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Abstract

Off diagonal long range order is often used to characterize emergent phe-
nomena like ferromagnetism and superfluidity. Similarly entanglement entropy
and entanglement spectrum can be used to characterize topological phases
of matter. In such phases the interplay between interactions, symmetry and
topology lead to emergent fractional charge, fractional statistics and non-trivial
edge states. In this essay we review how entanglement signatures can be used
to deduce these properties from the ground state of the system alone.



1 No country for ODLRO

According to Landau theory, phases like ferromagnets and superfluids are broken
symmetry ground states of certain models. The spontaneous breaking of symmetry
endows these phases with order, meaning that the spins or order parameter phases
are correlated over long distances. This is quantified using the single particle density
matrix:

ρ(r, r′) =
〈
ψ†(r)ψ(r)

〉
, (1)

where ψ represents spin and field operators in models of ferromagnetism and super-
fluidity respectively. It can be shown that in the ordered phase

lim
|r−r′|→∞

ρ(r, r′) 6= 0. (2)

This property is called off diagonal long range order (ODLRO) and is a signature for
ordered phases of matter and the spectacular emergent properties they come with.

However, topological phases like quantum Hall fluids and the SPT phases are not a
consequence of spontaneously broken symmetry and do not exhibit long range order
in the usual sense. Although it is possible to define a density matrix that does
display ODLRO for quantum Hall fluids, we must first map our fermionic model to a
system of bosons via a singular transformation1. This is not a natural construction
and furthermore it fails for SPT phases. Therefore, it is desirable to come up with
a property analogous to ODLRO that allows us to characterize topological phases.
This property turns out to be entanglement.

We begin by describing briefly how entanglement is quantified in many body systems.
We then summarize how it helps us identify topologically ordered and SPT phases
and end with a discussion of how these analogues of ODLRO might be measured in
the lab.

2 Entanglement

Consider the ground state of some model, |Ψ〉. For the purposes of this essay |Ψ〉
is going to represent a phase of matter. In order to understand the entanglement
structure in the phase, we construct the corresponding density matrix:

ρ̂ = |Ψ〉 〈Ψ| . (3)
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Suppose that the Hilbert space of the theory can be partitioned into a tensor product:
H = HA ⊗ HB. We now focus on subsystem A and trace out subsystem B to get
the reduced density matrix:

ρ̂A ≡ trB (|Ψ〉 〈Ψ|). (4)

We can infer from ρ̂A whether |Ψ〉 is entangled or not. If |Ψ〉 can be written as
a product state: |Ψ〉 = |ψA〉 ⊗ |ψB〉, where |ψA〉 and |ψB〉 belong in HA and HB

respectively, it can be shown that ρ̂A represents a pure state in the subsystem A,
meaning it has the property tr (ρ̂2A) = 1. If instead |Ψ〉 is an entangled state, ρ̂A
represents a mixed state: tr (ρ̂2A) < 1.

From this reduced density matrix we can construct two quantities that allow us to
tell apart topological phases from trivial ones.

2.1 Entanglement entropy

We define the von Neumann entropy:

S(ρ̂A) = −tr (ρ̂A log ρ̂A) . (5)

It can be shown that S = 0 if |Ψ〉 is a product state and S > 0 otherwise.

Let us now specialize to the case where |Ψ〉 represents the ground state of a gapped
many-body Hamiltonian with only local interactions. We know that for gapped
systems, correlations decay exponentially:

〈Ψ| Ô(r1)O(r2) |Ψ〉 ∼ e−|r1−r2|/ξ, (6)

where ξ is the correlation length. If we now physically partition the system into
A and B with a boundaryi, ∂A � ξ, locality ensures that a particle deep in A is
unlikely to be correlated to a particle deep in B. Instead the only correlation and,
therefore, entanglement between A and B is going to involve a narrow strip around
the boundary2 (see Fig. 1). This leads us to an area law for the entanglement
entropy:

S ∼ ∂A. (7)

Kitaev and Preskill postulate the addition of a constant term to this entropy:

iIn (2+1)D the boundary is a perimeter, ∂A � ξ. In (3+1)D the boundary is a surface area,
∂A� ξ2.
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Figure 1: Area law for entanglement in gapped, local theories. Only the shaded
region entangles A and B.

S = α ∂A− γ +O(1/∂A), (8)

where α is a constant that depends on the nature of interactions in the theory and
γ ≥ 0 is a constant reduction to the entropy independent of ∂A and, therefore,
independent of how we partition the system. If it is non-zero we must conclude
that there is long range entanglement in the system since the first term takes into
account all short range entanglement between A and B and the last term vanishes
in the thermodynamic limit.

For a given state |Ψ〉 we would like to extract γ. However, this is difficult to do since
γ is the subleading term in the expansion of the entropy in powers of ∂A and so we
cannot isolate it by taking the ∂A → ∞ limit. Various schemes are used to extract
γ in analytical and computational calculations. One approach, used by Kitaev and
Levin, involves partitioning the subsystem A into further pieces and summing over
entanglement entropies for different combinations of subsystems in such a way that
the α ∂A terms cancel. Taking the ∂A→∞ limit then gives us γ. Another method
involves calculating S for a range of large system sizes and then extrapolating the
result to a system size of 0. We discuss an example of this latter technique in Sec.
3.3.
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2.2 Entanglement spectrum

Instead of calculating the entanglement entropy we can choose to diagonalize ρ̂A and
find the entanglement spectrum3. It is often easiest to do this by performing the
Schmidt decomposition of |Ψ〉. To do so we recall that |Ψ〉 lives in the tensor product
space, HA ⊗HB, and can be written as:

|Ψ〉 =
∑
ij

cij |ψA,i〉 ⊗ |ψB,j〉 , (9)

where {|ψA,i〉} and {|ψB,j〉} are orthonormal basis sets for HA and HB respectively.

We now perform singular value decomposition (SVD) on the matrix with elements
cij:

cij =
∑
k

σk Uik V
∗
jk, (10)

where σk are the singular values satisfying: σk ≥ 0 and
∑

k σ
2
k = 1, and U, V are

matrices with orthonormal columns. We can now write down the Schmidt decompo-
sition:

|Ψ〉 =
∑
k

σk

(∑
i

Uik |ψA,i〉

)
⊗

(∑
j

V ∗jk |ψB,j〉

)
=
∑
k

σk |φA,k〉 ⊗ |φB,k〉 ,

where {φA,k} and {φB,k} are basis sets for the transformed HA and HB respectively.
Therefore, ρ̂A becomes:

ρ̂A =
∑
k

σ2
k |φA,k〉 〈φA,k| , (11)

where the Schmidt values, σ2
k’s, form the entanglement spectrum of our phase |Ψ〉.

Since efficient SVD libraries are commonplace this method of computing the entan-
glement spectrum is very convenient.

3 Topological order

3.1 Quantum Hall effects

Consider a gas of N electrons at low temperatures confined to a two dimensional
surface of area, A, and subject to a strong magnetic field, B, applied perpendicular
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Figure 2: Transverse resistivity against magnetic field in the integer (left) and frac-
tional (right) quantum Hall effects.

to the surface1. We can write the quantum Hamiltonian for this system and solve the
corresponding eigenvalue problem to find an equally spaced spectrum, called Landau
levels. Each Landau level has a degeneracy equal to BA/Φ0 where Φ0 = 2π~/e is
the flux quantum.

If we now apply a fixed electric field in a certain direction, and measure the resistivity,
ρxy, in the transverse direction while tuning B we find that ρxy is quantized:

ρxy =
2π~
e2

1

ν
, (12)

where ν is an integer that turns out to be equal to the number of filled Landau
levels, ν = N/(BA/Φ0). This is called the integer quantum Hall (IQH) effect and is
essentially a consequence of weak disorder in the system. The famous plot displaying
the IQH plateaux is shown in Fig. 2.

If we now lower the disorder strength (or equivalently make the magnetic field much
stronger), we start to see other values of ρxy appear. It still obeys the same form
as Eq. (12) but now ν takes on rational values. In this context we call ν the filling
fraction. For Laughlin states, which we consider in this essay, ν = 1/m for some
integer m, which means that the degeneracy of each Landau level is so large that all
our electrons only occupy a fraction of the lowest Landau level. This is called the
fractional quantum Hall (FQH) effect and is shown in Fig. 2. Understanding FQH
requires taking into account the Coulomb interaction between the electrons.

The most striking aspect of FQH is not quantized resistivity but the discovery, in
later experiments, of excitations with fractional charge and statistics. Even though
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an FQH system is built out of electrons we observe the emergence of charge carriers
that are somehow fractions of an electron. An FQH phase with filling fraction,
ν = 1/m, has excitations with charge e/m that are neither fermionic nor bosonic.
Under an exchange of two such excitations, dubbed anyons, the wavefunction gains a
complex phase of e2πi/m 6= ±1. Furthermore, even though FQH phases with different
filling fractions have very different excitations and are, therefore, distinct phases,
they have the same symmetries. This is unlike any (second order) phase transition
studied under Landau’s classification and we need a new kind of order with which
to classify these phases. This turns out to be topological order.

3.2 Anyons

Topological order and the emergence of anyonic excitations have been studied in
other systems as well. For example, certain spin models, called spin liquids also host
anyonic particles. In particular, the toric code2, introduced by Kitaev in the context
of topological quantum computing, is the simplest model to exhibit topological order.

The low energy physics of topologically ordered phases is often studied using topolog-
ical quantum field theories4 (TQFTs) where the emergent anyons take center stage.
Similar to how symmetries determine the appropriate field theory to describe long
wavelength behavior of usual phases of matter, the fractional statistic of the anyons
determines the appropriate TQFT. This is quantified by the quantum dimensionii of
the phase, D. For 1/m Laughlin states, D =

√
m, whereas for the toric code, D = 2.

Different topological phases can have the same quantum dimension. However, only
a trivial phase with no anyons can have D = 1. Therefore, D allows us to identify
topological order by looking at the excitations.

3.3 Topological entropy

While we can identify a topologically order phase by looking at the properties of its
excitations, it would be convenient to be able to do so using just the ground state
which is often easier to calculate. One way to accomplish this is to look at the epony-
mous ground state degeneracy of these phases which depends only on the topology
of the surface that the model is placed on and is robust against perturbations. In
particular, if we place an FQH phase with filling fraction ν = 1/m on a surface with
g genuses, the ground state degeneracy is given by mg.

iiThe exact definition of D comes from the fusion algebra of the anyons, describing which would
take us too far afield.
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Kitaev and Preskill5 make the case that it is also possible to identify topological
order using just the entanglement properties of the ground state. Specifically they
define a topologically ordered phase to be the ground state of a gapped many body
Hamiltonian with long range entanglement, captured by a non-zero value of γ in
the entanglement entropy. This is a reasonable definition since a non-zero value of
γ causes a constant reduction of the entropy, thereby leading to order. Since γ is
independent of interactions and partitioning, this order is topological in nature. The
authors then relate topological entropy to the quantum dimension:

γ = logD. (13)

We note that for topologically trivial phases, D = 1 and, as expected, we get no long
range entanglement.

Kitaev and Preskill prove Eq. (13) by calculating γ from a general TQFT. Levin
and Wen6 come to the same conclusion but via string net condensation. The details
of either proof are beyond the scope of this essay. Instead we mention a paper that
illustrated Eq. (13) by calculating the ground state entanglement entropy for 1/3
and 1/5 Laughlin states in torus geometry7. They numerically calculate the ground
state wavefunctions, construct the density matrices and compute the entropy for a
range of system sizes denoted by l (see Fig. 3). They show that zero l limit of the
entropy is a good approximation for −γ. In particular the y-intercepts of the 1/3 and
1/5 Laughlin states are 1.13± 0.38 and 1.62± 0.16 respectively, which are consistent
with Eq. (13). Similar calculations have been done for the toric code2, confirming
the validity of Eq. (13).

4 Symmetry protected topological phases

4.1 To be topological or not to be topological

Consider the following one dimensional antiferromagnetic spin-1 chain:

H =
∑
i

(
Si · Si+1 +D(Szi )2

)
, (14)

where D ≥ 0 is called the anistropy parameter. The Hamiltonian has time reversal,
inversion and translation symmetries. Gu and Wen8 used numerical methods to show
that the spectrum of this Hamiltonian is gapped at all values of D except one. We
know that at the gapless point, D = Dc, the correlation length will diverge, which
is a sign of a second order phase transition. In the Landau paradigm at least one of
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Figure 3: Entanglement entropy with a range of system sizes for 1/3 (left) and 1/5
(right) Laughlin states.

Figure 4: Ground state of the AKLT model

the two phases would be a broken symmetry phase. However, Gu and Wen further
show that the ground states on either side of Dc respect all the symmetries of the
Hamiltonian.

It is natural to wonder if this is another example of topological order. This seems very
likely if we look closely at the ground states. In the large D limit, we have the trivial
phase which is simply a tensor product of |Sz = 0〉 states at each site. However,
below Dc, we have the Haldane phase which can be adiabatically connected to the
ground state (see Fig. 4) of the AKLT model. The AKLT model has the remarkable
property that in open boundary conditions its ground state is 4-fold degenerate and
has gapless spin-1/2 edge states. Ground state degeneracies and gapless edge states
combined with a gapped bulk are properties observed in the topologically ordered
FQH phases we met earlier.

However, while in the FQH phases the ground state degeneracy and gapless edge
states are robust against any and all perturbations, in the Haldane phase they
are only robust against perturbations that preserve inversion symmetry. However,
adding inversion breaking perturbations will gap out the edge and remove the de-
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generacy. This leads us to conclude that the Haldane phase does not have true
topological order. However, it does have topological properties that are protected by
certain symmetries and, therefore, we call it a symmetry protected topological phase.
In subsequent years many other SPT phases were discovered, including the Kitaev
chain which is a 1D superconductor with symmetry protected topological properties,
the Chern insulator which is a realization of the IQH phase on a 2D lattice, and
topological insulators.

In models with SPT phases, trivial phases can be distinguished from topological
ones using certain global order parameters called topological invariants. In the case
of the Chern insulator, for instance, one can define a so called Chern number as an
integral over the occupied one-particle states. This number is zero in the trivial phase
and non-zero in the topological phase. However, this method of characterizing SPT
phases becomes very difficult to calculate numerically and are, therefore, impractical
for interacting models. Instead we must again look at the entanglement structure
of the many body ground state to help us identify topological properties. Note that
since SPT phases do not have topological order, by our arguments in the previous
section we expect that they do not have long range entanglement and their topological
entropy, γ, vanishes. This turns out to be true. However, as we now show, their
entanglement spectrum does contain signatures of their topological nature.

4.2 Entanglement spectrum of SPT phases

In Pollmann et al9 the authors consider a slight generalization of the Hamiltonian in
Eq. (15):

H = J
∑
i

(
Si · Si+1 +

Uzz
J

(Szi )2 +
Bx

J
Sxi

)
, . (15)

In this model we have two additional symmetry broken anti-ferromagnetic phases.
These can be described by familiar Landau theory and are not important for the
current discussion.

The authors numerically find the ground state of the model for a range of parameters
and then use Schmidt decomposition to calculate the entanglement spectrum. The
degeneracy in the entanglement spectrum is shown in Fig. 5 where the authors
produce colormaps of the difference between the two largest Schmidt values. For
the Haldane phase this must always be zero. We see that the Haldane phase exists
even in the presence of a perturbation unless that perturbation happens to break
inversion symmetry. Note that when the ground state only has inversion symmetry,
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Figure 5: Difference between highest Schmidt values of the ground states of Eq.
(15) with (a) no perturbations (b) time reversal breaking perturbations (c) inversion
breaking perturbations.
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the Haldane phase no longer has gapless edge states. Yet it is an SPT phase in the
sense that a symmetry protects it from being adiabatically connected to the trivial
phase without going through a gapless point. Therefore, the entanglement spectrum
is a superior way to identifying SPT phases than looking for gapless edge states.

This method has been applied successfully to characterize other SPT phases. In
fact in a 2010 paper, Fidkowski10 proves the general result that degeneracies in the
entanglement spectrum of non-interacting topological insulators and superconductors
correspond to gapless edge states. The essence of the proof seems to be that when we
calculate the entanglement spectrum we are required to partition the system and this
effectively introduces a boundary. Since gapless edge states are also a consequence
of open boundary conditions the entanglement spectrum should contain the same
information as the gapless edge states.

5 Measuring entanglement

While it is convenient to calculate entanglement entropy and spectrum numerically,
they are very difficult to measure in the lab. Choo et al11 have shown that it is
possible to perform such measurements using quantum computers. They take spin-
1/2 chains that are known to have SPT and trivial phases since spin-1/2 degrees
of freedom can be conveniently mapped to qubits. They then initialize the qubit in
SPT and trivial phases and measuring the matrix elements of ρ̂A by passing the state
through a quantum circuit representing ρ̂A and studying how often certain outputs
appear. Although decoherence and noise does affect the data, they are able to see
the four-fold degeneracyiii in the highest Schmidt value of the SPT phase, and no
degeneracy in the case of the trivial phase.

6 Conclusion

In this essay we have sketched the relationship between topological phases and en-
tanglement. This reveals a fascinating application of quantum information to the
study of emergence. It would be very exciting to follow this thread further, either by
going deeper to gain a more rigorous understanding of the results presented here by
studying TQFTs and string net condensation, or by broadening the scope to study
how quantum information can shed light on other emergent phenomena, such as

iiiThe experiment works with periodic boundary conditions, which explains the extra factor of 2
in the degeneracy.
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biological systems and neural networks.
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