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Abstract

Network theory provides a great framework to study a myriad of phenomena oc-
curring in nature. In this report we describe the different ways in which networks are
characterized by studying empirical networks. We then study the popular descriptive
models used to build and study networks with properties similar to empirical networks.
We also explore methods from physics which can be used to analyze networks, includ-
ing statistical mechanics and dynamical systems. Finally, we discuss the potential of
renormalization group theory to study networks.

1



1 Introduction
Complex networks can be used to describe complex systems which can be seen in a wide
variety of fields like sociology, mathematics, economics and physics. Essentially any system
with free agents or degrees of freedom communicating to each other through what can be
approximated as a single channel can be thought of as a network. This kind of formulation
is readily applicable to a number of problems, which is why the study of complex networks
have applications in various fields.

Figure 1: A simple network with 8 nodes and 10 vertices.

A simple network can be formed with nodes connected by binary links, which either exist
or don’t. More complicated networks can have links which have a number associated with
them representing the strength of the link or interaction. Networks can be described using
the notation G(V,E) where V is the set of nodes and E is a set of ordered pairs of nodes which
have a link connecting them. A popular way of describing a simple network is by using the
adjacency matrix associated with the network. The adjacency matrix is defined as:

Ai j =

{
1 if there is a link between nodes i and j
0 otherwise

(1)

The entries of the adjacency matrix completely define the network. Simple networks have
various observable properties which reveal important information about the network. Some
of these are:

• the degree distribution p(k), which is the probability that a randomly chosen has degree
k, which means it is linked to k other nodes.

• the average path length, which is the average number of steps between any two nodes
in the network.

• the average clustering coefficient, the clustering coefficient for a node i is defined as the
number of closed triplet in Ni divided by all possible triplets in Ni including node i.
Ni is defined as the neighbourhood of i which consists of nodes which are linked to i.

• the size of the largest connected component.

• the spectral properties of the adjacency matrix.

The types of networks which are dealt with in most of physics have a high degree of
symmetry associated with them. For example, the translational symmetry of lattices are
what ultimately make them tractable for theoretical analysis. In the case of networks there
is no such mathematical structure, which makes their analysis much harder, and so we study
networks by looking at universal characteristics such as those defined above.

However, it must be noted that the intractability of the theoretical analysis of networks
does not relieve them of emergent phenomena. The development of motifs and patterns
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such as community structures, correlations and power-law degree distributions discussed in
sections 3, 4 are strong indicators of emergent behaviour. The phenomena of consensus
formation and synchronization, studied in section 5, also hint towards emergence.

2 Empirical networks
In this section we consider the various properties observed in real-life networks which as it
turns out have very similar properties. For example, consider networks in sociology, which
are networks of people with each node representing a person, and a link representing contact.
The study of these networks can be used to reveal various aspects of a society like commu-
nity structures. One particular application is predicting the spread of diseases using social
networks in Epidemiology.

Figure 2: Simulating the spread of Covid-19 from a single infected individual(Image from
[1]).

Other great examples include the networks of the world wide web(WWW). In this case
a node represents a website, and a link represents a hyperlink reference from one site to the
other. In this case the graph is directed.

2.1 Important characteristics of Empirical networks.
Among the various characteristics in these networks some of the more striking ones are that of
the small-world phenomena, power law degree distributions and high clustering coefficients.

2.1.1 Small world phenomena

Small-world phenomena describes networks with a small average path length, which is the
average number of steps required to move from any given node to another. Another indicator
of small-world behaviour would be a small network diameter, which is the largest distance
between any two nodes in the network. If the distance between node i and node j is denoted
by di j, then the average path length is given by ⟨L⟩= 2

n(n−1) ∑i, j di j and the network diameter
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Figure 3: The Opte Project Map of the Internet, Barrett Lyon, 2003. Creative Commons.

is given by D = max{di j}. The network diameter dependence characteristic of small-world
behaviour is D ∼ log(N), where N is the number of nodes in the network.

2.1.2 Power law degree distributions

The degree of a node is defined as the number of neighbours it is attached to. It can be
calculated using the adjacency matrix using ki = ∑ j Ai j. The distribution of node degrees
p(k) tells us the fraction of nodes with degree k. The power-law behaviour of node degree
implies p(k) ∼ k−γ where γ > 0 is the critical exponent. The power-law distribution of the
node degrees hints towards scale-free behaviour [2, 3, 4, 5].

Power-law behaviour can be seen clearly in a log-log plot of the data, which has a dom-
inant linear spectrum in case of power-law dependence. For example if p(k) = p0k−γ then
log(p(k)) = log(p0)− γ log(k), which is the linear behaviour we expect.

2.1.3 Clustering coefficient and transitivity

Apart from the above two characteristics a high average clustering coefficient and transitivity
is also common in empirical networks [6, 7, 8]. Transitivity simply means that for some a,b,c
if Aab = Abc = 1 =⇒ Aac = 1. This is a very common theme in sociology where strong social
connections between person A and person B, and person A and person C make it very likely
that there is a social connection between person A and person C [8]. A measure of the local
clustering in a network is given by

Ci =
number of links between the nearest neighbours of node i

max number of links between the nearest neighbours of node i
Since transitivity implies that the number of triangles in a network is high, a high degree of

satisfying transitivity also implies a high clustering coefficient. A clustering coefficient around
1/2 is considered to be high. Networks with a tree like structure, like fractal networks, usually
have a low average clustering coefficient.
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Figure 4: The figure shows the percentage of papers as a function of number of citations
demonstrating the scale free behaviours in citation networks of research papers(Image from
[3]).

3 Descriptive models for networks
We now discuss the popular theoretical models developed for the study of networks. We
will first study the Erdös-Rényi model [9] and discuss its properties. We will see that the
model does not have properties similar to the empirical networks discussed in the last section.
Subsequent models tried to solve some of the shortcomings of the Erdös-Rényi model. Among
these we present the Watts-Strogatz model [7] and the Barabasi-Albert model [10]. All of
these models are stochastic models which study ensembles rather than single networks. The
advantage when considering an ensemble of networks instead of working with individual
networks is that you can calculate analytically some of the important observables related to
the classes of networks with relative ease using ensemble averages.

3.1 Erdös-Rényi random network
A random graph is a graph with a given set of nodes with the links connecting them following
a given probability distribution. One of the earliest models of a random graph was given by
Erdös and Rényi[9], popularly known as the Erdös-Rényi model. The model gives us classes
or ensembles of networks denoted as G(n, p) which are classes of networks with n nodes, with
a link between each pair of nodes occurring with a probability of p.

It can be easily shown that:

• The average number of edges is : n(n−1)
2

p.

• The degree distribution is given by: P(ki = k) = P(k) = n−1Ck pk(1− p)n−1−k which in
the continuum limit with n −→ ∞ and fixed λ = pn gives us the Poisson distribution

P(k) =
λ ke−λ

k!
. This result is at odds with what is seen in Empirical networks.
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(a) p = 0.3 (b) p = 0.6 (c) p = 0.9

Figure 5: Erdös-Rényi networks with N = 10 nodes and different probabilities of linking p.

• Clustering coefficient: Ci =
p

ki(ki −1)
2

ki(ki −1)
2

= p. In the continuum limit, the average clus-

tering coefficient C = p =
λ
n
= 0. Which is also something which we do not see in

empirical networks.

• the average path length can be shown to be ⟨L⟩= log(n)
log(pn)

.

3.2 Barabasi-Albert model
The Barabasi-Albert model [10] is a dynamic growth model with the network growing with
every time step following a given probabilistic rule. We start at time t=0 with n0 nodes and
some m0 ≥ n0 edges. For each time step, we add an extra node with m ≤ n0 links to the earlier
network. The links are chosen such that node i has a probability Γi =

ki

∑i ki
of linking with

the new node. This rule enforces preferential attachment in the network, since nodes with
higher node degree have a greater probability of increasing their node degree. Thus at time
step t, we have n0 + t nodes and m0 + tm links.

We now present the characteristics of the model without proof:

• Node degree distribution follows a power law given by p(k) =
2m
k3 .

• The average path length is given by ⟨L⟩ ∼ log(N)

log(log(N))
.

• The clustering coefficient is given by C ∼ N− 3
4 .

The characteristics of this model are evidently much closer to those of empirical networks
when compared to the Erdös-Rényi model. However the Clustering coefficient of the model
still tends to zero

lim
n→∞

C → 0

in the limit of large node number which is in contrast to what is observed in empirical
networks.
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(a) N = 10, t = 0 (b) N = 15, t = 5 (c) N = 20, t = 10

Figure 6: Sequence of Barabasi-Albert graphs with n0 = 10, m0 = 17, m = 5.

3.3 Watts-Strogatz model
The Watts-Strogatz model [7] is a model with a single parameter p which decides the ran-
domness of links in the model. We start with a regular lattice with n nodes and an even k
edges per node which connect to the k nearest nodes. Then we randomly reconnect each link
with a probability p. Clearly in the extreme limit p = 0, we have a regular network whereas
in the other extreme limit p = 1, the network would correspond to a completely random
network and hence would be an instance of an Erdös-Rényi graph.

Figure 7: Changes in the Watts-Strogatz network structure with increasing random-
ness(Image from [7]).

We now discuss the characteristics of the Watts-Strogatz model in the regime n ≫ k ≫
log(n)≫ 1. Considering the properties in the two extreme regimes we find [7]:

• the node degree distribution is Poisson-like.

• the average path length:

lim
p→0

⟨L⟩ ∼ n
2k

≫ 1 lim
p→1

⟨L⟩ ∼ LER ∼ ln(n)
ln(k)

(2)
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• the clustering coefficient:

lim
p→0

C ∼ 3
4

lim
p→1

C ∼CER ∼ k
n
<< 1 (3)

The above properties suggest that we would encounter networks with characteristics sim-
ilar to empirical networks somewhere in between the parameter range. This is because we
require a high clustering coefficient like in the case with p = 0 but at the same time also
require long-range re-connections which give us a low average path length like in the case of
p = 1. We also note that the Poisson like degree distribution is in contrast to the properties
of empirical networks.

4 Statistical mechanics of networks
Consider a simple network G, with an adjacency matrix given by Ai j. Let each link in the
network be weighted by an external parameter β which is an indicator of the external stresses
on the network. For example, β could correspond to the levels of a chemical acting on a
network of proteins. Another example is the case of network models of business relationships
between economic firms where β would correspond to the present state of the stock price.
Note that β can also be interpreted as the strength of the links between nodes, with a high
β corresponding to a network where the links are dominating over the external stresses of
the system.

The Estrada index [11, 12] is then denoted as EE(G,β ), and is given by the formula:

EE(G,β ) = Z(G,β ) = Tr(
∞

∑
r=0

β rAr

r!
) = Tr(eβA) =

n

∑
i=1

eβλi (4)

where λi correspond to the eigenvalues of the adjacency matrix. Note that (Ak)pq corre-
sponds to the number of paths with k steps from node p to node q. We weight each of these
paths by a factor 1

k!
to make shorter paths have a higher weight as compared to longer paths.

We now note that the number of self-paths would be a good measure of node centrality, and

summing over all such paths for some node i gives us ∑k
(Ak)ii

k!
= Tr(eA), which is identical

to the Estrada index. The centrality of a node is a measure of the importance of the node,
which takes into account how a node connects to different parts of the graph. The Estrada
index is one of the various schemes and types of centrality measures like closeness centrality,
betweenness centrality and eigenvector centrality.

The analogy with statistical mechanics can be used to define a configuration/state of
the network as the eigenvector of the adjacency matrix given by the eigenvalue λ j. The
probability of being in a configuration j is then given by:

p j =
eβλ j

Z(G,β )
(5)

Using this we can define various quantities which are analogues of different thermody-
namic functions like:

• the entropy for the network

S(G,β ) =−∑
j

p j ln
(

p j
)
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with a bound given by 0 ≤ S(G,β )≤ β ln(n).

• the total energy for the network

H(G,β ) =−∑
j

λ j p j

with a bound given by −β (n−1)≤ H(G,β )≤ 0.

• the Helmholtz free energy of the network:

F(G,β ) =− 1
β

ln(Z(G,β ))

with a bound given by −β (n−1)≤ F(G,β )≤−β ln(n).

Note that we obtain the bounds by considering the extreme limits for a complete graph
as n → ∞ and the null graph, that is a graph without any links.

4.1 Correlations in networks
The analogues of thermodynamic functions defined above can be used to characterize various
properties of the network. The simplest example is that of the correlations between two
nodes, say i and j, of the network. The correlation, denoted as Xi j, can be characterized by
the number of pathways information can reach from node i to node j. Weighting each of
these paths with a factor depending on the length as done in the last section we obtain:

Xi j =
∞

∑
k=1

(βA)k
i j

k!
= (eβA)i j =

∞

∑
l=1

vl(i)vl( j)eλl (6)

where vl is the eigenvector corresponding to the eigenvalue λl. This measure of correlations
is analogous to the Green functions in statistical mechanics.

5 Dynamical processes on networks
So far we have considered networks without any dynamics, but introducing dynamics in
networks is a very natural extension. Dynamical processes in networks are ubiquitous in
nature, from the signals in neurons to the interactions of people on wall street to decide
the stock price, these systems can very naturally be described as dynamical processes on
networks. It is important to note that we do not change the structure of the network, the
dynamics is included in the nodes which now hold some information which can be transferred
or exchanged through the links. Another minor extension of simple networks is to let the
links now have different strengths corresponding to how strongly two nodes are connected or
influence each other. Let ζi denote the information in each node.

5.1 Consensus
A dynamical process can be defined using the equations:
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ζi(t +δ ) = ζi(t)+δ ∑
⟨i, j⟩

Ai j[ζ j(t)−ζi(t)] (7)

ζ (0) = ζ0 (8)

where the first equation governs the evolution and the second equations gives us the initial
conditions for the network. δ is the step size in time, and ⟨i, j⟩ denotes every pair i, j which
are linked.

A simpler way of writing the above equations is:

ζi(t +δ ) = ∑
j

Pi jζ j(t) ζ (0) = ζ0 (9)

where Pi j = Ii j −δ (diag(ki)δi j −Ai j) is called the Perron matrix for the network.
A consensus is said to be reached when for a given set of initial condition ζ0, we see

|ζi(t)− ζ j(t)| → 0 as t → ∞. The parameters of the networks and the dynamics decide if
a network can reach consensus. For example, in the case of completely connected simple
networks a consensus is reached as long as the eigenvector, say vmax

i , corresponding to the
largest eigenvalue of the Perron matrix is uniform, ie. vmax

i = v0∀i. It can be shown that this
condition is satisfied when 0 ≤ δ ≤ k−1

max where kmax = maxi(ki) is the maximum degree of the
network.

5.2 Synchronization
Synchronization is a phenomena that is ubiquitously seen in nature. Systems of coupled oscil-
lators are a common example of networks which attain a synchronous state. Synchronization
is not limited to systems with symmetric mathematical structure and can occur in systems
which are seemingly random. Like for example, schools of fish and swarms of bees where
different agents synchronize their movements with that of other agents. To explore this phe-
nomena we consider networks of coupled oscillators with arbitrary topology. In this section
we discuss the conditions under which synchronization takes place following the paper [13].

Consider a network G(V,E) with n nodes. Let a given node i corresponds to a dynamical
system, represented by the vector xi

j, j = 1, ,,,, l. The topology of the graph is encoded in
the Laplacian matrix for the network given by Li j = diag(ki)δi j − Ai j. The most general
formulation for the equation of motions read:

ẋi = f (xi)+σ
n

∑
j=1

Li jH(x j) (10)

where xi ∈Rl represents the state of node i, σ is a parameter which represents the degree
of coupling and f : Rl → Rl and H : Rl → Rl encode the dynamics of the system. H is called
the outer coupling matrix. The network achieves synchronization if the system reaches a
steady state such that xi(t) = s(t)∀i as t → ∞.

The stability analysis of the steady state solution, if it exists, gives us the required con-
dition for the existence of the solution. Consider a small perturbation to the steady state
given by, xi = s+δi. Expanding about the steady state solution:
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f (xi) = f (s)+δi f ′(s) (11)
H(xi) = H(s)+δiH ′(s) (12)

The evolution of the deviations from the steady state solution is given by:

δ̇i = f ′(s)δi +σ
n

∑
j=1

[Li jH ′(s)]δ j (13)

The system of equations can be decoupled by using the eigenspectrum of the Laplacian
matrix. Let λi and ϕi be the eigenvalues and eigenvectors of the Laplacian matrix, ie. Li jϕ j =
λiϕi. Using which we have:

ϕ̇i = [ f ′(s)+σλiH ′(s)]ϕi (14)
Assuming that the time-scales of variation in the steady state solution are large enough

for us to solve the above equations, we have:

ϕi(t) = ϕi(0)exp{[ f ′(s)+σλiH ′(s)]t} (15)
For stability the factor in the exponential should be negative for all i, ie. f ′(s)+σλiH ′(s)<

0∀i. To find the regime of stability for a given problem one should plot the master function
M(α) = f ′(s)+αH ′(s) for the typical functions f ,H over their relevant parameter spaces.
Carrying out such a procedure will give you a plot similar to Fig. 8 with critical values of
the parameter α denoted as α1,α2.

Figure 8: Critical values of the parameter α for the problem of Rössler oscillators(Image
from [13]).

The condition for stability then reduces to:

λmax

λ1
≤ α2

α1
(16)
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where λmax is the largest eigenvalue and λ1 is the first non-zero eigenvalue of the Lapla-
cian matrix for the network. Hence, we conclude that a small ratio of λmax

λ1
favours the

synchronizability of a network, and is solely decided by the topology of the network.

6 Ideas of Renormalization group flows on networks
In this section we use renormalization group(RG) methods to distinguish between networks
with fractal characters and networks with small-world properties, following the paper [14].
Note that a fractal network is defined as a network which has the same degree distribution
as that of the coarse-grained network, which we do by using the box covering algorithm. The
box-covering algorithm is well defined [15] for most networks, so let us assume such a coarse-
graining procedure exists. Since, coarse-graining does not change the degree distribution
of fractal networks, they cannot have the long-range shortcuts required by the small-world
phenomena. This is made apparent by the fact that for small-world networks we require the
diameter to grow slowly D ∼ log(N), whereas in the case of fractal networks we would expect
it to grow as a power law.

Consider an underlying fractal network, denoted as G0, on top of which we add long-
distance shortcuts following a probability distribution p(r) = Ar−α . The final network with
the shortcuts is denotes by G. Next, we consider the coarse-graining of this network using
the box-covering approach. Let the length scale associated with the coarse-graining be b,
which is the maximum distance between nodes in each box. Note that the box-dimension is
given by N

Nb
= bdb , where db is defined as the box dimension. The coarse-grained network is

denoted as Gb = Rb(G). Since, the underlying network is fractal we have Rb(G0) = G0 and
hence it is necessary to only look at the change in the shortcuts to understand the RG-flow.

The renormalized probability, denoted pb(r), for shortcuts is given by:

pb(r) = 1−P(no shortcuts at distance r in Gb) (17)

No shortcuts at distance r in the network Gb implies there are no shortcut at distance
br among the bdb nodes in the network G which correspond to the representative averaged
nodes in Gb, the probability of which is given by (1− p(br))bdb∗bdb . In the limit b → ∞ this
reduces to limb→∞ pb(r) = 1− exp

(
−Ar−αb−α+2db

)
.

The above analysis gives us a critical point α
2db

= 1. For α
2db

< 1 we have a regime where

pb(r) → 1 which gives us a fully connected network. For α
2db

> 1 we have a regime where
pb(r)→ 0, which is a regime where the shortcuts disappear at large distances and we are left
with the underlying fractal structure. As for the critical value α = 2db we obtain an RG-
flow towards a fractal network with added shortcuts governed by the probability distribution
p(r) = 1−exp

(
−Ar−2db

)
−−−→
r→∞

Ar−2db , which is qualitatively the same picture we started with
but with renormalized parameters.

7 Conclusion
Network science is a rich-avenue for research into complex systems. A number of complex
systems have a natural descriptions in terms of networks. We studied some of the common
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properties of networks seen in nature and the descriptive models which have been developed
to reproduce these characteristics. A wealth of interesting phenomena can be modelled as
dynamical processes on networks. There is great potential to use methods from physics to
classify and understand the properties of networks.
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