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Universal Grammar 

 
Linguistics is an interesting field, in that it makes connections to a broad range of sciences, 
such as mathematics and the study of artificial intelligence, the social sciences (of course), 
and the study of complex systems in physics.  I present work suggesting that a common view 
of language learning is flawed.  The solution to this problem, according to many, is universal 
grammar.  I introduce universal grammar in basic terms, and present work that studies 
universal grammar as a complex system in a formal and mathematically rigorous way. 
 

Language Learnability 
 

When children learn language they are seldom informed when they make grammatical errors, 
and when corrections are made, children often ignore them [1]. Children do eventually learn 
the language of their parents, however.  This raises the question as to whether one can learn a 
given language by hearing a small number of sample sentences from that language.  This is 
how human beings seem to do it.  In developing artificial intelligence, the following model of 
language learnability was proposed [2]:  
 

a. Strings from some language are repeatedly presented to a learner in either any 
arbitrary order or in some specific recursive way. 

b. The learner takes a ‘guess’ by producing a string of text, drawing from the strings 
it has been given. 

c. An informant may or may not correct the learner’s error (by telling the learner 
whether or not the guess string is part of the language), depending on the model. 

 
This process is iterated for a finite amount of time.  If the guesses are consistently correct, the 
language was said to be identified in the limit.  The most important finding, for the purposes 
of this essay, is that none of the relevant model languages were learnable in the absence of an 
informant, regardless of the method of string presentation.  So, it seems that humans must 
have some mechanism very different from this model for learning languages. 
 

Universal Grammar 
 

The ways to arrange nouns, verbs, adjectives, independent and dependent clauses, subject, 
object, auxiliary, and so on, is really innumerable and by the time human beings begin to 
grasp language we have hardly heard enough to deduce a set of rules to follow when we 
speak.  This was illustrated in the last section.  The most popular solution to this problem is 
known as universal grammar. 
 
Noam Chomsky’s view of linguistics and of universal grammar is summarized as follows. 
 



Linguistic theory is concerned primarily with an ideal speaker-listener, in a completely 
homogeneous speech-community, who knows its language perfectly and is unaffected 
by memory limitations, distractions, etc. … I have in mind certain biological 
properties, the most significant of these being properties that are genetically-
determined and characteristic of the human species, which I will assume, for the 
purposes of this discussion to be genetically uniform, a further idealization.  These 
properties determine the kinds of cognitive systems, language among them, that can 
develop in the human mind.  In the case of language, I will use the term “universal 
grammar” to refer to these properties of human biological endowment [3]. 

 
Chomsky goes further to tell us what he does not mean by universal grammar.  He is not 
interested in the characterization of language, as such, i.e. universal grammar is not the 
logically or conceptually necessary properties of language, but the biological properties 
humans happen to have, that determine the particular cognitive system called language. 
 

Evolution of Universal Grammar 
 

Now we look at language learning from the point of view of a physicist [4].  Consider that the 
universal grammar of human beings, U, allows for the learning of particular mental grammars 
(the grammar anybody happens to adopt and use), Gi , and that there are n different candidate 
grammars.  Each grammar is a different set of rules for generating valid sentences.  Let’s say 
that the grammars overlap in some way: it may be possible to formulate a sentence in 
grammar Gi that could be also formulated (and have the same meaning) in grammar Gj.  So 
we can call aij the probability a speaker using Gi formulates a sentence compatible with Gj.  
The probabilities are normalized as 
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The payoff for successful communication between a particular pair of speaker-listeners is  
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and the average payoff for each individual speaking grammar Gi is  
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where xj is the number frequency (i.e. the fraction) of individuals using grammar Gj.  In 
reality, the ‘payoff’ is, of course, sex and hence more offspring. 
 
Parents don’t always successfully teach the right grammar to their children.  The probability 
that a child with parents speaking Gi will learn Gj is Qij. With all of the aforementioned 
considerations taken into account, the time derivative of the fraction of people speaking Gi is 
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The first term just tells us that the rate of growth of a grammar depends on successful cross-
grammar communication (by whatever means) mediated by mistakes in learning.  In the 
second term, φ = Σi xifi is the probability that a sentence said by one person is understood by 
another person, and is called average grammatical coherence.  This term accounts for the fact 
that the more grammatically coherent the population, the slower the rate of change of xi, and 
the less coherent, the quicker the change. 
 
Now we have defined the model, and we are interested in the stable solutions to equation 4.  
The first case we consider makes all grammars “equidistant” by setting aij = a.  The solutions 
in which all xi = 1/n are called the symmetric solutions, and the solutions in which one 
grammar, Gi dominates are called the asymmetric solutions.  When the number of candidate 
grammars, n, greatly exceeds 1/a, the solutions are restricted to the conditions 
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Since an asymmetric solution is required for grammatical coherence (the society must 
converge onto a single Gi), we see that q > q1 is the necessary condition.  So, we call q1 the 
coherence threshold.  One can solve the case for n < 1/a, and the solutions turn out to be 2n-1/2 
and ½ for the asymmetric and symmetric cases, respectively. 
  
If we attribute the number of, and closeness between, candidate grammars to the universal 
grammar, we see that the coherence threshold is a function of the universal grammar.  Only a 
universal grammar that satisfies the coherence threshold can lead to grammatical 
communication. 
 
We can apply this model to two specific cases: (1) the memoryless learner and (2) the batch 
learner (memorizes everything and compares new input to the batch).  One can imagine that a 
human being is somewhere between these two, so the results from these two cases might 
serve as boundaries. 
 
For the case of the memoryless learner, the teacher utters a sentence using grammar Gk, and 
the learner starts out assuming that his grammar Gi is the desired grammar.  If the sentence is 
consistent with Gi, the learner maintains the hypothesis that Gi  is the desired grammar.  
Otherwise the learner picks a new hypothesis for a candidate grammar Gj.  Iterate this until all 
b possible sentences within the universal grammar have been said.  The probability that the 
memoryless student has learned Gk is 
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Applying the coherence threshold condition, one can show that b ~ n.  The batch learner, on 
the other hand, memorizes all b sentences and searches each grammar most consistent with all 
of the sentences.  The probability that he picks Gk is 
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Again, applying the coherence threshold condition, one can show that b ~ log (n).  So, this 
makes sense.  The batch learner learns much more efficiently, and requires a ‘smaller’ 
universal grammar to satisfy the coherence condition. 
 
One can take this model further, and add more realism.  We can make some sets of grammars 
more likely to overlap than others, or we can make some more difficult to teach to one’s 
offspring.  Such variables would add realism to the models, and make their results more 
realistic too.  Finally, one can compare competing universal grammars with different b’s and 
n’s.  I will not discuss these here, but they can be found in ref [4]. 
 
 

Conclusion 
 
To summarize, we have seen that traditional mathematical models of language learning fail to 
produce results similar to human learning, and that the idea of a universal grammar solves this 
problem.  Additionally, we have seen the application of the concept universal grammar as a 
complex system, yielding quite nice results. 
 
Finally, I see a few problems with this entire ‘problem’ in linguistics: 
 

1. Gold’s requirement for an informer can be satisfied without parental intervention: 
the child’s own memory can easily serve as a quasi-informant, as long as the child 
can maintain focus on and recall repeated verbal references to whatever aspect of 
the grammar he is trying to learn.  This relieves the need for a universal grammar. 

2. Chomsky’s universal grammar is a misnomer.  Calling the properties of our 
biological endowment that allow us language a ‘grammar’ loads the dice.  Rather, 
his universal grammar is actually something which allows for human beings to use 
one or many different grammars. 

3. Even if universal grammar is a valid concept, there is no reason to believe that 
there should be a quantized set of candidate grammars, nor that a universal 
grammar must have n of these, nor that a universal grammar can be consistent with 
only b different sentences. 

 
Although the idea of a universal grammar lends itself nicely to this population dynamics 
problem, I’m skeptical of whether we’re actually referring to anything that exists at all. 
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