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1 Introduction

This paper will present a definition and some of the mathematics behind Hidden Markov
Models (HMMs). It will also discuss some of the usefulness and applications of these models.
For a more detailed description, see Durbin et. al.[1] or Rabiner[2].

2 Hidden Markov Models

2.1 Definition

Hidden Markov models find their use in categorizing sequences of data, in our case, DNA.[2, 1]
The idea behind them is simple: a HMM is a model for generating a data sequence by
following a stochastic procedure. The model contains a finite, usually small number of
different states; the sequence is generated by moving from state to state and at each state,
producing a piece of data.

In a regular (not hidden) Markov Model, the data produced at each state is predetermined
(for example, you have states for the bases A, T, G, and C). The history of states is given
explicitly in the data. See figure 1 for a diagram of a regular Markov model. In a HMM, the
history of states the model took cannot generally be determined from the data sequence.

Rabiner and Durbin et. al.[2, 1] use notation similar to the following. If there are N
states, then each state is represented by Si, where i = 1...N . The probability of moving
from state Si to state Sj is given by the matrix element aij. The probability of producing or
emitting the data Ok in a state Si is ei(Ok). In our example, Ok ∈ {A, T,G, C}. See figure 2
for a diagram of a three-state HMM. Let O = O1O2O3...OT be a sequence of T observations
(data) and let Q = q1q2q3...qT be the sequence of T states the model went through to produce
those observations. The values πi are the probabilities of starting in the states Si.

2.2 Generic Use

HMMs are commonly used to categorize data sequences. For example, HMMs could be used
to distinguish between coding and non-coding regions of DNA.[3] HMMs can do this, with
significant accuracy, by the following steps.
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1. Assume the sequences could have been generated by HMMs.

2. Determine (from intuition) the topology of the HMMs. The topology refers to the
number of states and how they are connected, but not to probabilities.

3. For each category of sequences, using a number of sequences known to be in that
category, use an iterative training process to find the best parameters πi, aij, and
ei(Ok) for a HMM to model that category.

4. For an unknown sequence, determine which HMM models it with the highest proba-
bility.

2.3 Probabilities

Rabiner[2] gives three main problems that must be solved to understand HMMs. This paper
will only look at the first (the easiest).

1. Given a data sequence and a HMM, how does one calculate the probability that the
sequence was generated by the HMM?

2. Given a data sequence and a HMM, how does one find the most probable sequence of
states for generating the given data?

3. Given a data sequence and topology for a HMM, how does one calculate the parameters
ei(b) and aij so that the HMM best models the data?

The solution of the first problem is used to classify sequences from a HMM, and the solution
of the third problem is used to train the HMM.

The first problem is solved recursively. The important quantity used in the calculation
is αt(i). This is the probability of the model generating the first t data and ending in the
state qi. As Rabiner puts it,

αt(i) = P (O1O2O3...Ot, qt = Si)

The important point is that each αt(i) can be calculated from all of the αt−1(i) values for
i = 1...N . Specifically,

αt(i) = ei(Ot)
N∑

j=1

αt−1(j)aji

The probability of ending in a state Si and producing the correct sequence up to that point
is: the probability of producing Ot times the probability of transferring to the state Si from
the previous distribution of states αt−1(j).

The first distribution is clearly given by

α1(i) = πiei(O1)

2



from the probability distribution πi of initial states of the HMM. To calculate the final
probability of the HMM producing the given sequence, simply sum the final probabilities
αT (j) over all states j = 1...N .

P (O) =
N∑

j=1

αT (j)

Note that throughout these calculations, we have assumed that the HMM is completely
known.

3 Applications

Markov models have a large range of applications, both inside and outside of biology.
When looking at DNA as the data sequence, they can be used to tell the difference

between coding and non-coding sections of DNA. Borodovsky and McIninch use the Markov
model shown in figure 3 in their paper describing the GENMARK algorithm.[3] That model
has a built-in period of 3 to match the genetic code.

Eddy has written software using HMMs to search large databases for specific proteins.[4]
To extend the theory of HMMs, look at how they can be applied to wavelet transforms[5],

and look at coupled hidden Markov models[6].
HMMs can deal with much more than DNA or proteins, though. An object’s x,y coordi-

nates as a function of time (from videotape, perhaps) provide two sequences of data a HMM
could use. Coupled HMMs provide an extension of HMMs to deal with multiple streams of
data[6].

HMMs have been used to recognize sign language[7]. Oliver has used it to recognize
driver behavior for applications in SmartCars[8, 9], and try to recognize and classify human
interactions from videotape[10]. HMMs are also commonly used in speech recognition[2].
In general, as long as a system can be reduced to multiple streams of data, HMMs can be
applied to analyze those sequences.
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Figure 1: Durbin et. al.’s figure of a simple Markov model for generating a DNA sequence.
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Figure 2: A three-state hidden Markov model.

Figure 3: The Markov model for the GENMARK program.
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