposed until now lack in comprehensively describing the 
immune system due to lack of experimental data. In this work, quantitative response models were 
analyzed and the influence of various parameters on the ultimate fate of the immune response was 
studied. Though many of the characteristics features of the immune system could be reproduced by these 
simple models, a lot questions remains to be answered. Immune network topology is one area, which 
requires an in-depth understanding by analysis of different models and experimental findings. The global 
behavior, which results from the complex interplay of the individual elements of the immune system, 
remains to be understood completely. Cellular and molecular biologists and immunologists have achieved 
great success in isolating and even in understanding many of the molecules and cells of the immune 
system. However, their reductionist techniques fail when one asks questions about the behavior of large 
collections of cells and molecules. Again, the dynamics have been studied in this work using models for 
the immune system. However, because of the difficulties in collecting data from one animal at many time 
points, dynamic experiments are rarely done, and when they are done they rarely have data taken at more 
than a few time points. Thus, questions about whether immune system operates at steady state, whether 
they are oscillatory, whether they chaotic, etc. 
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Appendix A: 
The activation function and the Cayley Tree configuration. 
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Figure 1. The log-bell-shaped activation function f(hi) defined by Eq.(3). As discussed in the text, when m is small, 
intersections of the line y = d/p with the bell-shaped curve define the activating and suppressive field values, L and 
H, respectively. For the parameters used here, p =1 and d =0.5, these intersections occur near the field values θ1and 
θ2 
 

 
Figure 2. A Cayley Tree. This is a network without loops, in which each clone interacts fixed number of other 
clones. A Cayley tree with z = 3 is illustrated. Here only clone  X1 reacts with the antigen. 



Appendix B: 
Results of the Two Clone Immune Response Model 

Figure 3(a). Dynamics of a response induced by injecting antigen A that results in the system approaching the 
immune attractor. The clone population sizes are plotted vs time in days. In the immune configuration the largest 
population is localized at the first level. X1 is high (H) and is sustained by interacting with X2, which is at a lower 
level(L). 

 
Figure 3(b). Dynamics of a response induced by antigen A that results in the system approaching the tolerant 
attractor. At the attractor, X2 is high (H) and is sustained by X1, which is at L. 
 



 
 
 
 
 
 
 
 
 Figure 4(a). Phase portrait of the dynamics of 
interacting clones. The system approaching the 
tolerant attractor (x1, x2) ≈ (H,L). (x1 and x2 
plotted on log-log scale for better representation) 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
Figure 4(b). Phase portrait of the dynamics of 
interacting clones. The system approaching the virgin 
attractor (x1, x2) ≈ (L,L). (x1 and x2 plotted on log-log 
scale) 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 4(c). Phase portrait of the dynamics of 
interacting clones. The system approaching the 
immune attractor (x1, x2)≈ (L,H). (x1 and x2 
plotted of the log-log scale) 



 

Appendix C: 
Robustness and Validation of the Two Clone Model 

A good model of a physiological process should remain valid in the presence of small variations in the 
physiological circumstances. This is what is known as the robustness. The robustness and flexibility of the model 
equations (1), (2) and (4) in the presence of physiological variations from nominal behavior was considered with 
respect to variations in: 

Figure 5(a). Variation in Infection size of the 
Antigen (A0). 
Minor variations in the initial infection dosage 
seldom evoke a radical change in the nominal 
immune response, as was the case with the 
presented model. The steady state values of the 
clonal population are stable even for 
significant variations in the initial infection 
size. A small difference occurs in the timing: 
the larger the initial infection the later the peak 
but with a higher and more wide spread 
(effective) initial simulation 
 

 
 
 

 
 

 

Figure 5(b). Variation in the rate constant 
of idiotype-antigen interaction (K). 
 The antibody-antigen reaction rate 
constant, K, determines the strength of 
interaction between antibody and antigen 
and the rate of removal of the antigen. 
Minor variations in K are expected under 
the physiological circumstances due to 
presence of idiotypes with slightly 
different conformations and hence having 
different rate constant. Increasing values of 
K results in a larger initial peak. 

Figure 5(c). Variation of the 
production rate of the B cells (m). 
The production rate of the B cells 
may vary with the physiological 
condition of the immune system and 
the health of the person. Nominal 
variations in m only results in subtle 
variations in the clonal population 
dynamics with a change observed in 
the frequency of the oscillations 



Appendix D: 
Results of the Cayley Tree Configuration simulations. 
 

 
 
 
 Figure 6(a). The vaccinated state is a 
localized state where the population 
X1  is high (H) and sustained by an 
intermediate population (L) of X2; X2 
suppressed by X1. Dynamics leading 
to vaccination : X1,the idiotypic  
clone, proliferates earlier than X2 and 
suppresses it while eliminating the 
antigen. The parameters are: k=10-5; 
A0=105; d=1.0; p=1.5; z=3; m=10; 
θ1=1000; θ2=106. 
 
 

 
 
 
Figure 6(b). The tolerant state is a localized state 
where Xz is high (H) and sustained by X3 (L) 
which is suppressed by X2. X1 is over-
suppressed by the zX2 clones that it recognizes 
and therefore cannot eliminate the antigen. 
Dynamics leading to tolerance: X2, the anti-
idiotypic clone, proliferates faster thanX1. X3 is 
excited to a low level and sustains X2 The 
parameters are: k=10-7; A0=2*105; d=1.0; p=1.5; 
z=3; m=10; θ1=1000; θ2=106. 
 

 
  
 
 
 
 
 
Figure 6(c). Percolation dynamics: first X1 
grows to H and X2 to L; X2 triggers X3 and X4, 
which then triggers the next couple and so on. 
When both X1 and X3 are high, X2 is over 
suppressed and so X1 cannot be sustained. The 
parameters are: k=10-7; A0=2*105; d=1.0; 
p=1.5; z=3; m=10; θ1=1000; θ2=106. 


