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Chiral active matter is a hydrodynamic phase composed of self-spinning micro-

scopic constituent particles. The non-equilibrium steady states of chiral active mat-

ter realize a novel dissipationless transport coefficient called the odd viscosity. In

this paper I provide an overview of theories regarding the formation of odd viscosity

in chiral active matter, both from a top-down hydrodynamic perspective and from

a bottom-up microscopic perspective. Fluids with an odd viscosity support exotic

topological waves and surface flows not found in conventional fluids. I briefly dis-

cuss the theory underlying these novel features and present experiments that observe

these effects in two very different chiral active fluids.
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INTRODUCTION

Chiral active matter is composed of particles that continuously inject both energy and

angular momentum into the system. These exotic materials have a myriad of physical

realizations, ranging from molecular motors at the smallest scale [1, 2] to macroscopic grains

driven by some external force [3]. It is not hard to imagine that active chiral matter could

have important technological applications, so it is important to understand the excitations

and responses of their exotic non-equilibrium steady states. These properties are encoded

in the constitutive relations of the material: equations expressing the stress tensor as a

function of the strain and strain rate. The defining characteristic of chiral active matter

is the presence of a time-reversal and parity symmetry-breaking dissipationless response

coefficient η0
ijkl = −ηoklij called the odd viscosity, which relates the stress σij to the strain rate

uij = 1
2
(∇ivj +∇jvi). In Section 2 I present theory explaining how this odd viscosity arises

from studying the linear response of chiral active matter around a non-equilibrium steady

state. In Section 3 I discuss a theory taking the opposite approach, deriving a hydrodynamic

response with odd viscosity from a microscopic model. In Section 4 I overview some of the

consequences of odd viscosity, and in Section 5 I exhibit two experiments realizing some

these consequences.

HYDRODYNAMIC DERIVATION

Consider a fluid described by the fields ρ, s, `, and vi, describing the mass density, entropy

density, angular momentum density, and velocity. In this section I present a novel variational

derivation of the equations of motion for these fields that obtains an odd viscosity term [4].

The starting point is the following action:

S = −
∫
dxdt

[
ξ0 + viξi −

ρvivi
2

+ ε(ρ, s, `)− ω`
]
. (1)

The free energy ε obeys the standard thermodynamic relation p = µρ/m + sT + Ω` − ε,

where p is the pressure and Ω is an intrinsic angular momentum. The field ω is given by half

the usual definition of the fluid vorticity, ω = 1
2
εij∂ivj. The fields ξµ are built from auxiliary

fields called Clebsch parameters [5],

ξµ = ρ∂µθ + s∂µη + `∂µφ+ Θα∂µΨα. (2)
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These equations are standard with two exception: the presence of final term in the La-

grangian that couples the vorticity to the intrinsic angular momentum and the unusual

Clebsch parameters Θ and Φ. Varying the action with respect to the fields θ, η, and φ pro-

duces the standard continuity equations for mass, entropy, and angular momentum density:

∂tρ+ ∂i(ρvi) = 0, ∂ts+ ∂i(svi) = 0, ∂t`+ ∂i(`vi) = 0. (3)

By further varying the action with respect to the remaining fields, one additional equation

can be obtained:

∂t(ρvi) + ∂j(ρvivj) = ∂j
[
−pδij + σodd

ij

]
. (4)

The stress tensor in this equation contains an odd viscosity,

σodd
ij = η0 (∂iεjkvk + εik∂kvj) , η0 =

1

2
`, (5)

which appears because of the inclusion of the coupling between vorticity and intrinsic angular

momentum. The three conservation laws for the mass, entropy, and angular momentum

combined with the equations of motion for the momentum density constitute a complete set

of five equations for the five hydrodynamic fields.

The above equations of motion are dissipationless because the action from which they were

derived is time-translation invariant. A more general hydrodynamic description includes

gradient corrections to currents (i.e. ρvi → ρvi + Jρi ), energy and torque injection, and

damping. The form of these terms is restricted by enforcing that the entropy production

is always positive and energy is conserved (besides work done by external forces), but the

resulting theory is still very complex. To make the equations of motion more tractable, the

authors of ref. [4] neglect thermal effects, temperature dependences, gradient corrections,

and any dynamics in the entropy density. The result is the following set of hydrodynamic

equations that generalize those derived above:

∂tρ+∇ · (ρv) = 0

ρ(∂tvi + vj∂jvi) = ∂jσij − Γνvi

I(∂tΩ + vi∂iΩ) = τ +DΩ∇2Ω− ΓΩ − εijσij

σij = εij
Γ

2
(Ω− ω)− pδij + ηijklvkl +

`

2
(∂iεjkvk + εik∂kvj) .

(6)

The first is the continuity equation for mass and the second is the equation of motion for

the momentum density, where the coefficient Γν is a frictional damping term. The third is
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the equation of motion for the intrinsic angular momentum density ` = IΩ, where DΩ and

ΓΩ are diffusion and damping coefficients respectively. The right-most term in the third

equation accounts for the coupling between the intrinsic and angular orbital momenta. The

final equation is the definition of the stress tensor. The first term represents the relaxation

of the vorticity caused by friction between the microscopic rotating particles, the second

term is simply the pressure, the third is the normal even viscosity, and the final term is the

dissipationless odd viscosity discussed above. The presence of the odd viscosity is the key

result of the derivation.

MICROSCOPIC HAMILTONIAN DERIVATION

The previous section obtained the odd viscosity as a transport coefficient by a variational

calculation including an ad-hoc coupling between the vorticity and the intrinsic angular

momentum. It was shown in a recent paper that odd viscosity can also be derived from the

Hamiltonian mechanics of a very simple microscopic model of a molecular fluid [6]. Here I

reproduce the outline of the calculation, showing that the odd viscosity not only can appear

in the description of fluids, but should be present in a broad class of fluids. Consider a fluid

of molecules with center of mass (CM) positions rα where each molecule consists of multiple

point masses mαµ at positions rαµ with momenta pαµ = mαµṙαµ. Here α and µ are particle

and point mass labels. The total momentum density of the fluid is

gi(r) =
∑
αµ

pαµi δ(r− rαµ) ≈
∑
α

pαi δ(r− rα)−
∑
αµ

pαµi (rα − rαµ)j∇jδ(r− rα), (7)

where the approximation is a Taylor expansion of the Dirac delta function about the particle

CM position. The first term on the right-hand side is the CM momentum density gc and

the second term is the “spin” momentum density gs. Through some manipulations, the spin

momentum density can be expressed as

gs(r) =
1

2
∇× ` +∇ ·A

` = εijk
∑
αµ

(ṙαµ − ṙα)j(r
αµ − rα)kδ(r− rα),

(8)

where ` is the angular momentum density and A is a complex expression playing the role of

an alignment tensor order parameter. This derivation assumes isotropy (beside the presence

of angular momentum), which the order parameter disobeys, so A is assumed to vanish
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throughout. The total momentum density and density (which follows from similar calcula-

tions) are therefore

g(r) = gc +
1

2
∇× `, ρ(r) =

∑
αµ

mαµδ(r− rαµ). (9)

The resulting Hamiltonian is

H =

∫
dr

g · g
2ρ

=

∫
dr

[
(gc)2

2ρ
+ ` · ωc

]
, (10)

where ωc = 1
2
∇× vc is half the CM vorticity of the fluid, the second term was obtained via

integration by parts, and a quadratic derivative term was discarded as it will vanish in the

long-wavelength limit. The coupling between the vorticity and the angular momentum is key

and directly leads to the odd viscosity. This term was present in the previous hydrodynamic

derivation of the odd viscosity, but in that reference it was added by hand and with the

opposite sign [4].

The dynamics of the momentum density and angular momentum density can be obtained

via the Poisson bracket approach to Hamiltonian dynamics after lengthy calculations. The

resulting non-dissipative equations of motion for the momentum density are

ġi +∇j(vjgi) = ∇j(η
o
ijklukl), η0

ijkl = −1

4
`n (εjlnδik + εilnδjk + εiknδjl + εjknδil) . (11)

Specializing to two dimensions, the odd viscosity that appears here is identical to that found

in the variational approach if we identify the coefficients η0 = −`z/2 and assume isotropy.

There are also dissipative contributions to the viscosity that modify the stress tensor to be

σij = −Pδij + (ηeijkl + ηoijkl)ukl, (12)

where P and ηe are the hydrostatic pressure and conventional even viscosity. The dissipative

terms arise from the many microscopic degrees of freedom that the coarse-graining procedure

followed in the Poisson bracket calculation neglects. In addition, it is possible for dissipative

terms related to the angular momentum to appear, but calculating such terms would require

keeping track of higher derivative terms in the Hamiltonian. The equation of motion for the

angular momentum density is

˙̀
i(r) +∇j(`ivj) = εijkωj`k − Γ(Ωi − ωi) + τi. (13)

Injection of angular momentum is accounted for by τi and is balanced by the presence of

a finite Γ, which causes dissipation of angular momentum. In the hydrodynamic limit, the
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resulting steady state has angular momentum ` = I · τ/Γ, where I is the moment of inertia

tensor of the molecules. These equations of motion are equivalent to those derived in the

previous section.

CONSEQUENCES OF ODD VISCOSITY

In this section I will discuss a variety of ways in which the odd viscosity impacts the

phenomenology of fluids. In addition to the usual dimensionless parameters used to char-

acterize flows, the Reynolds number Re ≡ v0r0/ν and the Mach number Ma ≡ v0/c, we

will also need the odd Reynolds number to characterize the strength of the odd viscosity,

Reo ≡ v0r0/ν
0. The definitions are constructed from the characteristic velocity and length

scales of the initial flow, v0 and r0 respectively. and the speed of sound c.

One phenomenon often studied in active matter is vortices. In normal viscous fluids,

the inertia of the rotating flow causes a pressure dip at the vortex center, resulting in a

decreased density. When the odd viscosity is present there is instead an either increase or

larger decrease in the core density, depending on whether the rotation of the vortex and the

intrinsic rotation responsible for the odd viscosity align or anti-align. The density deviation

profile is plotted in Fig 1a for the case of large odd viscosity, characterize by Reo � 1.

The deviation of the vortex core density occurs because the odd viscosity turns rotational

motion into radial motion (and vice versa). In fact, the odd viscosity can be absorbed into

the pressure in the equations of motion for incompressible flow, p → p − 2ηoω, because it

converts the vorticity into compression or expansion of the fluid.

Another ubiquitous phenomenon in viscous fluids is shocks. Shocks form when a portion

of a fluid with higher velocity overtake a potion of the fluid with lower velocity. A simple

model capturing this effect is the “half” wave equation (∂t + u∂x)u = 0, where the wave

amplitude is the also the propagation speed [7]. Given a Gaussian initial distribution,

the peak of the wave will propagate fastest and eventually lead to a multivalued function

that looks like a wave crest. Multivalued functions are generally frowned upon by physics,

and are avoided by the inclusion of higher-order terms, such as in the Burgers equation,

(∂t+u∂x)u = ν∂2
xxu, where ν is the viscosity. These higher order terms not only smooth out

the discontinuity, but also determine the propagation speed of the shock. In fluids with odd

viscosity, the shock is accompanied by a transverse flow perpendicular to the propagation of
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the shock. This flow is the result of collisions between the fast- and slow-moving particles

converting intrinsic angular momentum into orbital angular momentum. The transverse

flow for an ideal Burgers shock with a high odd Reynolds number is shown in Fig. 1b.

In fluids with a spectral gap, usually induced by Lorentz or Coriolis forces, the odd

viscosity leads to an effect familiar in condensed matter physics: topologically protected

edge states [8]. The plane-wave solutions of the two-dimensional odd Navier-Stokes equations

with a body force term ωBv × ẑ have the dispersion relation

ω± = ±ωB
√

(1−mq̄2)2 + q̄2, q̄ ≡ |q|c/ωB, m ≡ ωBν
o/c2 (14)

in addition to a flat band with ω(q) = 0. In analogy to quantum mechanical plane-waves,

a Berry curvature can be constructed from the eigenvectors of the Navier-Stokes equations.

In condensed matter physics the Berry curvature is defined on a torus, and the integral of

the Berry curvature over this compact space defines a topological invariant [9, 10]. In the

continuum case, the parameter space is usually non-compact, but the odd viscosity provides

a natural length scale for a UV cutoff, with which the parameter space can be compactified.

On this compactified momentum space, the lower and upper bands have Chern numbers

C∓ = ±sign(νo)± sign(ωB), and the flat band has a vanishing Chern number. According to

the bulk-boundary correspondence [9], the fluid will support two co-propagating modes that

are protected against back-scattering when C− = 2 and two counter-propagating unprotected

edge modes when C− = 0. This was confirmed numerically, as shown in Fig. 1c. Videos

of the fluid dynamics for the trivial case, C− = 0, shows two modes propagating away

from the source, one in each direction. The counter-clockwise propagating mode scatters

off the bottom corner and sets up a standing wave, demonstrating the lack of topological

backscattering protection.

EXPERIMENTAL VERIFICATIONS OF ODD VISCOSITY

While the vortex and shock wave physics predicted for odd fluids have so far eluded

detection, multiple recent experiments have confirmed the topological edge flows discussed

in the previous section. One experiment constructed an odd fluid out of small toys called

Hexbugs [11]. The Hexbugs are small rectangular objects equipped with a vibrating motor

and special legs that convert the vibrations into linear motion. Each particle of the fluid
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(a) (b) (c)

FIG. 1. (a) The odd viscosity either increases or decreases the fluid density in the core of a vortex

depending on the sign of the viscosity and the handedness of the vortex. Plotted here are the

rescaled density deviation of a vortex core for positive and negative odd viscosity [4]. (b) Fluid

shocks are accompanied by transverse flow in the presence of odd viscosity. The black line is the

velocity profile of a Burgers’ shock, and the dotted and solid blue lines are the analytical and

numerical transverse flows for large odd Reynolds number. The inset shows vx and vy in gray

shading and blue arrows schematically, respectively [4]. (c) The topologically protected edge mode

of an odd fluid with C− = 2. The mode is excited by a sinusoidal source at the star and propagates

around the edge of the system. The mode does not back scatter at the bottom corner and decays

exponentially into the bulk.

consists of a foam disk with two opposite-facing Hexbugs attached to one side, offset from

the center. These particles perform random walks and rotate at Ω0 ≈ 8.4rad/s. This is

implementation of an odd fluid is particularly interesting because it allows an observer to

see collisions exchange rotation and linear motion with their own eyes, the very mechanism

underlying odd viscosity. Another experiment created an odd fluid by suspending millions

of micron-scale cubic permanent magnets in water [12]. The magnets are induced to spin

at a uniform rate by an external magnetic field. The resulting colloidal fluid demonstrates

many features of Newtonian fluids: droplets coalesce, voids collapse like bubbles, and thin

regions are unstable to droplet formation.

Despite the linear sizes of the particles in these two experiments differing by six orders of

magnitude, both groups are able to identify and track instantaneous particle positions. Plots

of particle velocity of both fluids in a circular geometry (actively confined for the hexbug
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(a) (b)

FIG. 2. (a) A snapshot of the velocities of individual hexbug particles. The average velocity in

the bulk is zero, but there is a strong clockwise flow around the boundary. This boundary flow

is robust and appeared in a variety of confining geometries. (b) A snapshot of particle velocities

of individual magnets in a droplet. As with the hexbugs, the flow is confined to the edge and is

characterized by a penetration depth.

fluid and a naturally formed droplet for the colloidal magnet fluid) clearly demonstrate

the robust surface flows predicted in the previous section, as shown in Fig 2. The large

linear friction coefficient of the hexbug fluid precludes the measurement of its odd viscosity,

but the colloid magnetic experiment provides one of the first precise measurements of odd

viscosity. The shear η and rotational viscosity ηR are extracted by fitting the penetration

depth of the droplet surface flow to theory, and the linear surface friction coefficient Γu is

determined by measuring the sedimentation rate of droplets on an inclined slide. These

coefficients are used to predict the dissipation rate of surface waves on a droplet, which is

measured experimentally as the broadening of the power spectrum of waves in a droplet.

For a fluid with no odd viscosity, the theory fails to match the measured dissipation rate,

but the inclusion of odd viscosity in the theory produces close agreement to the experiment.

By fitting the theory to experiment, the odd viscosity is determined with no further fitting

parameters, a remarkable feat. This experiment lays the groundwork for further study and

engineering of colloidal chiral fluids.
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CONCLUSION

Chiral active matter is an rapidly progressing and exciting field. The phenomenology of

active fluids with odd viscosity is rich and has deep connections to topology and condensed

matter physics. Much work is being done developing and understanding hydrodynamic the-

ories of chiral active matter and recent progress in understanding the microscopic origins

of odd viscosity bodes well for the engineering fluids with odd viscosity. As the theory and

experimental techniques continue to develop, I expect to see a fruitful back and forth of

theoretical predictions and experimental observations that hopefully will lead to transfor-

mational new technologies utilizing chiral active matter.
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