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Abstract

Topological defects arise in a variety of physical systems that undergo symmetry-breaking
phase transitions into a state of higher order. Liquid crystals (LCs) are a useful set of
systems for studying the interactions of multiple defects, particularly their creation and
mutual annihilation. In this essay, the basic interactions of defects in LCs are described
through the lens of recent experimental and theoretical advances in (quasi-)2-dimensional
systems. Then, recent findings in active nematics are described, demonstrating how non-
equilibrium interactions can give rise to very different defect behaviors. Unlike equilibrium
systems, active nematic liquid crystals can exhibit spontaneous defect creation, leading to
turbulent-like dynamics. These systems exemplify how relatively simple interactions between
many microscopic objects can lead to complex emergent phenomena at larger scales.



I. INTRODUCTION

Topological defects can arise in a multitude of physical systems, and are thus of interest
to physicists in many subfields, including condensed matter, soft matter, biophysics, and
cosmology [1]. Defects commonly arise in symmetry-breaking phase transitions and can
play a crucial role in establishing long-range order. Defect structures can be very complex
and their dynamics highly non-trivial. Thus, it is very useful to study defects in a generic
theoretical framework, yielding a universal description that can then be applied to a variety
of different physical systems. Defects are fundamentally an emergent phenomenon, as they
describe the organization of many small constituents of a a physical system. Since these
constituents can have many different properties, it is highly desirable for the universal de-
scription to be independent of the short-scale properties of any specific system being studied.
By formulating a purely macroscopic theory of defect dynamics, universal behavior can be
identified effectively.

Nevertheless, experimental verification is crucial to test the predictions of such a theory,
as it necessarily requires certain approximations to be made when neglecting the micro-
scopic details of a system. To this end, model systems that allow for easy observation and
quantification of defects are used. Liquid crystals are a prime candidate, as the defects
they form can easily be observed with optical microscopy. There are many types of liquid
crystal, including mixtures of organic molecules, polymers, or even living cells. Most consist
of molecules or cells that are approximately rod-shaped and can thus be described by a
director field.

Liquid crystals can form different phases as they are cooled down from an isotropic state
and become more ordered. The one with the highest energy is the nematic phase, where
rod-shaped molecules have orientational order (they align along a common axis), but no
positional order in three dimensions [2]. If the system is cooled further, smectic phases
may arise, where molecules organize into distinct layers in three dimensions. In each layer,
molecules are aligned as in the nematic phase. Smectic A refers to the case where molecules
are aligned perpendicular to the layer, whereas Smectic C refers to the case where there is
some non-zero angle between the alignment and the layer normal. Additional phases include
chiral phases, twisted nematics, and discotic and conic phases for molecules that are disk-
and cone-shaped, respectively. If a liquid crystal is cooled down quickly enough, different
regions within the material may not be in thermal contact with each other. This process,
sometimes called thermal quenching, leads to spatial gradients of the molecular orientation,
and can cause topological defects to appear.

Active matter describes systems made of many small constituents that exchange energy
with each other and their surroundings. Thus, active matter gives rise to phenomena that
cannot be described by equilibrium statistical mechanics. Activity often leads to collective
motion, in which the constituents of a system display long-range ordering on scales much
larger than their physical size. Examples famously range across many scales, from subcellular
microtubules to flocks of birds [3]. In the case of liquid crystals, activity fundamentally
alters the behavior of a system, as it no longer necessarily tends towards thermodynamic
equilibrium. As a result, topological defects can be created spontaneously, and new kinds
of long-range ordering can occur.

In this essay, the dynamics of topological defects in both passive and active liquid crystals
are described. For the sake of simplicity, the discussion is restricted to 2D and quasi-2D
systems, where 3D defect structures like dislocations cannot exist. Additionally, the 3-
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dimensional structure that distinguishes nematic, smectic, and other phases need not be
considered. In the passive case, “dynamics” primarily refers to the motion of two defects,
especially those of opposite topological charge which eventually annihilate. For active liquid
crystals, much more complex motion may arise. In both cases, the basic theory commonly
used to model the systems is described. Then, experimental techniques and results of interest
are discussed. Ultimately, the behavior of defects in liquid crystals is placed into the broader
context of universality in physical systems and the concept of emergent physical phenomena.

II. DEFECTS IN PASSIVE LIQUID CRYSTALS

Two-dimensional liquid crystals can be described by a 2D director field n̂(x, y) for ne-
matic, smectic, and isotropic liquid crystals alike. The elastic free energy density w of a
director field can be written as

w =
1

2

[
KS(∇ · n̂)2 +KT (n̂ · ∇ × n̂)2 +KB(n̂×∇× n̂)2

]
, (1)

where KS, KT , KB, are the elastic constants for splay, twist, and bend, respectively [1].
In 2D there is no twist, so only the first and last terms remain. It is often useful to make
one-constant approximation KS = KB = K, which yields

w =
K

2

[(
∂θ

∂x

)2

+

(
∂θ

∂y

)2
]
. (2)

Thus, the lowest energy configuration in a simple, passive liquid crystal is for all the
molecules or cells to align, such that any spatial derivatives of θ vanish.

A. Theory of passive defect dynamics

In general, a topological defect is a discontinuity in a field that cannot be removed by a
local change in the field. In the case of a 2-dimensional director field, a topological defect
refers to a singularity in the field with some non-zero topological charge S, defined as the
number of full rotations of the director on a closed path around the singularity. Such a
defect also has a phase, θ0, which is the angle between a vector pointing from the defect
core to a nearby point and the director at that point (Fig. 1). Thus, the director field near
a defect at the origin is given by

θ(~r) = Sφ(~r) + θ0, (3)

where φ(~r) is the polar coordinate of the point defined by ~r, and n̂ = (cos θ, sin θ). Deter-
mining the director field near two defects becomes very difficult when they do not share the
same phase. To solve this problem, Tang and Selinger showed that an arbitrary defect with
charge S can be represented by a tensor of order n|1 − S|, where n can be any integer [4].
Using the technique of conformal mapping, they were able to derive analytical solutions for
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FIG. 1. Sketches of topological defects with strengths ±1 and ±1/2 with different phases θ1. The

phase of +1 defects changes their structure qualitatively (see top row images). For all defects of

strengths S 6= 1, a non-zero phase θ1 is equivalent to a simple rotation of the defect by an angle

θ1/(1− S). Reproduced from Harth and Stannarius (2020).

the director field around two defects in the one-constant approximation:

θ(~r) = S1 tan−1

(
y − y1
x− x1

)
+ S2 tan−1

(
y − y2
x− x2

)
+
δθ

2

1 +
log
(
|~r − ~R1|2/|~r − ~R2|2

)
log
(
| ~R1 − ~R2|2/r2c

)
+ Θ

(4)
where

δθ = θ2 − θ1 + S2 tan−1

(
y1 − y2
x1 − x2

)
− S1 tan−1

(
y2 − y1
x2 − x1

)
(5)

Θ = θ1 − S2 tan−1

(
y1 − y2
x1 − x2

)
(6)

Here S1 and S2 are the defects’ charges, θ1 and θ2 their phases, R1 and R2 their positions,
and rc is the size of the defect core, i.e. the region where orientational order is disrupted.
Typically one assumes that the core size is much smaller than the separation between defects.
From this expression, the elastic free energy for a system if size Rmax can be calculated:

w = πK(S1+S2)
2 log

(
Rmax

rc

)
−2πKS1S2 log

(
|~R1 − ~R2|

2rc

)
+
πKδθ2

2

log
(
|~R1 − ~R2|/(2rc)

)
[log
(
|~R1 − ~R2|/(rc)

)
]2
.

(7)
The first term is the energy cost of a defect pair with net charge S1 + S2. The second term
indicates that defects of like charge repel one another, while those of opposite charge attract.
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The third term represents a preferential alignment of the defects such that their phase is
the same, meaning δθ = 0. As a result, there is an aligning torque which causes defects to
follow a curved path as they move apart or towards each other.

These effects, which cause topological defects to move, are balanced by a drag force. For
the simplified case using the one-constant approximation and negligible flow, the drag is
given by

Fdrag = πγ1S
2v log(L/rc) (8)

where γ1 is the rotational diffusivity and L is the characteristic system size. The logarithmic
divergence of this expression is addressed by imposing a long-distance cut-off, giving

Fdrag = πγ1S
2v log(3.6/Er) (9)

where Er = γ1vrc/K is called the Ericksen number. Ultimately, the velocity of the defects
is found to be

v = ± K

γ1 log(3.6/Er)R
. (10)

Thus, as defects of oppose charge attract each other, their separation varies as R(t) ∝ t1/2.
In real systems, one must consider additional corrections, such as those due to material

flow, finite system size, or elastic anisotropy (KS 6= KB). According to a recent review, a
general description of defect dynamics that incorporates all of these aspects is still missing [1].
Nevertheless, some of the consequences of these corrections have been known qualitatively
for some time. For example, both elastic anisotropy and flow-coupling cause positive defects
to move faster than their negative counterparts.

B. Experimental results

A system particularly well-suited for observations of defects in a quasi-2D LC is a freely
suspended Smectic C [5]. Smectic phases possess positional order in one dimension, meaning
the molecules are organized into distinct layers with a well-defined thickness. Each layer
forms an independent 2D system in which the projection of each molecule’s orientation into
the film plane (called the c-director) plays the role of the director field described above.
The orientation of the c-director also determines the polarization of light passing through
it, so the director field can be determined by observing the film using crossed polarizers,
sometimes with the addition of a diagonal λ wave plate. Specifically, the apparent color of
the film changes based on the local orientation of the c-director.

The trajectories of topological defects as they annihilate were visualized as described
above by Missaoui et al. [5] in a Smectic C film made from 50:50 wt% 5-n-octyl-2-[4-(n-
hexyloxy)phenyl]-pyrimidine and 5-n-decyl-2-[4-(n-octyloxy) phenyl]-pyrimidine (Fig. 2).
When the film first forms, it takes on the lowest energy configuration where all molecules
are aligned with no defects. Disclinations are subsequently created by touching the film
with a thin fiber (“hair tip”). The initial alignment is random, and it is not possible to
distinguish between the directions ~n and −~n. One direction is simply chosen, and is used
consistently throughout each experiment so that it does not affect the conclusions. The
defects shown are initially both mismatched and misaligned, causing their trajectories to
be curved. Because of elastic anisotropy, the +1 defect (red line in Fig.3 (c)), moves fast
than the -1 defect (blue line). As predicted by theory, these experiments also show that δθ
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FIG. 2. (a),(b) Mismatched (initial δθ ≈ 65◦) and misaligned (initial δφ ≈ −36◦) defect pair on the

way to annihilation. White arrows sketch the c-director. The +1 defect (top) is ≈ 1.8 times faster

than the -1 defect. The black arrow indicates the outer director field. (c) Trajectories respective to

the annihilation point. Circles mark the defect positions in frames (a)–(c). Adapted from Missaoui

et al. (2020).

and δφ, are linear dependent. However, the data suggest that δθ ≈ −δφ, in disagreement
with the theoretical prediction of δθ ≈ −2δφ. The precise reason for this discrepancy
remains unclear. Other authors have suggested that it may be due to deviations from the
one-constant approximation, or that the finite film size affects pair orientation [1].

In a system with many defects, pair annihilation leads to coarsening of the overall system.
Interestingly, the pattern of defects remains self-similar, meaning that zooming in on a part
of the director field at some time is indistinguishable from looking at the whole field at a
later time. In 2D, the predicted scaling of the defect density ρ is ρ(t) ∝ t−1. One of the
first experimental verifications of this scaling behavior came from a study that, surprisingly,
was motivated mainly by cosmology [6]. In short, the Kibble-Zurek mechanism describes
how large-scale structures in the universe can be explained by the existence of a symmetry-
breaking phase transition in the very early universe. In this scenario, the supercooling of a
two-component scalar field (the Higgs fields) would create cosmic strings — one-dimensional
topological defects. While experiments cannot be conducted on cosmological scales, cosmol-
ogists soon realized that important insights could be gained by studying other systems with
the same scaling behavior, such as certain liquid crystals.

In this spirit, experiments were conducted by Chuang et al. using the nematic liquid
crystal knows as K15 [6]. The isotropic-to-nematic transition was induced by applying a
pressure jump ∆P , which causes +1/2 defects, or “strings,” to form. The length of strings
per unit volume is analogous to the defect density ρ, as well as the density of cosmic strings in
the Kibble-Zurek mechanism. As expected, the scaling follows ρ(t) ∝ t−1. It must be noted
that while the system is three-dimensional, the string density is measured per unit area in
two-dimensional images. Thus, one can write ρ ≡ 1/ξ2, where ξ is a characteristic length
scale. At any time, the nematic liquid crystal in these experiment can be characterized by
a single length scale, meaning it remains self-similar (Fig. 3). Crucially, this means that if
the scaling of ρ with time is known, the structure of the system at any point in the past
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FIG. 3. A coarsening sequence showing the strings visible in a nematic liquid crystal, at t = 1.0, 1.7,

2.9, and 4.8 seconds after a pressure jump of ∆P from an initially isotropic state in equilibrium

at approximately 33◦C and 3.6 MPa. The evolution of the string network shows self-similar or

“scaling” behavior. Each picture shows a region 360 µm in width. Adapted from Chuang et al.

(1991).

(such as the structure of the universe moments after the big bang) can easily be deduced,
as long as the present structure can be observed.

This example perfectly illustrates why the study of universal scaling laws is so useful.
In the authors’ own words, “the universality of symmetry-breaking phenomena suggests
that theories [...] beyond the grasp of human manipulation may nevertheless be explored
by observing similar systems in which all the relevant length scales have been uniformly
scaled.”

III. DEFECTS IN ACTIVE LIQUID CRYSTALS

In an active liquid crystal, the components that make up the crystal can exchange energy
with each other or their surroundings. As a result, and unlike the systems described above,
active LCs do not necessarily tend towards a uniform director field in which topological
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defects annihilate. Instead, defect pairs can be created spontaneously before moving along
chaotic trajectories and eventually annihilating [7, 8]. In this section, the formation of topo-
logical defects in active liquid crystals and their dynamics are described. A full theoretical
description is beyond the scope of this work. Instead, we briefly present the equations gov-
erning the time evolution of a 2D director field before focusing on a qualitative description
of the emergent physics and a description of recent experimental advances.

A. Theory and simulation of defect formation

There is a standard expression for the Landau-de Gennes free energy functional of a
director field in the one-constant approximation [8]:

F =
K

2
(∂kQij)

2 +
A

2
QijQji +

B

3
QijQjkQki +

C

4
(QijQji)

2. (11)

Here Q is the order parameter tensor of the director field. This free energy is used to obtain
the so-called molecular field Hij:

Hij = − δF
δQij

+
δij
3

Tr

(
δF
δQkl

)
. (12)

This field in turn is used to write down the standard evolution equation for Q, which
describes the hydrodynamics of a liquid crystal:

(∂t + uk∂k)Qij − Sij = ΓHij. (13)

Here Sij is an advection term which can be written in terms of the strain rate tensor Eij =
(∂iuj + ∂jui)/2, the vorticity tensor Ωij = (∂jui − ∂iuj)/2, and the order parameter tensor,
and Γ is a constant. From all this, one obtains the equations of motion for the velocity field
of the director ~u:

∇ · ~u = 0; ρ(∂t + uk∂k)ui = ∂jΠij (14)

where ρ is the fluid density and Π is the stress tensor. The full expression for Π is fairly
complicated, and depends on all of the quantities defined so far in this section, as well as
the pressure and viscosity of the fluid. For a passive LC, Π includes two terms: the viscous
stress, which depends only on the viscosity and the strain rate, and the passive stress, which
combines all other terms. To incorporate activity, one simply adds an active term

Πactive
ij = −αQij (15)

where α controls the strength of the activity. As a result of this activity, any gradient in Q
produces a flow. Extensile flow arises when α > 0, and contractile flow arises when α < 0.
The way topological defects form in an initially uniform director field was shown by Thampi
et al. using numerical simulations based on equations (13) and (14) for a system with
extensile flow [8]. Small bend fluctuations are reinforced by local shear, forming so-called
“walls” in the director field (Fig. 4 (a)-(c)). The dominant length scale of these deformations

is given by the strength of the elastic forces relative to the activity:
√
K/α. As the director

tilts further, two defects of charge +1/2 and -1/2 are formed inside each wall where the tilt
is strongest. Subsequently, defects move around following complex trajectories dictated by
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FIG. 4. Snapshots at successive times of the director field (dashed lines) and +1/2 and -1/2 defects

(red and blue, respectively) during the development of active turbulence from an ordered nematic

state for an extensile system. Two stages are seen: walls are formed ((b), (c)), local nematic order

is restored by the formation of pairs of defects ((d), (e)). Reproduced from Thampi et al. (2014).

the physics in section II as well as the activity of the director field.

B. Experimental results

Experimentally, active liquid crystals can be observed in a variety of systems. One
prominent example is that of kinesin motors bound to microtubules, which play an important
part in cellular processes such as cytoskeleton formation and cell division. A quasi-2D active
liquid crystal can be created by depositing an aqueous solution of microtubules and kinesin
onto an oil film, as was done by Opathalage et al. [9]. In these experiments, surfactants are
used to stabilize the oil-water interface, allowing the microtubules form a dense nematic film.
Microtubules are able to slide relative to one another, while also being bound into bundles
by the kinesin and an added depletion agent, polyethylene glycol. Finally, the aqueous phase
contains an ATP-generating system, providing a constant source of energy. Kinesin motors
use energy obtained from the consumption of ATP to “walk” along microtubule bundles,
causing bundle extension, which is the source of the activity (extensile flow) in the nematic
film.

The overall topological charge of the nematic film is determined by the boundary condi-
tions of the system. The oil on which the microtubules are confined to circular holes in a
photoresist, giving the film a net charge of +1 (sometimes called the Euler characteristic).
As a result, the nematic field must contain at least two +1/2 defects. The strength of the
confinement was varied by changing the diameter D of the circle, leading to drastically differ-
ent behaviors, which the authors categorize as intermediate, strong, and weak confinement.
These behaviors are summarized in Fig. 5.

Under intermediate confinement (D = 200 µm), two +1/2 defects orbit one another in a
spiral pattern centered on the center of the circle. Note that the size of a defect, defined by
the minimum radius of curvature of the microtubules, was rc ≈ 100 µm. As the two defects
approach each other near the center, a pair of one +1/2 and one -1/2 defect is formed at
the system boundary. This state is destroyed shortly thereafter, as one of the original two
+1/2 defects and the -1/2 defect annihilate each other. The two remaining defects then
continue to orbit each other, until the process repeats. The lifetime of the created defect
pair is about an order of magnitude less than the time between creation events.

Under strong confinement (D ≤ rc = 100 µm), defects could no longer be identified
as the microtubules accumulate along the boundary of the system. Nevertheless, circular
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FIG. 5. Fluorescence images of confined active nematics with diameters of (i) 60, (ii) 100, (iii)

200, (iv) 400, and (v) 800 µm. White arrows indicate direction of circulation. Cyan line overlaying

the 200 µm disk highlights the double spiral configuration of the nematic director observed for

intermediate confinements. Photographs are not to scale. (C) Structure of nematic director field

around topological defects of charge +1/2 (magenta) and -1/2 (blue). Adapted from Opathalage

et al. (2019).

rotations of the microtubules remained even for D = 60 µm, driven by the activity induced
by the kinesin motors. This result is interesting because theory predicts that circulation
should cease for sufficiently small confinements, where elastic effect impeding the motion
dominate. The authors do not state what the cause of this discrepancy would be. Perhaps
even stronger confinement would stop the rotation.

Under weak confinement (D > 400 µm), defects pairs can form both at the boundary and
within the bulk of the nematic. These defects exhibit chaotic dynamics as they orbit and
annihilate one another. Nevertheless, a strong overall flow circulation remains for diameters
up to D = 600 µm. The direction of flow can occasionally flip from clockwise to counter-
clockwise, or vice-versa, but the time scale for this change is 1-2 orders of magnitude greater
than the typical timescale on which defect creation/annihilation occurs. As predicted by
hydrodynamic theory, the density of defects drops off sharply as the system diameter in-
creases from the strongly confined to the weekly confined regime, and then levels off under
further increases of D. However, this leveling off does not coincide with the disappearance of
circular flow, as predicted by theory. In experiments, circular flow persists for significantly
larger sizes. The authors argue that this discrepancy is caused by the defect pairs created
at the boundary, which align themselves with existing circular flow, and in turn produce
active stresses that further stabilize the motion.

The experimental design described above can, in principle, be used to study various
different geometries with different boundary conditions. The importance of confinement
in determining defect dynamics means that the geometry and size of the system can be
used to control active nematics in general. It is worth emphasizing that all the phenomena
describes in this section of are ultimately the result of the interactions of kinesin motors
and microtubules on the scale of nanometers and microseconds. Yet, without explicitly
considering any of the details of these interactions, an accurate description of the dynamics
over hundreds of microns and several minutes was obtained.
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FIG. 6. a, Retardance map of a thick microtubule (MT) film in the regime of weak defect alignment.

Red and blue markers indicate locations and orientations of +1/2 and -1/2 defects. Scale bar, 200

µm. b, Thin MT film showing strong alignment of +1/2 defects. Scale bar, 200 µm. c, Orientational

order in a large active-nematic sample. Each red bar’s orientation and length indicates the mean

direction and strength of the defect alignment in one field of view. Scale bar, 2 mm. d, Defect

alignment spans the largest samples studied (6 cm × 2 cm), containing ~20,000 defects. Scale bar,

10 mm. Adapted from DeCamp et al. (2015).

At the largest system sizes examined in this study (D = 800 µm), there is not net circula-
tion, and defects follow trajectories that appear chaotic. Because of the visual resemblance
to turbulent fluid flow, this motion is usually called “active turbulence” [3]. Experiments
on active turbulence in microtubule films over even larger spatial scales (up to a few cen-
timeters, with thousands of defects) have shown that long-range orientational ordering of
the defects can persist for several hours [10]. Since this long-range order was observed in
both experiments and simulations of a generic 2D nematic, the authors suggest it may be
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a generic feature of active nematics. Remarkably, at these large scales, the coarse-grained
defect alignment looks very similar to a uniform director field (Fig. 6 c and d, where each di-
rector represents the mean direction of all defects in a certain region of space). It is tempting
to suggest that the array of these mean orientations could itself behave like a liquid crystal,
demonstrating a kind of scale invariance. However, more experiments would be required
before such claims can be made.

In systems with contractile flow (α < 0, activity can also lead to defect proliferation [8].
However, in the case of a pair of ±1/2 defects, contractile flow speeds up the motion of the
defects towards each other by driving the +1/2 defect in the direction of its “tail” [7]. This
process enhances the annihilation of defects already observed in passive liquid crystals. The
extensile flow discussed previously has the opposite effect by driving defects in the direction
of their “head.” Nevertheless, when defects annihilate in a system with contractile flow, the
resulting uniform director field is unstable. The activity leads to the creation of additional
defect pairs, eventually giving rise to active turbulence.

IV. SUMMARY AND OUTLOOK

In this work, a broad overview of how topological defects interact in liquid crystals was
given. The basic theory was described briefly, before being illustrated with examples from
recent experimental and computational studies. In passive liquid crystals, defects of opposite
charge attract and annihilate under the influence of elastic stresses balanced by drag on
the underlying director field. This process iteratively leads to coarsening of the defect
patterns, which remain self-similar as their characteristic length scale changes. In active
systems, defects can proliferate, especially when the active flow is extensile. The creation
of additional defects leads to active turbulence, which can be controlled by confining the
system. At very large scales, orientational order of defect orientations in active nematics has
been observed. These phenomena are generally considered to be universal for many different
systems containing topological defects. Thus, the relative ease with which experiments can
be conducted in liquid crystalline systems makes them a useful tool for many physical areas
of research.

It must be said that, in this work, we have only scratched the surface of the existing
literature on liquid crystals. Countless experimental, computational, and theoretical studies
have been performed describing the various details of defect interactions. Many details of
the dynamics have been neglected here for the sake of brevity. Active liquid crystals in
particular are the subject of a rapidly growing literature since many biological systems,
including colonies of bacterial or epithelial cells, display nematic order. Activity in these
systems can arise either from self-propulsion or cell division [11].

Many open questions remain specifically with regards to how different defect dynam-
ics arise when the properties of the underlying constituents are changed. Addressing this
problem requires taking into account multiple length scales. Since the study of 2D systems
allows for certain simplifications, there is even more progress to be made when studying
3D systems. In the long term, there is widespread hope that an improved understanding
of defect interactions and dynamics can be used to control active processes both in bio-
logical and synthetic systems [3]. Two important ways this goal could be achieved is with
confinement (as discussed above), or by controlling the properties of the microscopic active
constituents, either via bioengineering or by constructing artificial micromachines. Needless
to say, the study of topological defects in liquid crystals is a thriving research topic, with an
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ever-growing list of potential applications.
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