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Introduction

Today, majority of the phylogenetic analyses are performed using comparisons of
DNA sequen(ﬁs between classifications. Several metlg.j)ds, such as maximum parsimony
(MP) method-and maximum likelihood (ML) methqod™, are available to do this task. But
the MP method could repeatedly lead to wrong tree®, although it is quick and exhaustive;
and the ML method is computationally more intensive and requires and explicit model
for the process of molecular evolution., although it does not suffer from the same biases
as MP method. On the other hand, the site-specific substitution rate also reduces the
accuracy of these methods.

Model

To overcome these problems, Dimmic et. al. presented an adjustable fitness model
for amino acid site substitution. Based on the fact that amino acids have different
biophysical characteristics and some will be more advantageous than others under certain
conditions, they introduced a relative fitness F(A,) of each amino acid A,. The values for
the relative fitness are not assumed, but are adjustable parameters in the likelihood
maximization scheme, which will be described later. Then they assumed that the
probability Q;; of substituting amino acid i with amino acidj is:

1% if AF; >0

0, =
Tolveif AF; <0

where v is the average rate at which mutations occur and AF;;=F(A;)-F(A;).

With this scheme, if the mutation is favorable then it is always accepted with a certain
rate v, otherwise it is tolerated with a decaying exponential probability. The substitution
matrix M at evolutionary time t is:

_ Y%
M,(t)=e
At each site s in the amino acid sequence, the likelihood is represented by the sum of the
probability of all possible paths to all possible ancestors, and can be written as
L =P (data | 6,T) , where “data” represents all possible paths and ancestors, _is a
model-dependent parameter, and T is the evolutionary tree branch length. Therefore, the

log-likelihood [ is the product of the likelihood of each site, equivalent to the sum of
their logs:
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Q= Log[[[ P.(data|6,T)]=> Log(L,)

In order to incorporate the site heterogeneity, they assumed £ site classes, each class has
its own fitness parameters Fy(A;,) and mutation rate v;. The concept of site class is a
representation of different biophysical characters of amino acids. For instance, one site
class might represent all sites where charge is important for the protein’s function; then in
this class, Glu would have a higher fitness than Ala. In their model, each site has a
certain probability of being represented by each site class. This possibility is the
likelihood function calculated using the parameters for that site class. Each site class, in

turn, has a prior probability of representing any site P(".%c). After this site heterogeneity
correction, the likelihood at each site is:

L, =Y P(data|©,,T)P(®,)
k

By adjusting the parameters to increase the likelihood, a maximum likelihood estimate
for the parameters can be obtained.

Results

In order to test the utility of their amino acid ﬁtnﬁs model, they compare their
results with the mtREV model of Adachi and Hasegawa™ The mtRev model has 189
adjustable parameters and can be seen as the most general single-site class reversible
model, thus it is a good basis for comparison. In both training sequences and test
sequence, the 5-site-class fitness model performed better than mtREV model by
exceeding nearly 900 log-likelihoods, while the 5-site-class model has 86 fewer
adjustable parameters then the mtREV model.

In addition, they examined whether the site classes in the 5-site-class model had
any correlation with know biophysical properties. They plotted the fitness parameter of
each class against two amino acid characteristics: bulk and hydrophobicity. Most
correlations with bulk were not strong, and site class #3 showed substantial negative
correlation with amino acid hydrophobicity (Fig.1). The lack of correlation with
biophysical properties among the site classes does not necessarily imply that the
parameters have no physical meaning, but it imply that setting the parameters as simple
functions of a few biophysical characteristics may not be adequate to capture the
selective pressures at work on the protein. Or it may also imply that biophysical
characteristics are “mixed” into the various site classes during the optimization scheme.

Conclusion

Dimmic et. al.’s adjustable fitness model accounts for site heterogeneity among
substitution rates and among evolutionary constraints, and does not make any
assumptions about which sites or characteristics of proteins are important to molecular
evolution. This model has fewer adjustable parameters then the general reversible
mtREV model, and outperforms mtREV in likelihood analysis on protein coding
mitochondrial genes. In future, more comparisons need to be performed using other data
sets to yield more convincing results. And applying statistical tests such as Monte Carlo
simulation may be helpful to optimize the model.
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Fig.1. The fitness parameter of the third site class F3(A,) versus hydrophobicity. The
correlation R=-0.68, P<0.001.
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