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Abstract

This work covers the theory of Anderson localization. The behavior of Ander-
son’s original model is discussed, as is the derivation of Wegner’s nonlinear σ
model. A relationship to Goldstone’s theorem in this context is covered. We
then discuss an experimental demonstration of Anderson localization in a three-
dimensional ultracold atom system. Finally, extensions to weak interactions via
theory and numerics are discussed.
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1 Introduction

In physics, we often study systems through the lens of symmetry. Symmetries
enforce structure and regularity, often allowing for especially elegant analyses
and results. Furthermore, highly symmetric systems typically have properties
termed universal : Dictated by high-level structure rather than the more com-
plicated microscopic physics. Disordered systems are in some sense the opposite
of highly symmetric systems. Instead of rigidly enforced structure, they have
a strictly-specified lack of structure. Despite this, disordered systems have an
elegance of their own. Universality itself, in fact, is found in classes of disordered
systems whose large-scale or average-case physics turns out to be independent
of the details of the distribution from which the system is drawn. Some of these
universal properties are quite counterintuitive, at least for intuitions developed
on non-random systems.

In a periodic potential, there are no stable localized states. Any initially
localized particle will diffuse out over the scale of the whole system. This is true
both for a quantum particle and for a classical particle subject to thermal fluc-
tuations. In a potential with random, bounded spatial variation, thermal fluctu-
ations will still drive a classical particle arbitrarily far. However, the same is not
always true for a quantum particle. Instead, there sometimes exist localized en-
ergy eigenstates which remain in some region much smaller than the scale of the
system for all time. A potential which is statistically translationally-invariant
(that is, drawn from a translationally-invariant distribution) gives qualitatively
very different behavior than a potential with exact translational invariance.

Localization has a few interesting physical consequences. First, the effects of
quantum fluctuations are qualitatively different from those of classical thermal
fluctuations in this setting. This implies a failure of ergodicity, since in the
absence of an external heat bath the system will ”remember” its initial state in-
definitely. Furthermore, since a localized system doesn’t have long-range trans-
port, conventional thermodynamic assumptions about extended systems acting
as heat baths for themselves will be violated. [1] This absence of long-range
transport also leads to the destruction of superconductivity when sufficient dis-
order is introduced into otherwise-superconducting materials. [5] The rest of
this work will be devoted to studying the origin and dynamics of localization.

2 Anderson’s approach

The theory of localization was first worked out by Anderson in 1958. [2] Consider
a tight-binding model in three dimensions, with a Hamiltonian consisting of an
onsite term Ej and some hopping terms Vjk:

H =
∑
j

Ejc
†
jcj +

∑
j,k

Vjk(c†jck + h.c.)

We assume that Vjk is fixed and depends only on the distance between sites j and
k. We also restrict V to be short-ranged (to decay at least as fast as |rjk|−(3+ε),
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in particular). Beyond this restriction, the only feature of Vjk which turns out
to be important is its overall scale V . The onsite potentials Ej , on the other
hand, are random. For simplicity, we take them to be i.i.d. uniform on [−W,W ],
where the parameter W controls the strength of the disorder. The details of
this distribution are not important; the key point is that it has characteristic
spread W . The dimensionless ratio W

V is then the meaningful measure of the
strength of the disorder.

To study localization, Anderson begins with a state which is entirely localized
on one site and studies the long-time evolution. In a diffusive system, the
amplitude for the particle to remain at the initial site should decay to zero
for long times. The key finding is that there exists some critical value of W

V
below which the amplitude is instead finite even as t → ∞. This indicates the
existence of localized states which do not diffuse away.

The strategy used to obtain this result requires first assuming that single
hops from the inital site dominate (i.e. V0k for an initial site 0), then accounting
for the influence of other Vjk perturbatively. A key intuition is that transitions

mostly happen between pairs of sites for which
Ej−Ek

Vjk
is small. Stronger disorder

makes it less likely that any given Ej and Ek are close together. If Vjk is short-
range and W is large, then with high probability most sites won’t have any
partner within hopping distance with sufficiently similar energy. However, if
Vjk is very long range, then there are many chances to find some Ej very close
to Ek just by luck, and so transport is possible. This description is reminiscent
of a percolation transition, where states are localized if and only if they are
trapped in an ”island” of sites with no strong external connections.

To create a more tractable special case, we can assume that each site is
connected to exactly Z other sites, all with equal weight. As in a percolation
transition, one can define a connectivity parameter which quantifies how con-
nected sites are to distant parts of the lattice. More precisely, we count the
number of acyclic paths of length L starting from a site. For large L, we expect
this quantity to be O(KL) for some constant K. K is then our connectivity.
It is then possible to estimate the critical disorder strength needed to produce
localization as a function of K. Anderson’s numerical estimates and analytic up-
per bound are shown in figure 1. These results are consistent with the heuristic
picture presented above.

3 Field-theoretic models

Another approach is that described by McKane and Stone in [mckane˙stone].
The goal is to describe localization in terms an effective field theory, known as
Wegner’s nonlinear σ model.

We start with solutions of Schrödinger’s equation on a continuous space with
a random Gaussian noise potential. The time-evolution of a maximally localized
initial state is given by the retarded Green’s function G(x, y, t, V ). If at long
times G is nonzero for any fixed x, y, then localized states exist. However, more
interesting results can be obtained by picking out the components of the initial
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Figure 1: From [2]. Numerical estimates for the critical disorder strength, plot-
ted against the connectivity K. We see that systems with strong connectivity
can support diffusion at higher levels of disorder.

state at particular energies using

G(x, y, E, V ) =

∫ ∞
0

eiEG(x, y, t, V )td

This is the Green’s function of the time-independent Schrödinger equation. It
allows us to ask about localization of eigenstates at particular energies. We
expect that high-energy eigenstates will be non-localized, while very low-energy
eigenstates will be localized, with a crossover energy called the mobility edge.
This integral may not, in general, converge, so we can analytically continue it
to the upper half-plane and work with G(x, y, E + iη, V ) for η > 0 in the upper
half-plane. We see that only localized states contribute to

lim
η→0+

G(x, y, E + iη, V )

since this is related to
lim
t→∞

G(x, y, t, V )

The randomness of V causes the phase of G(x, y, E, V ) to become uniformly
distributed over 0, 2π at large spatial separation, so averaging over V won’t give
a useful measure of the spread of the wavefunctions. Instead, we focus on

|G(x, y, E, V )|2
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where the average is over different realizations of the random potential.
A useful quantity to consider is the density of states. McKane and Stone

show that ∫
y

lim
η→0+

η|G(x, y, E + iη, V )|2 ∝ ρ`(E)

the density of localized states, while

lim
η→0+

∫
y

η|G(x, y, E + iη, V )|2 ∝ ρ(E)

the full density of states. We see that if and only if there are localized states
at E, there exist some x, y for which |G|2 ∼ η−1 as η → 0. If there are no
localized states, on the other hand, we must have only

∫
|G|2 ∼ η−1, without

any pointwise divergences in |G|2.
The next step is to introduce a field theory whose four-point function is

precisely
|G(x, y, E, V )|2

To that end, we introduce fields φ+ and φ−, with n+ and n− components,
respectively, with Hamiltonian densities

H± = (−∇2 + V − (E ± iη))

This gives

G(x, y, E + iη, V ) = lim
n±→0+

〈φ+(x)φ+(y)φ−(x)φ−(y)〉

where now the average is over the canonical distribution for some fixed V . We
can now average over V by integrating out the dependence on V , which leaves
an effective interaction between the fields proportional to (φ2+ + φ2−)2.

It is clear the resulting effective Hamiltonian is O(n+ + n−) invariant when
η = 0. However, to keep things convergent we need to instead consider the limit
η → 0+. This limit can produce a broken symmetry phase, since η distinguishes
between φ+ and φ−. Indeed, McKane and Stone show that the symmetry must
be broken to O(n+)×O(n−) whenever the density of states is not zero.

Naively, one expects this broken-symmetry phase to possess Goldstone modes.
Indeed, as Goldstone’s theorem suggests, we find∫

y

|G(x, y, E)|2 →∞

However, in this setting, it need not be because there exists a massless excitation.
If ρ` = 0 and |G|2 is finite, then large x − y must be contributing significantly
to the integral, so there must be a massless long-range excitation. However, if
ρ� 6= 0 and |G|2 itself diverges for some |x− y|, then even if all excitations are
short range the integral will still converge. We see that the existence of localized
states offers a way out of Goldstone’s theorem in this case. Note, however, that
the localization is relevant only in the limit n± → 0.
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From this model, one can then go from working in terms of the φ± to com-
posite fields Q±± so that

|G2(x, y, E + iη)|2 ∝ 〈φ+(x)φ+(y)φ−(x)φ−(y)〉 ∝ 〈Q+−(x)Q−+(y)〉

These fields are expected to have Goldstone modes, and so for low energies we
can treat amplitude fluctuations as frozen out to obtain an effective nonlinear
σ model. It is then possible to use renormalization group techniques to study
the behavior of this theory near the mobility edge Ec in more detail.

4 Experimental demonstration

Although Anderson localization was initially discussed in the context of conduc-
tion of electrons, electron-electron interactions make the actual situation more
complex than the theory discussed above. [4] However, the same dynamics are
present in more experimentally tractable systems. Early results came from pho-
tonics [7], but more recent advances in control of ultracold atoms have allowed
more detailed studies of the dynamics of the localized system.

Semeghini et al [8] study a three-dimensional Bose-Einstein condensate of
ultracold potassium-39. The atoms are initially trapped in a harmonic po-
tential and cooled using Feshbach resonances controlled by a magnetic field.
Interference of lasers is used to create a random ”speckle potential” with corre-
lation length σR ∼ 10−6m. The system size is on the order of 10−3m, so over
system-sized scales this potential is essentially i.i.d. However, these short-range
correlations do introduce an energy scale

ER =
~2

mσ2
R

the effect of which will be discussed below. Adjusting the intensity of the lasers
allows the experimenters to control the strength of the disorder.

At the start of the experiment, the interactions and the trap are turned off,
leaving the atoms free to diffuse through the speckle potential. By measuring the
spread of the distribution of atoms over time, they can determine the effective
diffusion rate. Results are shown in figure 4. For pure diffusion, the spatial
variance should increase linearly with time, while for atoms in localized states
it should level off at some constant value. We see that localization occurs for
large disorder, but not for small disorder. There is also an intermediate regime
in which variance grows sublinearly, but apparently monotonically. This may
be due to either finite system size or finite observation time.

This experimental setup also makes it possible to study the structure of
the mobility edge. First, the kinetic energy distribution of the atoms can be
measured, and these data can be combined with numerics to fit a density of
states n(E). Next, the lasers can be used to add some quantized energy to the
initial Bose-Einstein Condensate. This produces a distribution (1 − p)n(E) +
pn(E−~ω), where p is the fraction of atoms which absorb are excited and ~ω is
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Figure 2: From [8]. Measured spatial variance over time for various disorder
strengths. For weak disorder, diffusion dominates and variance grows linearly.
Strong disorder causes a plateau at some finite variance corresponding to the
size of the localized states.

the energy of the excitations. By varying ω, the experimenters can then adjust
the initial distribution of energies.

This known initial energy distribution is then allowed to diffuse through the
speckle potential. Atoms which have energies above the mobility edge are lost by
the system, while those with energies below the mobility edge remain trapped.
By measuring the fraction of atoms which remain, the fraction of the original
distribution which was above the mobility edge is determined. Since the initial
distribution is known, the location of the mobility edge can be estimated. Using
several values of ω improves experimental accuracy.

Results are shown in figure 4. For weak disorder, the mobility edge Ec is quite
close to the characteristic disorder strength V . However, for strong disorder, the
energy scale ER associated with the autocorrelation of the potential becomes
relevant. We see that states with E > ER are mobile no matter how strong the
disorder is. This is largely consistent with prior numerical work, with diferences
that the authors suggest may be explained by the anisotropy of their speckle
potential.

5 Addition of weak interactions

Fleishman and Anderson [4] study the effects of electron-electron interactions
on a localized system. Consider a Hamiltonian with localized wavefunctions
ψa(x). Let V (r) be some interaction potential and define

Uabcd =

∫
x,y

ψa(x)ψb(x)V (x− y)ψc(y)ψd(y)
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Figure 3: From [8]. Measurements of the energy of the mobility edge for various
amounts of disorder. For weak disorder, we see Ec ∼ V , but for sufficiently
strong disorder the nonzero spatial autocorrelation of the speckle potential be-
comes important.

We then add an interaction term to the Hamiltonian∑
a,b,c,d

Uabcdc
†
ac
†
bcccd

Treating this interaction perturbatively, it is possible to study the Green’s func-
tions of the resulting theory.

The analysis finds that the physical consequences depend heavily on the
range of the interaction. For a short-range interaction, there exist quasipar-
ticle excitations both above and below the mobility edge. Those below are
discrete bound states, while those above are a continuum of conducting states.
Low-energy excitations are thus nonconducting. Furthermore, these low-energy
excitations are stable in this case. If the interaction is long-range, on the other
hand, the excitations form a continuum at all energies. The ground state re-
mains nonconducting, and the low-energy excitations are not stable.

5.1 Numerical results

Delande et al [3] study the effect of interactions on a many-body Anderson-
localized system. They consider a one-dimensional system of N = 25 bosons
with an attractive two-body interaction of the form∫

α†(x)α†(x)α(x)α(x)

This interaction is of course maximally short-range. At the level of mean field
theory, the ground state finds the particles all clumped into a single soliton. One
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then expects that this effective single-particle system can undergo Anderson
localization.[6] In [3], the authors consider an initial soliton state, then ”turn
on” both many-body effects and a random speckle potential. The goal is to
study the influence of the many-body effects on the resulting dynamics.

The first necessary simplification is the discretization of spacetime. Although
the original system of interest was continuous, computational tractability re-
quires moving to a tight-binding lattice model. The authors choose a discretiza-
tion scale one-fifth the characteristic size of the soliton, ξ. Time is also dis-
cretized. The space must be finite in extent (1921 lattice points are used). The
authors also choose a speckle potential with correlation length ξ

4 . They find that
it is not necessary to represent the full Fock space, since the bosons are never
all localized on the same site; instead, they restrict themselves to the subspace
with at most 14 particles per site. Most critically, the full exponential Hilbert
space is much too large to represent. Instead, Matrix Product states with bond
dimension χ = 30 are used. This algorithm is considered ”quasi-exact”: In
the limit of small space and time scales, large space and time domains, large
bond dimension, and large Fock spaces, the results should converge to the exact
physical solution. The authors mention convergence studies on many of the
parameters above to ensure that errors are reasonably small.

Figure 4: From [3]. Numerical estimates of the effective one-body density ma-
trix after long times. We see that the density matrix is almost diagonal, with
concentration near 0, 0. This indicates that the soliton survives after many-body
interactions and the disordered potential are turned on.

The key finding (Fig 5.1) is that the particles remain strongly localized near
their initial configuration even for long times. Furthermore, Fig 5.1 shows that
the localization in the full many-body case is essentially indistinguishable from
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the results of the mean-field treatment. However, analysis of the one-body
density matrix finds that its largest eigenvalue after long time is 0.14. In other
words, there are many-body effects present which create important differences
from the mean-field picture, but these effects don’t change localization.

Figure 5: From [3]. Probability density function for the location of the center of
mass after long time. In blue, computed in the full many-body theory; in red,
computed in the effective one-body soliton theory. The many-body effects seem
to have no influence on how localized the system is.

6 Conclusions

Disorder in physical systems has interesting and surprising properties. In par-
ticular, random fluctuations to a potential can break ergodicity and prevent
transport by creating localized states. In three dimensions, this occurs only
when the fluctuations are strong compared to the strength and range of the
hopping terms. By integrating out the random potential, an interacting ef-
fective field theory describing the diffusion properties is obtained. This field
theory has unusual and interesting behaviors when there are localized states
in the underlying system. Experimental tests of Anderson localization show
qualitative agreement with theoretical predictions, and agreement seems to be
limited mostly by the imprecise nature of the theory. When electron-electron
interactions are added, the analyses gets quite tricky, but one can show that the
resulting quasiparticle excitations don’t dramatically change the physical prop-
erties of the system, at least for low energies and weak interactions. Numerical
studies of short-range attractive boson-boson interactions find that localization
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still occurs in that case as well, with good agreement between mean field theory
and a full many-body treatment.
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