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Abstract

The emergence of various properties in neural networks (memory, robust-
ness, computation, and processing) is approached through theory and compu-
tational methods. Neural networks are found in nature and created artificially
in computer systems. Connections can be made between emergence in models
of interacting and dynamical systems and interactions between neurons in the
neural networks. Computer methods often attempt to replicate the emergent
properties found in biological neural networks. This paper will examine and
evaluate the study of biological and computational neural networks in the area
of emergent behaviors.



1 Introduction

Before highlighting some important historical aspects of the development of the study
of neural networks (indeed, this paper will be virtually entirely such a review), I would
like to provide some motivation for the topic at hand. I wonder at the immense
computing power and diversity of the human brain, which is a biologically occuring
neural network. Even though, as is the case for the computer I am using right
now, current technology has created computer chips capable of processing data with
enormous speed and at ever-smaller scales, far faster than humans can calculate
or comprehend, there are certain behaviors such as abstract thought, or pattern
recognition, or playing baseball, which scientists struggle to replicate or improve
upon. What amazes me most, however, is the natural origin of the brain itself -
an information processing machine arisen from the same physical laws that govern
chemical reactions and general relativity (at least, if there is some grand unified
theory). The fact that an object made of carbon and oxygen, sitting in and directing
a self-propogating, self-temperature-regulating, self-sustaining, and self-aware (to
some extent)1 environment (by which I mean the body), has persisted and evolved
over millions of years is the real puzzle, but one that has so many aspects, not even
one field of science can encompass them all, let alone a single paper.

2 Physical Neural Network Models, Act I

Instead, in this paper I propose to focus on simply the consequences of the archi-
tecture of the brain. It seems natural to assume that the form of the brain follows
its function, or, if we assume that there are some physical laws governing the brain
as well, then the brain is required to. So then we must ask what is the structure of
the brain, or at the very least, how can we describe it? This question is approached
by scientists in medicine, biology, physics, chemistry, psychology, and neuroscience,
and they bring with them a further plethora of methods, both theoretical and ex-
perimental, to map, model, and understand the brain. This paper is restricted to
physical models of what are called neural networks. (See section 4 for a definition of
neural network, generally.)

I drew a parallel in the title between the development of the study of biological
neural networks and the development of aerodynamics. The similarity is that in each
field, there was interest in replication (birds in flight; brain functions), with differing
approaches in how to achieve them. There are two ways in which this is studied[1]:

1But enough of this self-promoting.
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The first are top-down approaches, which, like the qualitative ornithopter, focus
on brain behaviors, and work out how neurons can exhibit these behaviors. These
analyses I will call ‘black-box’ experiments, where input and output are known, and
the goal is to match the input to the output with some model. The second are
bottom-up approaches, like the quantitative Concorde, which focus on individual
neurons, and how their interactions create these cognitive functions. This approach
relies on emergent behavior, and it is striking to see how brain functions such as
memory (explored first), and computation and processing (touched on later) emerge
from even very simple models of neural networks.

3 The Brain, or a Biological Neural Network

The “Brain”, as we refer to it here, is little more than a set of interacting immobile
point particles. In reality, the brain is a natural product of evolution, by which I
mean the brain itself is an emergent dynamical state of, at some level, the expression
of DNA under some chemical impetus or environment. As we have noted, we will not
delve too deeply into the realities of the brain, but it may help in our understanding
of why neural networks are modeled in particular fashions, to look at the basics of
brain function. The brain consists of neurons, which, for our purposes, are identical.
Neurons are cells which can relay an electrical signal via an extension called an axon
to a synapse, which is a connection to another neuron. The neuron is capable of
transmitting a signal if an energy threshold, called the action potential, is reached.
Each neuron will “test” the signal against this threshold, and transmit the signal if
it is greater. As we will note in the next section, this structure is far more interesting
when there can be nonlinear paths, i.e. loops. Their interesting interaction comes
in the form of time-evolution, and path creation, not in the motion of the neurons
themselves.

In discussing the brain and its functions, it may be helpful to analyze some
explanations and experiments relating to brain activities from a behavioral viewpoint;
that is, a phenomenological view.

In 1969 David Marr sought to create a series of testable hypotheses about the
brain, and a theory which would describe the appropriate responses to inputs to
the Cerebellum. [2]. Marr’s theory relied on a changeable nature of the neurons
between excitatory and inhibitory. This idea is called synaptic plasticity, and many
subsequent papers have been written on the topic (for a current review of Marr’s
paper, see [3]). Synaptic plasticity indicates that experience changes the behavior
of neurons over time. Importantly, this leads to patterns, or paths, preferentially
taken over others. The robustness of these paths, enabled by synaptic plasticity, is
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Figure 1: A diagram of the cerebellum, as studied by Marr. [2]. In Marr’s simula-
tions, the distribution of the mossy fibers (Mo) are randomly distributed among the
granule cells g.

indicative of learning in the cerebellum, namely Hebbian learning. Although Marr’s
research was aimed at a neuroscience audience, his theory was based not on any
particular brain structure but rather random distributions of neuron types and parts
found in the cerebellum (see Figure 1). As such, it was not just an attempt to
replicate the brain but an attempt to replicate the function of the brain, generally.
The fact that Marr could hypothesize about the function of the cerebellum without
giving it a particular structure2 is particularly relevant to the successive bottom-up,
emergent approaches we will examine in Section 5. As Strata notes in his review,
this theory is still very relevant and discussed today in physiological circles, and is
relevant too to our present goal.

In the 1970s and 80s, Bienenstock, Cooper (of BCS theory fame) and Munro

2However, Marr does note “It is regrettable that no data exist to give a better model.”
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spent some time theorizing about the development of neurological phenomena. As an
example, we will look at their work on a particular aspect called stimulus selectivity.
[4]. Stimulus selectivity is a preferential response to some aspect of an input, for
example a particular color, shape, sound, etc. Cooper’s paper is significant because
it generalizes (like Marr) to any type of selectivity, and because the theory proposed
relates the behavior of individual neurons to the environment of the neural network
as a whole, indicating the presence of a long-range order. Another important result
was the tendency of environments to tend towards stable state(s) from a wide range
of initial conditions. This is important for cognitive features such as memory recall,
if one is trying to recall a stable state, even a partially correct guess (i.e. a state
near the stable state) will produce the correct memory (i.e. the stable state). This
highlights a feature we will see again in the work of Hopfield and Amit (see Section
5). An updated version of this selectivity experiment was performed by Afek, et al.,
on the patterns of fly bristles, who compared schotastic models with actual fly bristle
distributions. [5].

4 A Computer, or an Artificial Neural Network

Artificial neural networks are one type of computation. (see Figure 2). [6]. They
can be theoretical, just as the toy models of the brain, or they can be realized in
computer systems. They can also be simulated on computers, just as models of the
brain can be simulated. Most computers today are serial in processing, or, in today’s
multicore processors, multiply parallel. The hallmark of artificial neural networks
is massively parallel, asynchronous processing. [1]. The result are calculations that
may take many nonlinear paths. We will continue from this point in Section 5, but
first an aside as to the historical origins of artificial neural networks.

In 1943, McCulloch and Pitts wrote a seminal work [7] laying out ten theorems
describing the necessary structure of the brain, in terms of neural nets and circles,
which are cycles of those nets. The structure was based off of the idea, as laid
out in Section 2, that the components must transmit or not transmit (a binary
action), based on some comparison to an external evaluator (the action potential).
Importantly, they assumed that the structure of the network did not change with
time. Contrast this with the Hebbian learning and synaptic plasticity of the previous
section. These cycles allow for temporal nonlinearity, i.e. access to information about
some aspect of the state from the past. Already we see some connect to a function
of the brain, that is, memory. McCulloch and Pitts were careful to note that their
model was limited, in that it could not explain sleep, for example (though certainly
since then, more research on sleep has been done, but that is for another paper).
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Figure 2: (Artificial) neural networks, as a type of computation [6].

The important result of McCulloch and Pitts was the fact that a system of simple
components following prescribed rules can produce behaviors that were typically
associated with complex systems.

5 Physical Neural Network Models, Act II

Continuing from the first paragraph of Section 4, here it is useful to mention the
concept of chaotic attractors. If the equations that govern the neural network are
nonlinear, then one must resort to a stochastic or averaged view of the process,
to determine its behavior. If there exist some stable solutions to the system, then
thermodynamics tells us that in the limit of infinite time the system will tend towards
those stable states, i.e. those with minimum energy. These are the chaotic attractors.
Taking an averaged view means that we must express the local interactions as a
function of the overall system, and, as we noted, this indicates some long range
order. We will see, in the following models, evidence for symmetry breaking and
emergent phenomena as well.

We have looked at, first, a pair of black-box investigations into the working of
the cerebellum [2] and the sensory cortex [4]. We then noted the previous work into
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a general mathematical theory of and idealized neural network by McCulloch and
Pitts. [7] Hopfield, in 1982 [8], created something like an Ising model of a neural
network. He proposed that each neuron was in a state of “firing” or “not firing”,
hence something like a spin-up or spin-down state. We can then connect the neuron
network in some pair-wise fashion, with the relative strength of the pairs given by
some factor, and a self interaction of zero (hence, there is no point storage, only
storage in the connections). To introduce a time element, the neurons have a mean
firing rate, so we have some sort of mean time field theory. If we want to store a set of
states V s = V (1···n), the interaction can be expressed as Tij =

∑
s(2V

s
i − 1)(2V s

j − 1)
so that we have a Hamiltonian of the form

Hs
j =

∑
j

TijV
s
j =

∑
s′

(2V s′

i − 1)
∑
j

V s
j (2V s′

j − 1)

We want to find the stable solutions to this Hamiltonian. So, we will modify Tij by
an average correlation [Vi(t)Vj(t)]avg, to try to smooth the asynchronity and find a
stable (at least, repetitive system). In the special case Tij = Tji, then the change in
energy due to a particular change in state,∆Vi, is monotonically decreasing to some
minimum energy by

∆E = −∆i

∑
j 6=i

TijVj

In his work, Hopfield ran Monte Carlo simulations to test the memory recall of the
system, or how likely it is to return a nearby stable state given a perturbed input.
The variation he chose was the length of the state vector, s, so that a system with a
higher s would have more “memories”, or stable states, to “remember”. These results
are presented in Figure 3. The Monte Carlo simulation shows that as the state vector
length increases, the more errors are returned. This is indicative of a very commonly
experienced occurrence, forgetfulness. Thus, the Hopfield model has gone beyond
storing stable states, but has indicated the emergence of another cognitive (mis-
)function, all without saying anything about brain structure, and merely making
some assumptions about the interactions of the neurons.

In 1985, Amit, Gutfreund, and Sompolinsky expanded on the Hopfield Ising-
type model, by first comparing it to a model by Little, and then by noting that the
models were identical for temperatures below a critical temperature, and that at a
temperature T = Tc, symmetry breaking would occur. [9]. This model is called the
Ising-spin glass model, and the Hamiltonian is:

H =
1

2

∑
i,j,i6=j

(
1

N

p∑
µ=1

ξµi ξ
µ
j )SiSj
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Figure 3: Monte Carlo simulations of the Hopfield model. N is the number of neurons,
and n is the length of the state vector. It can be seen that as n increases, the average
error increases.
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where the ξ’s are independent random variables with zero mean, for example, ran-
domly equal to +/-1. Amit et al. go on to derive a free energy, partition function,
and order parameter, m, in terms of the quenched random variables ξ.

m = 1/N
∑
i

ξi tanh(βm · ξi)

or, in the thermodynamic limit(i.e. mean field limit), N →∞,

m = {ξi tanh(βm · ξi)}

This is reminiscent of the form of the net magnetism (order parameter for a ferromag-
net). Physically, m is interpreted as the overlap of the local magnetization with the
ξ distribution. Expanding this and the free energy about Tc = 1, it can be seen that
the system exhibits the paramagnetic state (m = 0) above Tc, and multiple nonzero
m states below Tc, and thus the spin-glass model exhibits symmetry breaking.

6 Imitation, Understanding, and Conclusion

In our previous examples of modeling neural networks as a thermodynamic system,
we restricted ourselves to fairly simple models, and sought understanding more than
perfect replication. It is through this aspect that the study of neural networks in
physics has evolved away from the ‘ornithopter’ approach, and towards the ‘Con-
corde’ approach, leading from the purely top-down approaches of Marr and Bienen-
stock and towards the bottom-up approaches of Hopfield and Amit. Through such
bottom-up approaches, neural networks have exhibited an order parameter, long
range order, and symmetry breaking, and crucially to the study of biological neural
networks, emergent phenomena consistent with that exhibited by brains.

I conclude by looking at a recent development in neural networks.
A large scale neuron network simulation by Eliasmith et al. [10] is, procedurally,

very much a ‘black-box’ type experiment. In the example shown in the video, [11],
handwritten inputs simulate the perturbations away from the typographical memory
states that exist in the network. The system then has some time evolution, as it
waits and/or processes other inputs. The error rate of the output of the system
then, in a simple sense, reflects the same ‘forgetfulness’ we saw in the Hopfield
model. However, this brain model is far more complicated (see Figure 4). Note in
the brain model map the level of reciprocation and feedback. Hopfield noted in his
paper that prior work had less success and that “all of his interesting results arise
as consequences of the strong back-coupling”. We can see a similar process here,
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despite its greater complexity. The complexity displayed here, though, seems to be
more top-down oriented, so that the sum of the pieces is designed to look more like a
brain (as Marr desired earlier, in the footnote). This model has far more available in
terms of computing power and neuroscience when compared with the previous cases
examined. The result of this complicated model is the ability to replicate many more
of the brain’s functions beyond mere memory, as shown in the videos of Figure 5.
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Figure 4: A diagram of the model brain of Eliasmith, et al. [10].
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Click here.

And/or click here.

Figure 5: Movies providing a brief view of some capabilities of the Spaun artificial
brain project. Click once to load and start the video, double click to stop. (If video
does not load, go to: [11]). Note there is sound.
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