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1 Introduction

The species-area and mass-metabolism relationships were discussed in lec-
ture. Both relationships are simple log-linear relationships that extend over
many orders of magnitude, suggesting that they are caused by very simple
mechanisms. Researchers have suggested many possible mechanisms, but
none are very convincing.

A new scaling “law” can now be added to these two: a power-law re-
lationship identified in a recent study [1]. In this study, R. Azevedo et al
show that variations in the number of cells in an organ scale with the size
of that organ over twelve orders of magnitude. The researchers propose a
simple theoretical model of cell number variability that closely predicts the
observed law.

In Section 2, I will explain how the researchers analyzed data on cell
number variability. Section 3 presents the theory and compares it to models
seen in lecture, and Section 4 discusses implications and remaining questions.

2 Analysis of experimental data

The researchers discovered a new scaling law by analyzing and combining
the results of many studies. They examined 138 experiments that resulted
in 2,177 characterizations of cells in particular organs. These estimates were
sorted by species and organ type, then compared in various ways. The num-
ber n of cells in each organ is given by a particular probability distribution,
for which the researchers obtained two numerical estimates: M ≡ 〈n〉, the
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Figure 1: The power law relationship between mean cell number (M) and
variance (V ). From [1].

mean number of cells in the organ; and V ≡ 〈(n−M)2〉, the variance of the
cell number.

A plot of the relationship between M and V (Figure 1) shows a clear
power-law that covers almost 12 orders of magnitude, extending from slime
mold and nematode organs containing around 10 cells to the major organs
of large mammals:

V ∝M2.03 . (1)

To physicists, an exponent of two is immediately surprising. We are used to
Poisson processes, like radioactive decay, that produce a linear relationship:

V ∝M . (2)

This study shows that cells behave differently — their relative variability

σ

M
=

√
V

M
(3)

is approximately constant, and it was found to be especially constant when
restricted to a single organ type across several species. In the next section
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we will see how a simple theoretical model of cell division can explain this
constant relative variability.

3 Theoretical model

The researchers presented a simple and reasonable theoretical model that is
capable of predicting the relationship between M and V . I will present a
simplified version of it here, with a nearly complete explanation of how it
predicts the observed power law.

We will model organ development from a single initial cell as a random
process consisting of successive generations. During a generation, each cell
has the opportunity to divide, and we assume it does so with probability q.
Let the probability of having n cells at generation i be given by Pi(n); then
we can find the probability distribution in generation i+ 1 by extending the
tree on generation backward. If the initial cell does not divide in its first
generation (probability 1 − q), then the probability at generation i + 1 will
just be Pi(n). If it does divide (probability q), we are left with two cells that
proceed through the next n generations independently — the probability
distribution in this case will be the convolution of Pi(n) with itself. Adding
these two cases gives us the probability distribution at generation i+ 1:

Pi+1(n) = (1− q) · Pi(n) + q ·
n−1∑
m=0

Pi(m)Pi(n−m) . (4)

For large values of i, the probability distribution can be replaced by a con-
tinuous function:

pi+1(n) = (1− q) · pi(n) + q ·
∫ ∞

0
pi(m)pi(n−m) dm . (5)

We may attempt to use the Renormalization Group methods discussed
in class to find fixed points p of this relation satisfying

λ p(λn) = (1− q) · p(n) + q ·
∫ ∞

0
p(m)p(n−m) dm . (6)

The Fourier transform p̃(k) of the probability distribution satisfies the simpler
equation

p̃(k/λ) = (1− q) p̃(k) + q p̃(k)2 ; (7)
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this is similar to but more complicated than the relation we derived for the
Central Limit Theorem. I do not know how to solve it, but I have simulated
the distribution using small values of i with q ≈ 1, and it seems to approach
a interesting limiting shape like that shown in Figure 2. This distribution is
self similar: it has a small peak that is a near-duplicate of the entire graph,
caused by the (1− q) term in the recursion relation.
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Figure 2: The cell number distribution for an organ with q = 95% after nine
generations.

If we assume that the probability distribution does approach a fixed point
as i increases, then it follows that the standard deviation will scale linearly
with the mean. Then we find from Equation 3 that the relative variability
of n stays constant as the number of generations increases. A simple model of
independent cells duplicating randomly therefore predicts the observed scal-
ing. Using this model, the authors found that the duplication probabilities
in observed cells correspond to an error rate (1 − q) of approximately two
percent1.

1Since they also include probabilities that the cell will die or duplicate more than once
in a generation, their result does not directly give a value of q.
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4 Discussion

The theory presented in Section 3 predicts the data very well, but does not
match reality in several ways. As with any biological theory, there are de-
tails that a simple model does not capture. The authors admit that the
assumptions of independent cells and fixed generation number are both vio-
lated in reality — but it is not clear that incorporating these effects would
significantly change the prediction. In particular, cells in an organ are unlike
animals in an environmental region: they are not confined to a bounded vol-
ume, and they do not move around. Instead, they duplicate in place, causing
the volume of the developing organ to expand proportionally to itself. This
indicates that space is not a particularly important issue, and that the cells
can be treated independently.

The theory, in addition, predicts some details that are not observed in
real organisms. As can be seen in Figure 2, there is a probability of 1 − q
that a cell will not divide in its first generation, causing the organ to have
half the number of expected cells. The authors quote a cell division accuracy
rate of 98% as exceptionally high, but it predicts that one out of fifty mature
organs will be half as small as average. But we know, for example, that very
few people are born with scaled-down hearts or brains. This suggests that
the first few generations must be controlled very precisely. The source of this
precise control has probably already been identified by biologists — it would
be interesting to see how it affects the scaling law.

References

[1] Ricardo B. R. Azevedo and Armand M. Leroi. A power law for cells.
PNAS, 98(10):5699–5704, May 2001.

5


