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Abstract

In this paper, we review how the idea of a delayed first-order phase transition was
used in the inflationary cosmological model and how it solves, or at least relieves, the
problems from the standard cosmological model that are contradicted by the CMB
observation. We also discuss the problems of the original inflationary model, and how
it was improved by other inflationary models.
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1 Introduction

Our universe, unlike any other physical systems, can neither be studied by observing an-
other universe and comparing the results nor by watching it evolve from the beginning again.
Therefore, the study of cosmology can only be done by gathering a vast amount of obser-
vational data and building models out of it. With general relativity as its ground base,
modern cosmology has been rapidly developed since the early 20th century, during which the
standard cosmology model was established. This model successfully described the evolution
of our universe and was supported by the early observations.1 However, as more and more
results that cannot be explained by the standard model showed up, during the last several
decades the standard model has been continuously modified and improved. One important
modification is the insertion of a period in the very early universe in which the universe
expanded rapidly, called inflation.

The idea of inflation was originally introduced by Guth in 1980 [1]. The mechanism of
the original inflationary model is a delayed first-order phase transition that comes from the
spontaneous symmetry breaking of a grand unification theory. As an effect of this phase
transition, inflation can solve several initial condition problems in the standard model, such
as the horizon problem and the flatness problem, whose answers in the standard model have
to be some unnatural initial conditions of the very early universe. However, the original
inflationary model also creates its own problems and has been replaced by other inflationary
models [2–4]. Although the main stream today are the models that are without a phase
transition, it is still pedagogically meaningful to discover how the concept of inflation was
conceived in order to overcome the difficulties in cosmology.

We will give a brief summary of the standard model and the observational facts we
need as preliminaries in section 2, after which we introduce three typical problems in the
standard model that are solved by the inflationary model: the horizon, flatness, and monopole
problems. In section 3 we first discuss the phase transition process and how it causes the
inflation, and show that they can solve the problems in varying degrees. Then, we will also
talk about the upgrade versions of inflation include the “new inflationary model” and the
“chaotic inflationary model”, the latter of which is considered as the most reliable inflationary
model till today [5]. We will use the system of geometrized unit, i.e. c = G = ~ = 1, unless
indicated otherwise.

2 Standard Cosmological Model and Its Problems

2.1 Preliminaries

The fundamental assumption of the standard cosmological model is the cosmological princi-
ple, which states that our universe is spatially homogeneous and isotropic on a large scale.
Based on this principle, the spacetime geometry can be described by the Robertson-Walker

1Later on, we will refer to the standard cosmological model as “the standard model” for short when there
is no confusion with the Standard Model of particle physics.
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(RW) metric [6] :

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1)

where k = 0,±1 is the curvature constant, and a(t) is called the scale factor. For the case
k = 1, the universe is closed, and we can get the volume of whole space (the 3-sphere) as
V = 2π2a3. Under the RW metric, the distance DAB(t) of two galaxies A and B with spatial
coordinates (rA, θ, φ) and (rB, θ, φ) is

DAB(t) = a(t)

∫ rB

rA

dr√
1− kr2

. (2)

By considering the contents of the universe as perfect fluids, the evolution of a(t) can be
derived from the Einstein equation as

3
ȧ2 + k

a2
= 8πρ , 2

ä

a
+
ȧ2 + k

a2
= −8πp , (3)

where ρ and p are the density and pressure of the contents, respectively. These are called
the Friedmann equations, they can be equivalently expressed as

3
ȧ2 + k

a2
= 8πρ , ρ̇+ 3H(ρ+ p) = 0 , (4)

where H ≡ ȧ(t)/a(t) is called the Hubble parameter. Defining the relative velocity of two
galaxies as u(t) := dD(t)/dt, we can easily see from (2) that u(t) = H(t)D(t), which means
that at a given time t, the recessional velocity between two galaxies is proportional to the
distance between them. This result for the present t was given by Hubble in 1929 from
observation, and thus it is called the Hubble’s law [7].

Using the Hubble parameter, we can write the first equation in (3) in SI as H2 = 8πGρ/3−
kc2/a2. If we define a critical density ρc := 3H2/8πG, then we have

ρ = ρc +
3kc2

8πGa2
. (5)

We can see the ρc corresponds to k = 0, i.e. the universe is spatially flat. ρ > ρc corresponds
to an open universe and ρ < ρc corresponds to a closed universe. We can also define a density
parameter

Ω := ρ/ρc =
8πGρ

3H2
, (6)

and when Ω > 1 the universe is closed. Hence, whether our universe is open or closed can
be determined by the detecting the present value of the Hubble parameter H0 and the mass
density ρ0. According to the observation of the type Ia supernova, Ω ' 1, which means our
universe is very close to flat.

2



In the early universe, the universe was dominated by radiation, whose energy density ρr
satisfies ρra

4 = constant. We can rewrite the first equation in (3) as

ȧ2(t) = B2a−2 − k , (7)

where B2 ≡ 8πρa2/3 is a constant. Since k is negligible when a is small, we have a solution
a = (2Bt)1/2. Remind that ρr ∝ T 4, and thus T ∝ t−1/2; this relation can be written as

T =

(
45

π3Neff

)1/4(
Mp

4t

)1/2

= 1010t−1/2 (SI) , (8)

where Neff is the effectively massless particle number, Mp ' 2×10−8kg is the Planck mass [8].
Around t = 1011s, the contents became matter dominated. At t ' 1013s, T decreased to about
4000K. Under this temperature, matter began to form neutral atoms from ionized states. As
a result, photons can hardly interact with charged particles, so they were decoupled from
the matter field and became a background photon gas. After decoupling, the photons were
no longer in thermal equilibrium with massive particles, and its temperature will decay as
Tγ ∝ a−1. Estimation shows that the temperature of the decoupled photon system is about
3K at present, and the radiation energy is mainly concentrated in the microwave region;
thus, it is called the cosmic microwave background radiation (CMB). This isotropic radiation
was first detected accidentally by Penzias and Wilson in 1965, although they only observed
one point (λ = 7.35 cm) on the back body spectrum. In the early 90s, Cosmic Background
Explorer satellite (COBE) accurately detected the black body spectrum of the CMB, finding
that Tγ ' 2.735K, and verified that the CMB radiation is highly isotropic [9].

2.2 Difficulties of the Standard Model

Although the standard cosmological model has solved many issues successfully, when it comes
to the very early universe, namely t � 1s after the big bang, several problems arose. Here,
we introduce three of them.

2.2.1 The Horizon Problem

At a given spacetime point p, the 2-dimensional boundary of the region that can be observed
at tp is called the particle horizon of p [6]. The distance DH between p and any point on the
particle horizon can be derived using (2) and the geodesic equation of a photon as

DH(tp) = a(tp)

∫ tp

0

dt

a(t)
. (9)

For k = 0, the radiation universe and the matter universe satisfy a(t) ∝ t1/2 and a(t) ∝ t2/3,
respectively. Hence, in SI we have

DH(t) = 2ct (radiation universe) , DH(t) = 3ct (matter universe) . (10)

At the present time t0, the spacetime subset that contains all of the particle world lines
within the particle horizon of an observer in the Milky Way is called the presently observable
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universe. Its spatial radius is a function of t, denoted by DPOU(t). Note that DPOU not is
the radius of the observable universe at t, and only at t = t0 we have DPOU = DH(t0). Since
t0 ' 3× 1017s, this value can be estimated using (10) as

DH(t0) = DPOU(t0) = 3ct ' 3× 1026m .

Since both DH and DPOU are expanding over time, let us consider the time when the photons
were decoupled, i.e. tγd ' 1013s. From the first equation in (10), we have

DH(tγd) = 2ctγd ' 6× 1021m .

On the other hand, since DPOU can be regarded as the spatial distance between a Milky
Way observer and an observe at the edge of the presently observable universe, we can know
from (2) that DPOU ∝ a(t). According to statistical mechanics, the temperature of the
background radiation satisfies Tγ ∝ a−1, and thus DPOU ∝ T−1

γ . Note that Tγ(tγd) ' 4000K
and Tγ(t0) ' 2.7K, we have

DPOU(tγd) = DPOU(tγd)
Tγ(t0)

Tγ(tγd)
' 2× 1023m .

Therefore, the DPOU(tγd) is about 33 times larger than DH(tγd). From (10) we roughly have
DPOU ∝ t1/2 or DPOU ∝ t2/3, and hence this multiple is even larger in earlier times. For
instance, at the Planck time tp = 10−43s, the time at which classical theory breaks down,
DPOU ' 10−5m� DH ' 10−34m, which makes the ration become 1029 [8]. However, due to
the existence of the particle horizon, two particles with a spatial distance larger than DH

could not have had any interaction before, which means the homogenous and isotropic result
from the CMB observation can not be naively explained as the “self blending” from the
interaction. This is called the “horizon problem” of the standard model, and is also known
as the “homogenous problem”.

The horizon problem can be alternately expressed as follows [1, 8]: when detecting the
isotropy of the CMB, the temperature measured by two back-to-back antennas are the same
to high precision. The photons received by these two antennas came from two sources S1

and S2 with a spatial distance D12(tγd) when the photons were decoupled. Thus, at t = tγd
our universe should be spatially homogenous at least in the scale of D12(tγd). However,
according to the estimation [10], D12(tγd) is at least 90 times lager than DH(tγd), which
implies that there could not be any thermo-interaction between S1 and S2, and this long
range homogeneity is a complete mystery in the standard model.

2.2.2 The Flatness Problem

According to the standard model, the deviation of Ω from 1 will grow rapidly over time. Use
ε(t) ≡ |1− Ω−1(t)| to represent the deviation. From (5) we have

ε(t) = |ρ− ρc
ρ
| = 3|k|

8πρ(t)a2(t)
∝


0, k = 0,

(ρa4)−1a2 ∝ a2, k 6= 0, radiation universe,

(ρa3)−1a ∝ a, k 6= 0, matter universe.

(11)
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Again, we consider the Planck time tp = 10−43s. Remembering that the early universe satisfies
(8), we have T (tp) ' 3× 1031K. Since a is inversely proportional to T , a(t0) ' 1031a(tp), and
thus from the equation above we can see that ε(t0) is 1031 ∼ 1062 times larger than ε(tp).
(A more precise estimation gives 1060.) Since observation have shown that Ω(t0) ∼ 1 > 0.1,
ε(t0) < 10; hence, ε(tp) ' 1059, which means Ω(tp) ' (1± 10−59). This implies that the very
early universe has to be extremely flat. In addition, Ω at 10−43s has to be so close to 1 that
the non-zero numbers only show up at after the 59th place of decimals. Any tiny deviation
would imply that the universe either has already became a “big crunch” singularity or expand
too fast to form any star or galaxy. Ω has to be fine-tuned to this special value to make the
universe look like what it looks like today; therefore, the flatness problem is also called the
“fine-tuning problem”.

Equivalently, the flatness problem can also be regarded as the “entropy problem”. So
long as the local thermo-equilibrium of the contents is maintained in the universe, it can
be proved from the first and the second law of thermodynamics [11] that the entropy S in
any co-moving volume does not change with time. We have showed that the volume of the
whole space for k = 1 at t is V = 2π2a3(t). The entropy density in this volume is defined as
s ≡ S/2π2a3, it is also given by [11] that

s =
2π2

45
NeffT

3 . (12)

Its present value s0 can be calculated as s0 ' 3× 109m−3 [8, 11]. From (6) we obtain that

1− 1

Ω
=

3kc2

8πGρa2
,

and hence the entropy S can be expressed in SI as

S = 2π2a3s = 2π2

(
2kc2Ω

8πGρ(Ω− 1)

)3/2

s = 2π2

(
kc2

H2(Ω− 1)

)3/2

s .

Plug in H0 ' 10−18s−1 and consider that k/(Ω(t0) − 1) > 1, we have S > 1087. There is no
physical explanation for where this incredibly large entropy of the universe comes from. To
interpret this is essentially the same as to understand why Ω is so close to zero.

2.2.3 The Monopole Problem

Another difficulty of the standard cosmological model is in the context of applying particle
physics to the early universe. According to the grand unification theories (GUTs), there exists
a symmetry group, e.g. SU(5), that is in charge of the unification of electromagnetic, weak,
and strong interactions. At Tc ' 1016GeV' 1027K, this symmetry group is spontaneously
broken into SU(3) × SU(2) × U(1), i.e. the symmetry group of the Standard Model of
particle physics [12]. In this phase transition process, magnetic monopoles would show up
as topological defects. The number density of the magnetic monopoles can be estimated as
nM ' 1/ξ3, where ξ is the correlation length of the Higgs field [8]. For causality consideration,
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this length cannot be larger than the particle horizon, i.e. ξ < 2ct. Using (8), we have
tc ' 1034s. Thus, the mass density at tc can be expressed as

ρM = nMmM >
mM

8c3t3c
, (13)

where mM is the mass of a magnetic monopole. To see the present value of ρM , we can divide
this by the entropy density can make it independent of the scale factor. From (8), (12) and
(13), we get

ρM
s
> 4π2

(
πNeff

45

)2
mMT

3
c

M3
p

.

By plugging in s0 ' 3109m−3, Neff ' 100, mM ' 10−11kg and Mp ' 2× 10−8kg, we can see
that the present value of ρM satisfies ρM > 10−15kg/m3. Therefore, the contribution of the
magnetic monopoles to Ω is

ΩM =
ρM
ρc

> 3× 1011 . (14)

This implies a tremendous overproduction of magnetic monopole in the early universe, which
is far from the fact that we have not detected a single magnetic monopole.

3 Inflationary Models

3.1 The Original Inflationary Model

As the first step of solving the above puzzles in the standard model, Guth [1] suggested that
a phase transition process may drive the universe to expand rapidly in a very short time.
This can solve the horizon problem as well as the flatness problem completely, and at least
relieve the monopole problem to some extent.

3.1.1 Phase Transition and Inflation

The Higgs field φ in a GUT can be expanded as a fluctuation around its vacuum expectation
value, which is the minimum value of the effective potential V (φ) at zero temperature.2 This
is called the true vacuum, denoted by φT , and V (φT ) can be viewed as the vacuum energy
density, which can also represent the cosmological constant as Λ = 8πGV (φT ). Although
this value is fairly large according to the observation, the estimation from the Planck energy
indicates that it is only 10−120 times the vacuum energy density of the vary early universe.
Thus, we can say that V (φT ) ' 0 for T ' 0 [1]. There also exists a secondary local minimum
for φ called the false vacuum, denoted by φF . This is a very special state of matter whose

2To simplify the discussion, we assume the Higgs field has only one component even if it is actually a
multicomponent field.
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energy density ρF is proportional to the fourth power of the critical energy and can be
estimated as

ρF = V (φF ) ' 1076kg/m3 , (15)

(this is basically the density of a massive star when compressed into the size of a proton). The
false vacuum can also be treated as a perfect fluid with a negative pressure whose equation
of state is pF = −ρF . When T approaches Tc from zero, V (φT ) will gradually increase and
reach V (φF ) when T = Tc. When T > Tc, the potential can only have one minimum, so we
can choose the parameter of the theory and set it as φ = 0.

Figure 1: The effective potential Vφ of the Higgs field.

The inflationary model assumes that there were some expanding small region in the early
universe whose temperature was higher than Tc. The Higgs field in these region is in the
vacuum state φ = 0. As the temperature decrease with the expansion gradually to Tc, the
minimum of V (φ) splits into V (φT ) and V (φF ). As shown in figure 1, φ would become
the false vacuum state at Tc. However, as the false vacuum is a metastable state since it
has a higher energy, φ would eventually cross the barrier via tunneling and turn into a real
vacuum state. This process corresponds to a first order phase transition. Due to the choice
of parameter in the GUT, φ would stay in the false vacuum for a while and slowly turn into
the true vacuum, which is similar to the supercooling phenomenon. One can even choose the
parameter and make the supercooled state hold when T is close to zero. In this situation, the
false vacuum density ρF is much larger than the vacuum density of the radiation contents
ρr. Now we look at the effect of this delayed phase transition on the scale factor. Suppose
the region is homogenous and isotropic.3 Since k is negligible when a is small, and ρ ' ρF ,
the first equation of (4) gives

ȧ

a
=

√
8πGρF

3
≡ H , (16)

where H ' 1034s−1 is the Hubble parameter for the supercooled state. The solution can be
easily seen to be

α(t) ∝ eHt . (17)

3For the general discussion without these assumptions, see [8].
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Therefore, a increases sharply during the time in the supercooled state, which makes a way
larger than the value given by the standard model at the time corresponds to the end of
the phase transition in the inflationary model, and that is where the name “inflation” comes
from. In addition, since ρ ' ρF and p = −ρ during the phase transition, we can see that the
second Friedmann equation in (4) is satisfied automatically.

Another way to interpret inflation is that in the standard model the expansion of the
universe would be decelerating, since from the two equations in (3) we have ä = −4πa(ρ +
3p)/3 with ρ + 3p > 0 in the standard model, which means ä < 0. This is essentially
because of the positive value p and ρ of a normal perfect fluid. However, for the false vacuum
pF = −ρF < 0, which leads to ä = 8πρF/3 > 0. Hence, the inflationary model makes the
fact that the expansion of the universe to accelerate. This effect is because the repulsion
comes from the negative pressure is stronger than the attraction arising from the positive
energy density.

The process of inflation started at the critical point tc ' 10−34s and lasted for about
10−32s; the symmetry breaking happened at end of this period. After this process, each
of those regions in the universe which used to be in the false vacuum state turned into a
region with a real vacuum state, called a bubble; they are similar to the droplets that form
in supercooled water vapor. The huge energy difference between the true and false vacuum
are released as latent heat, which leads to a reheating process in that region, making the
temperature raise up close to Tc again, and then continue the expansion at the same speed as
the radiation dominated case of the standard model. One of the advantages of this original
inflationary model is that it is much less sensitive to the initial condition of the universe than
the standard model, so the universe can be easily look like what it looks like today. Also note
that inflationary model is not to replace the standard model completely; rather, it inserts
a period in the very early universe. Now let us look at how can it solve the puzzles in the
standard model.

3.1.2 Solving the Problems

To see how the inflation can solve the horizon problem, note that the presently observable
universe is much larger than the particle horizon in the very early universe, we look at the
tp = 10−43s again. Since DH has not been affected by inflation yet, we still have DH ' 10−34.
However, DPOU before inflation will be much smaller than we estimated in the standard
model. Seeing that inflation continued for ∆t ' 10−32, we know from (17) that a was
expanded by a factor of eH∆t ' 1043 � 1029. In this case, even if DPOU is many times larger
than DH after the inflation it was just a tiny region before, and hence particles could interact
with each other as we wish, becoming homogenous and isotropic. It is not hard to believe
that the homogeneity and isotropy would be maintained during inflation and the standard
model expansion after that. Therefore, the horizon problem is solved.

The other expression of the horizon problem can been solved as follows: from (9) we
can see that DH(t) would expand exponentially with the growth of a(t). After that, al-
though DPOU(t) also has expanded exponentially during inflation, since we just found that
DPOU(t)� DH(t) before the inflation, DH(t) would be larger thanDPOU all the way to t = t0.
Therefore the confusing estimation we got from the standard model that D12(tγd)/DH(tγd) >
75 is not true anymore (see figure 2).
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Figure 2: The evolution of DH and DPOU , where A represents the start of the inflation, B
represents the primordial nucleosynthesis, C represents the photon decouple. [13]

The flatness problem comes from the fact that ρa3 or ρa4 is a constant in the standard
model, which makes ε(t) = |1−Ω−1(t)| grow rapidly in the order of a or a2. However, in the
inflationary model, the energy density ρ ∼ ρF is almost a constant. In this situation, one can
see from (11) that ε(t) would actually shrink in the order of a−2 during the inflation, which
can be much larger than the increasing of it later in the normal expanding case. Therefore,
we do not need the requirement that Ω(tp) is extremely close to 1 any more. Moreover, as
long as ε(tp) is not too large, its present value would become close to zero, and thus the
present value of Ω would be close to 1. This can not only avoid the fine-tuning problem in
the very early universe, but also support that the universe today is spatially close to flat,
although we still cannot tell it is open or closed.

On the other hand, the reheating process caused by the inflation can explain the other
expression of the flatness problem, i.e. the entropy problem. After inflation, the temperature
in the bubble region is reheated to close Tc again, which makes the entropy density s close
to its value before the inflation. Since the volume of the universe has increased by a factor
a3, the entropy of the universe has increased e3H∆t ' 10129 times. This explains where the
huge amount of the entropy in the present universe comes from.

In the monopole problem, we have showed that the number density of the magnetic
monopole nM ' 1/ξ3 has a lower bound nM < 1/D3

H . Since the standard model does not
have the supercooled state, the phase transition happens at tc ' 10−34, while the inflationary
model postpones this to t ' 10−32. During inflation DH expands exponentially, and this
lower bound also decreases sharply by a factor a−3. We do not know the exact number of
the magnetic monopoles in the early universe, and therefore we cannot say the monopole
problem is solved perfectly like the problems above. But we do know that, since the lower
bound of has been reduced, the universe might not need to overproduce magnetic monopoles,
and the monopole problem is greatly relieved.
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3.2 Improvements to the Original Model

The original inflation model has helped us find a way out of the difficulties in the standard
model. However, it did not solve the problems thoroughly, (such as the monopole problem).
Moreover, the original model has a fatal weakness, called the “graceful exit problem”. These
problems are overcame by the follow-up models of inflation.

3.2.1 The New Inflationary Model

The first improvement to the original inflation model is called the “new inflation model” [2],
[3]. In Guth’s original model, the bubbles were expected to collide with each other and merge
together at last, in order to create the necessary radiation for the reheating process as well
as to make it homogenous and isotropic. However, if the supercooled state lasted as long as
what we need (10−32s), they would move away from each other and never have the chance to
merge. This “graceful exit problem” was avoided by interpreting the phase transition as a
“slow-roll” process rather than a tunneling effect in the new inflation model. In this model,
the effective potential V (φ) satisfies (a) a global minimum at φ 6= 0 (true vacuum) and a
very flat local maximum at φ = 0 (false vacuum) when T < Tc; (b) a global minimum at
φ = 0 when T > Tc. Before inflation, 〈φ〉 is at its minimum φ = 0. As the universe cooled
down to Tc, spontaneous symmetry breaking would happen and φ = 0 would become a false
vacuum. Since the vicinity of this maximum point is flat and not that unstable, 〈φ〉 would
start to roll down the potential hill slowly, and inflation would happen in this period due to
the same reason as during the supercooled process in the original model. When the slope
gradually becomes larger and larger, 〈φ〉 would roll down to the true vacuum quickly which
leads to the end of the inflation. This rolling behavior is described by the equation of motion
�φ = −∂V/∂φ [12]. It can be computed that in this inflation scenario, the scale of a typical
bubble would expand by the factor of eH∆t and become about 10800cm, which is much larger
than DPOU [5].

Since the presently observable universe is already contained in one bubble, no bubble
collision is necessary in this model. This not only can solve the graceful exit problem of
the original model, but also makes the monopole problem go away. In GUTs, magnetic
monopoles only show up at the place where different types of Higgs fields collide, which only
happens in the process of bubble collision. Therefore, no monopole was produced in our
observable universe at all. One should also notice that unlike the old inflation model, we
cannot use the Higgs field as the field φ since the vicinity of the maximum point could not
be flat enough, which would lead to a huge mass fluctuation. Therefore, the field φ in this
model is a gauge singlet field introduced only for the purpose of driving the inflation [8].

3.2.2 Chaotic Inflation

Although the new inflation model improved the original model, it still has several problems
of its own. One of the most severe one is that it requires some unnatural conditions for the
slow-roll process to start. For example, the field φ has to be less 10−20 times the Planck mass.
Soon after that, Linde [4] come up with a model called the “chaotic inflation model” that
greatly improved the this issue. In this model there is no supercooling or phase transition,
only a massive inflation field φ whose value is as large as the Planck mass at some of the
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regions in the very early universe due to quantum fluctuations. In these regions, inflation
can be easily started if the effective potential V (φ) has the shape shown in figure 3, such as
V (φ) = m2φ2/2 [14]. Since φ is large before inflation begins, it would take some time for φ to
roll down to the minimum point. During this process, this field would contribute an energy
momentum tensor that has a repulsive effect, which causes inflation and makes the scale
factor a expand exponentially in a very short of time. The expansion of the universe would
get back to the normal speed after inflation is over. Similar to the new inflation scenario, our
presently observable universe is inside one of these inflation regions, and thus the problems
of horizon, flatness and monopole all disappear in this model.

Figure 3: Effective potential in the chaotic inflationary model. [14]

4 Conclusion

We have demonstrated that the idea of inflation, a sharp exponential expansion at the very
early universe, can help to improve the standard model. In the original inflation model, this
process can be caused by a delayed phase transition, during which the Higgs field turns from
the false vacuum into the true vacuum via tunneling effect and makes the scale factor sharply
increased. After the phase transition is over, the latent heat released from the supercooled
state will reheat the universe to close to Tc and the universe expands normally again. As
long as our universe was in one of the inflation regions, i.e. one of the bubbles formed by
the supercooled state, it is assured that the presently observable universe is always much
smaller than the scale of the particle horizon, and the value of Ω would easily approach 1
after the inflation, and hence the horizon and the flatness problem are solved. However,
to make inflation end properly, it can be improved by the new inflation model, in which
inflation is not driven by the Higgs field but an inflation field φ, and the supercooled process
was replaced by a slow-roll process. Since in this scenario there is no bubble collision that
creates magnetic monopoles, the monopole problem is solved in this model. After this, the
chaotic inflationary model with the slow-roll of φ from its quantum fluctuation provided us
a better scenario.

When Guth first came up with the inflation model in 1981, astrophysicists did not really
take prescription to it since the observed value of Ω is less than 1. However, the observation
of the type Ia supernova have shown that the universe is under an accelerated expansion,
caused by “dark energy”, also contributes to Ω [12]. In addition, inflation models provide the
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primordial perturbation spectrum of the ΛCDM model of structure formulation. All these
evidence demonstrated that inflation is an essential part of the “new standard cosmological
model”. On the other hand, although phase transition as the prelude for the inflation story
has stepped down from the stage of history, it is still a compelling idea that shows the
connection of different physics from the phenomenological perspective.
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