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A complex system is a functional whole consisting of interdependent and variable parts. Unlike a 
conventional system (e.g. an aircraft), the parts need not have fixed relationships, fixed 
behaviours or fixed quantities, thus their individual functions may also be undefined in 
traditional terms. Despite the apparent tenuousness of this concept, these systems form the 
majority of our world, and include living organisms and social systems, along with many 
inorganic natural systems (e.g. rivers). Complexity Theory states that critically interacting 
components self-organize to form potentially evolving structures exhibiting a hierarchy of 
emergent system properties. This theory takes the view that systems are best regarded as wholes, 
and studied as such. This is due to the inherent non-linearity of strongly interconnected systems-
the whole is not the sum of the parts. The approaches used in complexity theory are based on a 
number of new mathematical techniques, originating from fields as diverse as physics, biology, 
artificial intelligence, politics and telecommunications. Complexity theory is used in a variety of 
fields. 
 
Let us now look at the different kinds of complexity -  
 

1. Static Complexity  
The simplest form of complexity is that related to fixed systems. Here we make the assumption 
that the structure we are interested in does not change with time. For example, we can look at a 
computer chip and see that it is complex (in the popular sense), we can relate this to a circuit 
diagram of the electronics and compare alternative systems to determine relative complexity (e.g. 
number of transistors). We can do the same thing for life forms.  
 
At this point we have to decide as to how to quantify �complexity� so that we can say that 
something is more complex than something else. 
 
To approach such questions we need to look for patterns as well as the statistics of quantity. 
After all, we can keep the number of objects the same but shuffle the arrangements to get a 
pattern which is evidently more complex. When the number of objects is very large and so is the 
number of  �values� each property can take, then the number of possible patterns is enormously 
large and this can strain the analytical  (pattern recognition) ability of current mathematics, even 
for relatively trivial systems. In nature multiple levels of structure exist in all systems, and this 
added to fractal complication (e.g. complexity of molecule, plus cell, plus organism, plus 
ecosystem, plus planet etc.) makes even this static simplification mathematically difficult to 
quantify.  
 
 

2. Dynamic Complexity 
Here we add the dimension of time. Function is one of the main modes of analysis we utilise in 
science, we ask the question 'what does the system do?', followed by 'how does it do it?', and 
both these presuppose actions in time. Science relies heavily on testing or confirmation, and this 
presupposes that we have multiple samples (either spatially or temporally). The forms of 
mathematical description that we employ will therefore have to be such that we obtain the same 



answers each time, and this has major implications for complexity theory. We are forced, 
currently, to artificially reduce the complexity of the phenomena we study to meet this 
constraint. A person has many aspects, but we describe them only by those that do not change 
with time (or do so predictably), e.g. name, skin colour, nationality (or address, job, age, height). 
Complexity theory however requires that we treat the system as a whole, and thus have a 
description that includes all aspects (as far as practical). 
3. Evolving Complexity  
Now we turn to a class of phenomena usually described as organic. The best known examples of 
this relate to the neo-Darwinian theory of Natural Selection, where systems evolve through time 
into different systems (e.g. an aquatic form becomes land dwelling). Classification of complexity 
thus takes another step into the dark, since if we cannot count on there being more than one 
example of any form how can we even apply the term science to it?  
To answer this question we need to go back to patterns. In any complex system many 
combinations of the parts are possible, so many in fact that we can show that most combinations 
have not yet occurred even once, during the entire history of the universe. However, not all 
systems are unique - there are symmetries present in the arrangements that allow us to classify 
many systems in the same way. By examining a large number of different systems we can 
recognize these similarities (patterns) and construct categories to define them (this is, in essence, 
what the Linnean taxonomy scheme for living organisms is based upon). These statistical 
techniques are fine, and give useful general guidelines, but fail to provide one significant 
requirement for scientific work, and that is predictability. In the application of science (in 
technology) we require to be able to build or configure a system to give a specific function, 
something not usually regarded as possible from an evolutionary viewpoint.  
4. Self-Organizing Complexity  
This is the most interesting type and the one most relevant to complexity theory. Here we 
combine the internal constraints of closed systems (like machines) with the creative evolution of 
open systems (like dogs). In this viewpoint we regard a system as co-evolving with its 
environment and so we must describe the system functions in terms of how they relate to the 
wider outside world. Co-evolutionary systems, like ecologies and languages, are extremely adept 
at providing functionality, and if this is a requirement of science, we may be able to side-step the 
how question and tackle the desired predictability in another way. We can design the 
environment (constraints) rather than the system itself, and let the system evolve a solution to our 
needs, without trying to impose one. This is a very new form of organic technology, yet one 
already beginning to show results in such fields as genetic engineering and circuit design. From 
the point of view of complexity theory we wish to be able to predict which emergent solutions 
will occur from differing configurations and constraints of the environment. 
 
Given that we have identified a potentially complex system, how do we then quantify it ? Let us 
now look at some specific techniques being used by complexity researchers in an attempt to add 
mathematical precision to the subject :  



(a) Entropy - Entropy as a measure is the opposite of order (or information in Shannon's 
formulation). The main problem in this approach  is that a single figure does not distinguish 
symmetrical or otherwise equally complex systems, and it says nothing about the actual structure 
present.  

(b) Algorithmic Information Theory - Kolmogorov and Chaitin developed this technique. Here 
one tries to describe complex systems by using the shortest computer program which can 
generate the system. Thus the length of the program becomes a measure of the complexity. The 
drawback is that this has a high value for random noise which is not regarded as complex. Such 
an approach also takes little account of the time needed to execute the program. There�s a lot of 
work going on to address these issues.  

(c) Phase Transitions -Self-organizing systems are found to move from one phase to another - 
static or chaotic states to a semi-stable balance between. This property relates to the physics idea 
of phase transitions (e.g. the state change from ice to water), pioneered by Wilson. Attempts to 
quantify this point are seen in Langton's work on lambda and similar measures. The chief 
disadvantage is that such analysis is so far restricted to low dimensional systems (few variables).  

(d) Attractors- Identifying the possible stable structures in connected systems requires the 
concept of attractors, and this idea is employed in work on neural networks by Hopfield, feature 
maps by Kohonen, and discrete networks by Wuensche. This is the best current technique for 
analysing internal network structure, but is difficult to do for realistic, high dimensional, 
systems.  

(e) Coevolution- Using the biology concept of fitness allows us to model systems as ecologies, 
where the parts coevolve with each other. This can be extended to model multiple systems, as in 
Kauffman's NKCS model, and we can derive system wide fitness measures.  
 
Alternative Approaches 
There are some other new approaches which are being developed -  
Game Theory - In political science, we have the theory of interactions based on decisions and 
relative advantage. This quantifies decision fitness at an individual pair level, but is harder to 
apply to more diffuse systems. The important aspect here is the distinguishing of positive from 
negative evolutionary paths - goal directed behaviours.  

Spin Glasses - This technique, again from physics, uses a lattice of interacting points and is 
chiefly seen in complexity work under the guise of cellular automata, which can be used to 
model many physical phenomena (as in the work of Rucker). The technique, while excellent for 
simulation, proves mathematically difficult, but is important in relation to the demonstration of 
emergence, higher level structure.  
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