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Abstract

This essay discusses the neutral theory (NT) of ecosystems, from the as-
pects of analytical model, simulation results and comparison to empirical data.
Certain macroecological properties are shown to be emergent from NT. It also
discusses how the neutrality itself could be viewed as an emergent property
from evolutionary dynamics, and how can the NT be possibly be reconciled
with the classical niche theory.
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1 Introduction

Since the time of Charles Darwin, people have been amazed by the idea, that a
system as complex as the ecosystem could exhibit deep universalities over wide
space and time scales. On one hand, such systems consist a large population of
individual units, that interact with one another, and also with the environment,
through various complicated mechanisms; on the other hand, data collected from
the field has revealed general and relatively simple patterns, that can characterize
very different ecological communities around the world. One classical example of
such patterns is that the rank-abundance curve of different closed canopy forests
seem to represent a single family of mathematical functions (Fig. 1). The existence
of such patterns suggests that the essential properties of certain communities might
be well captured by a simple model with few parameters. People thus have been
seeking theories that relate key biological features at the individual scale to the
macroecological features at the community scale.

Figure 1: Dominance-diversity curves for tree
species in four closed canopy forests, spanning a
large latitudinal gradient. [1].

From the classical viewpoint
of niches, the community is de-
scribed by deterministic mod-
els that contains species-specific
parameters. These models
have been relatively well stud-
ied on smaller systems, but as
the number of species increase,
they quickly become analyti-
cally difficult and computation-
ally expensive. Therefore, for
such models it remains chal-
lenging to study the macroecol-
ogy, or to understand the uni-
versal patterns.

On the contrary, the neutral
theory (NT) assumes all species
and individuals in a commu-
nity are ecologically equivalent,
meaning that they have identical per-capita probabilities of birth, death, migration,
speciation, etc. The validity of neutrality in ecological communities has been con-
troversial since NT was first proposed, but the idea has spawned an active field of
study and a fair amount of work, especially since Hubbell’s monograph came out in
2001[1][2]. It is hard to summarize these work into a specific framework of theory.
They are more like different theories that share the common ideology of ecological
patterns can be described as emergence from neutrality of individuals. And from a
physicist’s view, NT is appealing because it is a basic theory that provides the es-
sential ingredients of an ecosystem, where the emergent properties could be further
explored.

In this essay, I will discuss two macroecological patterns that were observed
in the experiments, and show how NT can derive these patterns as emergence from
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neutrality, along with how NT’s predictions are compatible with the data. I will then
discuss how the controversial concept of neutrality can be viewed as emergent from
non-neutral evolutionary dynamics, and how that could possibly help to reconcile
the niche and the NT perspectives.

2 Emergence of Relative Species Abundance Pat-

tern

The relative species abundance (RSA) pattern is defined as the probability that a
species has n individuals in a given region. When multiplied by the total number
of species in the region, this gives the number of species with n individuals. The
RSA pattern is one of the most commonly used descriptor of static biodiversity, and
has been measured for various empirical ecological communities, such as the ones
reflected in Fig. 1.

2.1 Experimental Results

The first insights of the RSA pattern being universal came out in the 1940s[3][4].
The observed RSA patterns were fitted with a mode-less distribution “log-series”)
or a lognormal distribution. Since then there has been many experimental studies
on the RSA, and most of them could also be fitted with these shapes. Successfully
predicting these shapes has been one of the major successes of the NT.

Figure 2: An example of the use of
the log series distribution to fit data
on species abundance in collections
of months at light trap over a 4-year
period at Rothamsted Field Station,
U.K.[3]

Figure 3: As the survey of months at
light traps at Rothamsted Field Sta-
tion was extended over more years,
the distribution of individuals per
species became lognormal, as Preston
predicted[1]. Note the logarithmic x
axis.

2.2 A Null Model

It is intructive to first have a null expectation of the RSA pattern. Assuming perfect
neutrality, and the species being independent and randomly distributed, we shall re-
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sult in a Poisson distribution of mean ρA, where ρ is the overall density of species
within the concerned area A. This deviates from the empirical observations, sug-
gesting that there must be non-trivial ecological mechanisms driving the community
towards the log-series or lognormal distributions.

2.3 A Neutral Model

Information in this section comes from [5].
To account for these ecological mechanisms, we can consider four distinct pro-

cesses: birth, death, migration, and speciation. They form the set of basic elements
that is the simplest one to give the empirical distributions. We also assume that all
the above mechanisms apply equally to all individuals regardless of which species
they belong to.

In the continuous time limit, the community could be described by a simple
master equation

dPk/dt = Ak−1Pk−1 + Ck+1Pk+1 − (Ak + Ck)Pk (1)

where Pk(t) is the probability that k individuals belong to the same species
at time t, and the coefficients Ak and Ck represent respectively the increase and
decrease of a species with abundance k during the lifetime of an individual.

We will first consider a metacommunity with zero-sum dynamics, which means
it has the summed abundance across all species strictly constant, and speciation
present. Then, we will consider a local community, that is in contact with the
metacommunity, and has the average total population fixed. The two scenarios
roughly corresponds to the microcanonical and canonical ensemble in statistical
physics.

2.3.1 Metacommunity

In the zero-sum dynamics of the metacommunity, the coefficients in master equation
are as follows:

Ak =
(JM − k) k

JM (JM − 1)
(1− ν), (2)

Ck =
k [JM − k + (k − 1)ν]

JM (JM − 1)
, (3)

where JM is the total abundance, and ν is the speciation rate. The increase Ak is
given by the probability at each timestep that the death happens in another species
((JM − k)/JM), times the probability that the birth happens in the investigated
species (k(JM − 1)), times the probability that it does not mutate (1− ν). Ck can
also be derived in a similar manner.

The average number of species at abundance k and time t could be noted down
as 〈φk(t)〉M . It could be calculated by summing up all species that were speciated
at time t− u and reached size k at time t. Therefore,
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〈φk(t)〉M =

∫ t

0

Pk(t− u)p(u)du = ν

∫ t

0

Pk(u)du. (4)

The equilibrium distribution of 〈φk(t)〉M at a given overall abundance JM and
initial condition Pk(0) = δk,1 could be analytically solved:

〈φk〉M =
θΓ (JM + 1) Γ (JM + θ − k)

kΓ (JM + 1− k) Γ (JM + θ)
, (5)

where the key parameter θ is defined as

θ =
(JM − 1) ν

1− ν
. (6)

When JM � 1 and ν � 1, θ becomes JMν, which reflects the biodiversity from
the mechanism aspect, and is called as the “fundamental biodiversity number in [1].

For large JM and finite θ, the density of species with relative abundance ω =
k/JM could then be expressed as

gM(ω) =
θ(1− ω)θ−1

ω
. (7)

However, it is very hard to acquire any statistics of the metacommunity. We will
need to assess the local communities in order to make an intuitive comparison with
the experimental data.

2.3.2 Local Community

In a local community of size J (J � JM), we shall assume the migration rate to be
low that there is no migration out of the local community, and the speciation rate
to be low so that we can ignore speciations in the local community scale. We now
consider Pn(t;ω), which is the probability of finding a species with population n in
the local community, given that its relative abundance in the metacommunity is ω.
Here, the ω could be viewed as a constant from the evolutionary timescales of the
much smaller local community. With respect to the master equation coefficients, we
shall have:

An =
(J − n)

J

[
n

J − 1
(1−m) +mω

]
, (8)

Cn =
n

J

[
J − n
J − 1

(1−m) +m(1− ω)

]
. (9)

Analytically solving for the stationary distribution Pn(ω), there would be

Pn(ω) =

(
JL
n

)
(µω)n[µ(1− ω)]JL−n

(µ)JL
(10)

where another key parameter

µ =
(J − 1)m

1−m
(11)
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quatifies the migration, in the same way that θ quantifies speciation.

(
JL
n

)
is

the binomial coefficient, and (a)n = Γ(a+ n)/Γ(a) is the Pochammer symbol.
It is then possible to calculate the distribution of species 〈φn〉C in a local com-

munity:

〈φn〉L =

JM∑
k=1

Pn (k/JM) 〈φk〉M (12)

Similar to the metacommunity, in the continuum limit of large J , the density of
species in the local community gL(ω) = limJ→∞ J 〈φn〉L could be derived as

gL(ω) = µθ

∫ 1

0

(
µ
µu

)
(1− ω)µu−1ωµ(1−u)−1uθdu. (13)

It could be shown that this result, or the zero-sum multinomial distribution, is
close to the lognormal distribution for a local community, and becomes asymptoti-
cally close to the logseries at large J limit.

3 Emergence of SAR Patterns(to be decided)

Figure 4: Three behaviors of the SAR on dif-
ferent scales[6].

As shown in the last section, the
emergence of the RSA distribution
could be well explained by a “zero-
dimensional” model, in the sense
that it does not include any de-
scription of spatial inhomogeneity of
species. However, space is also an
essential element for understanding
the ecosystem. Spatial structure of
ecosystems has been known to con-
trol the shape of many macroecolog-
ical patterns, and it is also a criti-
cal factor for understanding species’
coexistence[2]. Most empirical obser-
vations are also spatial.

Therefore, a neutral theory that
addresses spatial descriptors is needed.
Currently, no coherent spatial NT has been proposed, instead there exists a collec-
tion of models that can explain some of the spatial patterns. Among the spatial
descriptors, the species-area relationship (SAR) is the most commonly investigated
one. It is defined as the average number of species 〈S(A)〉 sampled in an area A.

3.1 Experimental Results

In the 1920s, a power-law relationship 〈S(A)〉 = cAz was postulated based on em-
pirical data, and later experiments gave an inverse S-shaped curve[7][8]. As shown
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in Fig. 4, the SAR follows a power law with the exponent z at intermediate scales,
while on the small and large areas a linear behavior is displayed. Across different
experiments, the value of the exponent z varies a lot, from 0.1 to 0.5, and has been
observed to show dependence on multiple environmental factors[2].

3.2 Neutral Models

3.2.1 Phenomenological Models

Phenomenological models do not assume specific processes at the microscopic or
individual level, instead they are based on phenomenological assumptions of the
spatial distributions.

For example, the simplest way is to assume that all the individuals are randomly
distributed in space. Therefore, if we denote there are S (A0) species in the region
A0, and that species i has abundance ni, then for a subsection A of the area A0, we
shall have the following SAR:

〈S(A)〉 = S (A0)−
S∑
i=1

(
1− A

A0

)ni

. (14)

From the results of RSA in the last section, one could show that the species
abundance distribution could be asymptotically described by the Fisher’s log series:

〈φ(n)〉 = SP (n) = θrn/n (15)

where r is a parameter related to birth and death rates. In this way, the SAR
could be then explicitly written as

〈S(A)〉 = S (A0)−
∞∑
n=1

θ
rn

n

(
1− A

A0

)n
= θ log

(
1 +

r

1− r
A

A0

)
.

(16)

To reproduce the inverse S-shaped SAR curve observed in experiments, we will
also need to take local conspecific clusters into consideration. In real ecosystems, due
to dispersal limitation, individuals of the same species tend to be clustered. This
could be described by a Poisson cluster process, where the center of clusters are
randomly distributed in space, and a random number of individuals are positioned
around them by a given spatial distribution φ(r) with respect to the center. By this
process, the SAR could be calculated as[6]:

S(A) = S(A0)

∫
d2r

[
1−

∫ ∞
0

dλp(λ)e−λ
∫
A(r) d

2r′φ(r′)

]
(17)

where p(λ) is determined by the RSA of the metacommunity. This approach
reproduces the inverted S-shaped curve, showing that this shape can be explained
simply from spatial correlations of individuals of the same species.
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3.2.2 Stochastic Models

There are several models that aim to reproduce the empirical inverted-S curve from
spatially explicit processes at the individual level. These models typically contain
births, deaths and diffusions. They are analytically intractable and could only have
asymptotic or computational results.

In [9] a model called the multispecies voter model (MVM) with speciation is
introduced. It describes a 2D lattice where at each time step one randomy chosen
individual is removed, and then replaced with a copy of one of other individuals with
a probability 1 − ν, or with an individual of a species that is not currently absent
in the system with a speciation probability ν.

Specifically, the replacement probability by a copy of the present individual is
determined by the distance to the removed individual, rather than the nearest-
neighbor diffusion. This dependence is characterized by a dispersal kernel[2]. Up to
the choice of the dispersal kernel, the SAR could be described by two parameters:
the speciation rate ν, and the dispersal length ξ. Computational results have shown
that in an infinite landscape, the SAR from this model reproduces the characteristic
inverted-S shape curve, and asymptotically it scales as[9]:

〈S(A, ξ, ν)〉 = ξrS
(
Aξ−r, ν

)
(18)

where the exponent r is independent of the two parameters.
Simulations also show that the exponent z in the SAR curve could be fitted with

a logarithmic relationship with ν[2]:

z =
1

q +m log(ν)
. (19)

where q and m are real parameters. This has also been observed in other spatially
explicit models with different mechanisms.

4 Reconciling Niche and Neutrality

Neutral models have successfully described many macroecological patterns as the
result of emergence from identical individuals governed by simple mechanisms. How-
ever, the assumption of neutrality is not always necessarily true, and there are plenty
of empirically observed patterns that cannot be explained by NT alone. It is gener-
ally believed that most patterns of natural communities are generated by a “cock-
tail” of processes, involving both niche-based processes that emphasize the different
across species, and stochastic demographical processes that feature neutrality.

From the perspective of NT, it is informative, then, to study under what circum-
stances can the ecology drive the community to a state, where stochasticity plays a
crucial role in determining the community observables, despite the strong difference
across the species, and how the state is reached. There have been several approaches
along this direction of reconciling the NT and the classical niche theory under one
framework[2]. I will present two of them here.
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4.1 Emergent Neutrality

Information in this section comes from [10].
The most popular phenomenological model of describing species competition is

the Lotka-Volterra (LV) equations:

dNi

dt
= rNi

(
Ki −

∑
j

αi,jNj

)
/Ki i = 1, 2, . . . n;αi,j = 1, (20)

where Ni is the density of species i, r is the universal maximum per capita growth
rate, Ki is the carrying capacity of species i, and αi,j is the competition coefficient
that quantifies the effect of species j on species i.

Figure 5: A stable pattern of species forming
lumps. The x-axis represents the niche (body
size).

Suppose the competition coeffi-
cients were set to have species ly-
ing on an one-dimensional niche axis,
such as body size. In this way, an
intuitive expectation based on com-
petitions would be that the surviv-
ing species at equilibrium would be
equally spread on the niche axis. In-
stead, numerical simulations showed
a transient state of equally spread
lumps, and within each lump there
are multiple very similar species, as
shown in Fig. 5.

The lumps are formed, because the niche similarity of species within each sin-
gle lump prevents competitive exclusion from quickly selecting the best competitor
among a group of similar species, allowing their coexistence for very long times, even
though in the final equilibrium state only the superior species will persist.

There are mechanisms that can maintain this pattern of lumps. For example, the
LV equations can be adapted to include a regulation as follows: The reproduction
is reduced up to g when population density exceeds a threshold H:

dNi

dt
= rNi

(
Ki −

∑
j

αi,jNj

)
/Ki − g

N2
i

N2
i +H2

(21)

In this way, the lump patterns become permanent. This model shows a possibility
where species that are initially different in ecological traits, and that therefore behave
in a non-neutral fashion, can be driven by evolutionary processes to form states that
can be well approximated by neutral models over appropriate spatial and temporal
scales.

4.2 Phase Transition Between Niche and Neutrality
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Figure 6: Phase diagram displaying Neutral
and Niche regimes. The inset shows the be-
havior of the LV model.

Information in this section comes
from [11].

To construct permanent neutral-
ity from the LV system, apart from
the adaptation mentioned in the last
section, there’s also an intuitive way,
which is to add a stochastic term — a
community could be seen as “statis-
tically neutral” if its multivariate dis-
tribution of species abundances can-
not be distinguished from a distribu-
tion constructed under the assump-
tion of ecological neutrality. This
could be compared to a physical sys-
tem: as higher temperature brings in
a higher degree of stochasticity, the
energetic differences caused by inter-
actions would have less influence in
the final states. Therefore, by including a Gaussian noise as the stochasitic factor,
and introducing the immigration λ, the LV equations become:

dNi

dt
= λ+ rNi

(
Ki −

∑
j

αi,jNj

)
/Ki +

√
ωNiηi(t) i = 1, 2, . . . n, (22)

where the noise has 〈ηi(t)〉 and 〈ηi(t)ηj (t′)〉 = δijδ (t− t′).
To measure the degree of statistical neutrality, the distance from the adapted

LV-simulated species abundance distribution (PLV (~x)) and the one generated by
purely neutral dynamics (PN(~x)) is calculated. The results are shown in Fig. 6,
where the neutral and niche regimes become two macroscopic regimes divided by a
phase transition.

5 Discussions

In this essay, I presented how the patterns of two of the most important macroe-
cological descriptors can be derived from NT, which can be viewed as success of
NT. I also discussed two approaches to integrate the niche theory and NT into one
framework, which is a future direction of NT.

These are far from the whole picture of the field. For example, the above discus-
sions on RSA and SAR are examples of NT at stationarity. There has been both
classical and recent work on the temporal behaviors of the NT, and they have been
able to explain some of the dynamical patterns in ecological communities in reality.
Another active direction is to understand the link of different macroecological pat-
terns that has been found from the data. In particular, we still lack a mechanistic
understanding of the effect of spaces and spatial patterns, and no spatially explicit
models have been solved.
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There has been plenty of work in marking the validity of the neutrality assump-
tion, while another strong assumption of NT has been less discussed, which is that
the system can only have one trophic layer. The NT is then limited to species
that compete with each other on the same pool of limited resources. However, the
architecture of ecological interaction networks plays a crucial role in shaping and
regulating community dynamics, and it has become a bubbling field of study. It is a
major challenge to connect stochastic NT and ecological networks structure within
a unified theoretical framework. Therefore, the NT remains to be an active field
with many questions to be answered.
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