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Abstract

Various biological systems and processes are understood to be emergent properties
of the collective interactions of networks. Morphogenesis, the organized spatial distri-
bution of cells to establish different body parts during an organism’s development, is an
interesting example. Several of general structural and dynamical properties of biologi-
cal networks have been established, with which the molecular details of spatial pattern
formation during morphogenesis can be understood. To this end, this essay describes
some of the general properties of biological networks. The reaction-diffusion model is
also introduced, and in this context, the left-right asymmetry and the segmentation of
embryos are discussed.



1 Introduction

Systems analysis, based on interactions between the components, provides interesting ex-
amples of emergent phenomena in various levels of biology. Such analysis can be used to
understand the properties of specific interaction networks, ranging from the microscopic in-
teractions in protein-folding mechanisms, interactions in molecular networks within a cell,
and intercellular interactions in populations [1]. In particular, developments in experimental
procedures and the resulting accumulation of data have made such analysis in molecular net-
works not only possible, but also a mainstream of thought. The advent of high-throughput
molecular data and the increasing availability of such data make studies of biological pro-
cesses more amenable to quantitative, network-based analysis, where the structural and
dynamical properties of the networks are discussed [2]. This shift in focus of biological re-
search allows us to understand biological processes as interacting systems and their emergent
properties.

Morphogenesis during embryonic development, the precise spatial patterning of cells to
produce body parts, provides an interesting example of an emergent behavior based on the
interactions between the network components. A brief overview of molecular networks is
presented, focusing on the structural properties that allow the mechanistic descriptions of
various spatial pattern formations during morphogenesis. Then the reaction-diffusion model
of morphogenesis is introduced, and two experimentally considered examples of the model
are discussed.

2 Molecular networks

2.1 Overview

Molecular networks are defined on the interaction maps of DNA, RNA, proteins, and com-
plexes of these molecules. Focusing on the structural and dynamical properties, the net-
work descriptions provide mechanistic representations of various biological processes. Known
molecular networks include [1], [2]:

• Protein-protein interaction networks: Interactions between proteins such as for-
mation of protein complexes and the activation/inhibition of one protein by another.

• Genetic regulatory networks: Activation/inhibition of genes, and can be used to
understand spatiotemporal information of cellular activity.

2.2 Structural properties

Independent of the level of description, graph theory has been useful in structural descrip-
tions; individual components are identified as nodes and the resulting interactions as edges.
The directionality of the edges provides further information on the structure of the networks.

1



Directed edges can specify a regulator and a target, providing information on the regula-
tory relationships in the networks. Topological parameters are established, several of the
commonly used ones being [2], [3]:

(i) Degree: The number of edges connected to one node. A node with higher than average
degree is known as a hub. In the case of a directed graph, the degree of a node can be
further divided into the number of edges directed in and out.

(ii) Average clustering coefficient: For each node, the fraction of existing edges based
on the total possible edges from its closest neighboring nodes is calculated. These
fractions are averaged over all nodes.

(iii) Characteristic path length: The number of edges in the shortest path between two
nodes, averaged over all pairs of nodes.

One example of the information that these parameters provide is the “small-world” struc-
ture [3]. “Small-world” networks have the topological properties of small characteristic path
lengths and high clustering coefficients. Additionally, many of the biological networks consid-
ered have also been shown to exhibit the properties of “scale-free” networks [4]. An important
feature of such networks has been identified as the existence of hubs and the power-law de-
gree distribution: the fraction P (k) of nodes in the network having k connections to other
nodes has the distribution:

P (k) ∼ k−γ

with γ in the range of 2 < γ < 3 [4]. The minimal model describing these properties
incorporates two mechanisms: (i) growth in the number of nodes and edges over time and
(ii) preferential attachment, where the probability of new edge acquisition is proportional to
the existing degree of a node [4]:

pi =
ki∑
j kj

,

where the probability of a new node attaching to an existing node (i) is proportional to its
relative degree (ki) in the network. In this model, the clustering-degree function C(k), the
clustering coefficients of nodes as the function of the degree k, is constant [5].

In most observed metabolic and protein-protein interaction networks from model organ-
isms, such as yeast and Drosophila, it has been shown that the “small-world” characteristics
are satisfied with short characteristic path lengths and high average clustering coefficients
[6], [7]. Additionally, the protein-protein interaction networks in these organisms display a
power-law degree distribution [6], [7]. Similar “small-world” and scale-free properties have
been shown in the genetic regulatory network in yeast [8]. However, measurements of C(k) in
the yeast network follow C(k) ∼ k−β (1 < β < 2). This provides an interesting observation
that lower-degree nodes have more connected neighborhoods than higher-degree nodes [6].
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Figure 1: Degree distribution, P (k), and average clustering coefficient, C(k), in yeast (left, mid-
dle), and the number of interactions per protein in Drosophila (right) are shown. The degree
distribution can be approximated by a power law with the exponent γ = 2.5. C(k) = B/kβ is
approximated by the exponent β of 2. Similar to yeast, Drosophila degree distribution can also be
approximated by a power-law distribution. Figure adapted from [7] and [6]

2.3 Genetic regulatory networks

A fundamental response of a cell to internal and external signals is the regulation of its
genetic activity, the activation/inactivation of specific genes depending on the present stim-
uli [1]. Signal transduction pathways, which describe the interlinked chain of biochemical
reactions within a cell that transmits the perceived signals, and gene regulatory networks
provide the mechanistic descriptions of the cell’s coordinated response. Combined with other
environmental molecules, a genetic regulatory network is an interaction map of molecular
regulators that collectively determines the turning on or off of genes at specific location and
time. In these networks, nodes represent the transcription factors (proteins that bind to
promoter regions to regulate the activation/inhibition of genes) and the target genes, and
directed edges represent the regulation of the target genes by their transcription factors. In
turn, these transcription factors are regulated by the upstream protein-protein and signaling
networks [2].

Based on the directionality of the interactions, interesting observations are obtained on
the functionality of these networks. In yeast, the genetic regulatory network has a scale-free
out-degree distribution, with a few transcription factors regulating many different target
genes. The in-degree distribution for given target genes is represented as an exponential
function [9]. Such distributions point to the fact that combinatorial regulation of a target
gene by different transcription factors is less frequent than regulation of several targets by
the same transcription factor [9]. Additionally, a key difference in the structural aspect is
that genetic regulatory networks show hierarchical organization. When the binding targets
of E. coli transcription factors are analyzed, a few key regulators regulate downstream units
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for specific functions [10].

Figure 2: (A) The in-degree distribution of the regulated genes (number of transcription factors
bound per promoter region; solid symbols) as compared to the in-degree distribution of a random-
ized network (open symbols). (B) The out-degree distribution of transcription factors with the
number of promoter regions bound per regulator. These data are from yeast. Figure from [9]

Genetic regulatory networks are an interesting example, as these interactions provide
the framework in which the process of morphogenesis in developmental biology is studied
[17], [20]. In the case of pattern formation during morphogenesis, morphogen (a type of
signaling molecule) gradients across the cell population are established and used, by which
the genetic regulatory networks in specific cells respond by regulating the set of genes that
generate the developmental patterns. Thus, in conjunction with these morphogen gradients,
these networks provide the regulatory networks for specific spatial patterns in the genetic
activities of the cells [17], [20].

2.4 Network motifs

The high clustering coefficients of various molecular networks have indicated that these net-
works are locally represented with modules with different functionalities [5]. Although the
modularity concept had been previously applied, these “network motifs” were first consid-
ered in the genetic regulatory network of E. coli, where specific interaction motifs of different
feedback structures have been shown [11]. Further studies have also indicated the presence
of these common motifs in other networks and organisms, such as the genetic regulatory
networks in the human embryonic stem cells [13].

The motif representations can help elucidate the dynamical properties of the networks.
Based on the interaction maps of these motifs, simple dynamical models can be constructed,
from which it can be shown how each network motif can carry out specific information-
processing functions, such as threshold-dependent behaviors [12]. Some of the network motifs
that are common and specific to developmental genetic networks are [12]:
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i Auto-regulation motifs: Auto-regulations can be either positive, where a node can
enhance its own production, and negative, where a node represses its production.

ii Toggle switches: These consist of double-negative or double-positive interactions be-
tween two nodes, and they can mutually inhibit or enhance each other’s activities/productions.

iii Feedforward loops: These consist of a cascade of three nodes with directional regu-
lation, with the added feature of the first upstream regulator also interacting with the
third downstream effector.

Auto-regulation motifs can be used to explain the propagation of molecular perturbations,
while toggle switches are used to generate spatially alternating gene activities. Based on
the directionality of information flow from signaling molecules to effector genes, feedforward
loops can also provide a further layer of regulation to fine-tune the effector activities.

3 Pattern formation in morphogenesis

Morphogenesis is described by the organized spatial distribution of cells during the develop-
ment of an organism. With the positional information provided by morphogens across the
cell population, the distribution of cells is in turn regulated by their genetic activities. Al-
though it had preceded much of the experimental work done on the molecular underpinnings
of the processes, the reaction-diffusion model first proposed by Alan Turing in 1952 can be
and are used to describe the general principles behind some of these processes. This model
provides a mechanism by which the initial spatial symmetry in the morphogen concentration
is broken, leading to spatial genetic patterning in the cells.

However, in experimentally validated morphogenic processes, the asymmetric sources
of patterning are already present. Thus, in most instances, morphogenic pattern formations
do not arise from a homogeneous initial state, a point that Turing had considered while
introducing the model. For example, in the molecular morphogenesis in Drosophila em-
bryos, the pre-determined asymmetry is inherited from the mother; fertilized eggs contain
maternally determined morphogen gradients, which initiates the patterning of the embryo.
Similarly, the left-right asymmetry initiation is controlled by a reaction-diffusion mechanism,
although the pre-patterns of the activator and inhibitor are present at the onset, which are
also maternally determined. These two examples are discussed in a later section, focusing on
the mechanistic details that support the reaction-diffusion model and the general biological
network properties previously discussed.

3.1 Reaction-Diffusion

The reaction-diffusion (RD) model considers pattern formation based on mutual interac-
tions between chemicals and their differential diffusion [14]. In the context of morphogenesis
in developmental biology, a main starting point may be to understand where the spatial
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symmetry-breaking mechanism comes from. What’s really interesting in the RD model is
that the spatially uniform concentrations of morphogens can be shown to be unstable with
respect to perturbations because of diffusion, which can in general lead to a wide variety of
self-regulated pattern formations.

In the original model, two interacting and diffusing morphogens are considered, where the
N individual cells provide the discrete positional information in an one dimensional circle.
With a continuous position variable, the model considers two morphogens (u1 and u2) [14],
[15]:

∂tu1 = f1(u1, u2) +D1∇2u1,

∂tu2 = f2(u1, u2) +D2∇2u2.

where the dynamical system of two morphogen concentrations u1 and u2 is described by the
nonlinear functions of production, degradation, and interaction terms (fi(u1, u2)) and the
corresponding constant diffusion coefficients (Di). An important assumption in the model is
that there is no prior spatiotemporal asymmetry in the system, indicating that the functions
fi and the diffusion coefficients Di do not depend on time and position. Then, linearization
about the uniform solutions shows that the perturbations (up1, up2) in one dimension satisfy
[15]:

∂tup1 = a11up1 + a12up2 +D1∂
2
xup1,

∂tup2 = a21up1 + a22up2 +D1∂
2
xup2,

and the aij’s are the Jacobians of the fi’s with respect to ui’s at the uniform solutions. The
particular solution up(x, t) can be shown to have an exponential spatial factor eiqx with the
wave number q and an exponential factor in time ekqt with the corresponding growth factor
kq [15]. Then, eigenanalysis of the growth factor kq gives the stability conditions for the
uniform state in the absence of diffusion:

a11 + a22 < 0,

a11a22 − a12a21 > 0.

Combined with non-negative diffusion constants, it can be shown that the following holds
for diffusion-induced instability of the uniform state:

D1a22 +D2a11 > 0.

Based on these conditions for the existence of Turing instability in the presence of dif-
fusion, the coefficients a11 and a22 must have opposite signs, and the same condition holds
for a12 and a21 [15]. These conditions are generally understood that one morphogen has
a positive auto-regulation (for instance, u1, an activator) and the other a negative auto-
regulation (u2, an inhibitor). Furthermore, u1 can either serve as an activator or inhibitor
of u2 production, whereas u2 shows the opposite pattern with respect to u1. Thus, we can
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understand the necessary network motif to be a directed activation/inhibition loop between
the two components with nested auto-regulations. Additionally, the decay lengths (li) of the

activator and inhibitor are defined on the diffusion constants, where li = (
Di

aii
)1/2. In one

dimensional simplification, this regime of parameter values leads to a time-independent state
the following wave number [15], [16]:

q =

[
1

2

[
1

l1
−

1

l2

]]1/2

.

The condition for the existence of a finite wave number instability is l2 > l1, indicating
that the relatively faster diffusibility of the inhibitor can lead to the mechanism by which
fluctuations spontaneously break spatial symmetry in the uniform state. Considering the
case that the auto-activator activates the production of the inhibitor (Figure 3), fluctuations
will increase the level of the activator across a cell, which leads to increased local levels of
both the activator and the inhibitor (“local activation”). Then, the diffusibility condition
indicates that there are regions of “lateral inhibition” where the increase in the inhibitor
levels in neighboring cells prevents the level of activator from increasing. These patterns are
then spatially propagated.

Figure 3: Schematic diagram (i-iv) of the diffusion-induced instability in the activator-inhibitor
system. Green and red lines represent the concentration of activator and inhibitor respectively.
The case of a12 > 0 and a21 < 0 is considered. Figure adapted from [17].

There are other instabilities that can arise depending on the parameter values. For
instance, when there is a cross-coupling between the activator and inhibitor, where

a12a21 >
1

4
(a11 + a22)

2,

and the production rate of the activator is greater than the degradation rate of the inhibitor,
there can be a time-periodic state with spatial uniformity [15], [16].
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The key aspects of the RD model in pattern formation is the absence of pre-pattern
in the regulatory molecules and the interactions between self-regulating morphogens with
differential diffusibility. Thus, a patterning system combines a “a short-range positive feed-
back with a long-range negative feedback” [15]. There are many postulated examples in
the literature that represent these details, although the absence of pre-patterns has been a
point of contention in the developmental biology community, such that the RD model had
not been extensively considered [17]. Gierer and Meinhardt generalized the key ideas in the
RD model to embryological processes by considering the sources of activator and inhibitor
morphogens [18]. By incorporating pre-determined sources, it was shown that patterns that
are independent of the properties of the source distributions can arise, patterns that can
sufficiently explain various experimental patterns considered [18]. In this model, it was still
assumed that the relative diffusibilities of the activator and inhibitor have to be different,
such that the inhibitor concentration is effectively a function of the activator concentration
[18].

3.2 Left-right asymmetry

These general interaction motifs consisting of auto-regulation and directional/mutual inhi-
bition is a key feature of developmental genetic networks [12]. Thus, the main experimental
concern is to determine whether an activator-inhibitor system shows differential diffusibility,
which has not been established for many of the model systems. One interesting example
where these mechanisms apply is the establishment of left-right asymmetry in zebrafish [19].
The Nodal-Lefty activator/inhibitor system is responsible for these patterns, where Nodal, a
morphogen responsible for the right specification, enhances both its own production and that
of Lefty, and Lefty inhibits the activity of Nodal. It was also established that the normalized
diffusivity ratio of Lefty and Nodal measured was ≈ 14, indicating that the inhibitor Lefty
has a longer spatial range than the activator Nodal [19]. Interestingly, it is postulated that
the pre-patterns in Nodal and Lefty provide a positive feedback on the establishment of the
patterns, such that the left and right specification pathways are activated [19].

3.3 Establishment of body parts in Drosophila

During the patterning process in Drosophila embryos, cells show discrete segmentations along
the one-dimensional anterior-posterior axis (Figure 4) [17], [20]. These segmentations then
become different body parts over the course of the organism’s development. This process is
orchestrated by a cascade of input morphogens and effector genes. Since the morphogens
(Bicoid and Caudal) are the only diffusible components within this network, the components
relevant to the RD model are the maternally inherited sources for the two morphogens,
where Bicoid is originally present at the anterior point and Caudal at the posterior point
of the embryo. There are no auto-regulations present for these morphogens, although it
is known that Bicoid inhibits Caudal production from its source [20]. Additionally, due
to experimental difficulties, there is no consensus on the relative diffusibilities of the two
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morphogens [21]. However, what is known is that the diffusion-dependent Bicoid gradient
and the anti-parallel Caudal gradient are established, which act as threshold-dependent
activating transcription factors of the genetic regulatory network within the cells [17], [20].
Due to these differences between the RD model and the experimental details for this process,
other conceptual models, such as the “positional information” model, have been used to
explain the morphogen-based segmentation in Drosophila embryos [17].

Figure 4: The anterior-posterior patterning system in Drosophila embryos. The Bicoid and
Caudal sources are asymmetrically inherited from the mother, after which diffusion and inhibition
of Bicoid on Caudal production produce the gradients. The spatial information provided by the
concentration gradients are reinterpreted as spatially alternating genetic activities of gap-genes.
The segment polarity genes, such as eve, are then regulated to be produced with a specific spatial
wave number. Figure adapted from [17].

Thus, focus has been on the formulation of the mechanistic details in the genetic regu-
latory networks that produce specific spatial patterns from broadly presented concentration
gradients. The previously discussed toggle switches and feedforward loops have been shown
to be involved in the gap-gene genetic networks and the segmentation polarity gene net-
works [20]. In this view, the morphogens Bicoid and Caudal are transcription factors that
directly activate several of the mutually inhibiting toggle switches of the gap-genes, such as
hb, kni, kr, and gt (Figure 5). Specific double-negative feedback loops between pairs of the
gap-genes translate the spatial information provided by the morphogen gradients into alter-
nating expression patterns. To describe the experimental patterns, it is also proposed that
the relative inhibitory strengths between the gap genes are asymmetric across the anterior-
posterior axis, with posterior interaction partners exerting stronger inhibition on their more
anterior counterparts [22]. Additionally, the specification of the spatial wave number of the
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segmentation polarity genes should be considered, although there are currently no available
experimental data. One study presents a feedforward loop structure in the morphogen - gap-
gene - segmentation gene cascade, where the morphogen further activates the downstream
segmentation gene [23].

Figure 5: The gap-gene genetic regulatory network in Drosophila embryo segmentation. Mor-
phogens provide positional cues by activating the gap-genes by a threshold-dependent manner.
Pairs of gap genes form mutually inhibiting switches to form spatially alternating patterns. Figure
from [20].

4 Summary

Pattern formation during morphogenesis gives us an interesting example of an emergent
phenomenon in biology. The reaction-diffusion model provides a mechanism by which spa-
tial uniformity can be broken, with resulting spatial pattern formations. In some of the
morphogenic processes considered experimentally, however, it is established that the spatial
patterning cues are pre-determined with maternal inputs. Additionally, experimental data
concerning these processes are also dependent on the organism in which they are tested.
Thus, current views on the established models of pattern formation in morphogenesis com-
bine the general ideas of the reaction-diffusion model with molecular details that are specific
to the process considered. To this end, more data are accumulated and analysis performed
to determine the structural properties of biological networks across different organisms. Sev-
eral interesting concepts have been established such that they could be considered to be
universal. With this, it is hopeful that we can gain better understanding.
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