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Much of evolutionary and economic theory is based on the idea that humans,
animals, and even genes are inherently selfish and make decisions based on
what is in their own best interest. But we know that humans and animals make
self-sacrificing choices regularly, not just for the benefit of their own progeny but
also to help complete strangers, through charity for example. This paper will
provide an overview of public goods games (PGG) and how altruism, though
harmful in the short term to the practitioners, tends to be beneficial overall . It will
also explore whether altruism is evolutionarily favored and what factors can lead
to its dominance or failure compared to selfishness in these models.



Introduction

Modern theories in biology and economics depend on the self-interested
behavior of the subjects involved. This makes perfect sense, of course. If, for
example, one individual in a population helps another by sharing food, they have
less food for themselves. Their lack of nutrition would make them less capable of
competing for other scarce resources, they would die, and their genetic
propensity for altruism would not be passed on. Or, if altruism were a strategy
rather than an inherent trait, others would note the negative effect and be less
inclined to share their own food. Either way, it does not pay to be altruistic.
Evolutionary theory grants some leeway for the protection of offspring and
relatives in order to pass on genetic information, but there is no accounting for
the random acts of selflessness present every day. From extreme examples, like
risking your own life to save a stranger, to the mundane, giving money to a
homeless person on the street, our propensity to help others is an important part
of what makes us human. Why do we sacrifice ourselves to help others in the
first place? And if only the fittest and most selfish survive, how can altruism be
SO common?

Public goods games offer a way to explore effects and emergence of
cooperation in populations. Simulations indicate that altruistic players may be
more successful in the long run than purely selfish players. Under certain
conditions altruists not only survive, but also thrive and can emerge as the
dominant strategy in a large population. This paper will investigate different
methods that provide for the emergence of altruism in public goods games and
examine their strengths and weaknesses.

Public Goods Games

In public goods games (PGGs), participants can opt to contribute a given
amount to a central pot or give nothing. The pot is then multiplied by some
amount and split between all participants. Those that contribute are called
cooperators and that do not are called detractors. In these games, the pay out is
the same for cooperators as it is for detractors, however the cooperators incur an
added cost and so reap a smaller reward than detractors. This is a classic case
of the prisoner’s dilemma and best individual strategy is to detract. However, if
all players detract then none benefit, presenting a social dilemma.

In evolutionary PGGs, players are assigned a strategy and a vertex on a
graph, with each individual interacting only with those it is connected to. The
benefit received is b, the cost to cooperate is ¢, and number of players an
individual is connected to is k. The social dilemma depends on b>c. If a
cooperator is connected to i other cooperators their pay off is bi-ck. Alternatively,
for a detractor connected to j cooperators will receive a pay out of bj. After each
round, some fraction of individuals will have the option to change their strategy.
The probability of switching from strategy x to strategy y is generally given by

W(x < y)=[1+exp((P, - P)/i] (1)



fixation probability p
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where K is a noise factor that allows occasional irrational choices. Alternatively,
some models have the new strategy adopted simply if Py > Py. In either case, the
individual is more likely to choose the strategy with the highest payoff.

Taking k to be constant, it can be shown that cooperation survives if b/c>k
assuming that the total number of players N>>k. Consider that the payoff for a
cooperator is P. =bq..(k —1) - ck and the payoff for a detractor is P, =bq_,(k -1)
where ¢, and g is the probability that a cooperator will be next to a detractor
or another cooperator respectively. By pair approximation’ (k=1)(Gec = qcp) =1
and we find that P. - P, =b - ck, clearly indicating that cooperation is more likely
when b/c>k."! This bears out in the simulations shown in Figure 1 for different
connectivities. The top line gives examples of graphs. The bottom two lines
show the proportion of times cooperation won out over detraction compared to
b/c. Runs were performed at different average values of k and total number of
players N. The relation also shows that for highly connected or “well-mixed”
graphs, detractors will necessarily beat out cooperators. For this reason, we look
to more locally connected graphs to examine cooperation emergence.
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Figure 1 - Ohtsuki et al. [1] — Sample networks are shown at top. Below the corresponding graph are
runs with population size N plotting fixation probability of cooperation vs. b/c for various values of k
indicated by the colors above.

1 pair approximation is a mean field theory that tracks the frequency of strategy pairs. It will not
be covered in this paper, but results do appear in reproduced graphs. Full explanation in [2]
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Spatial Variation of Connections

A very simple graph to begin with is the square lattice with k = 4. We wiill
introduce a new quantity r =b/c that is the multiplication factor that amplifies the
input of the cooperators. Hauert and Szabd look at this graph using Monte Carlo
starting from a random initial configuration.”™  With each iteration, some
randomly drawn players are selected to update. Player x compares it's strategy
to a random neighbor y and accepts y’s strategy with the probability in Eq. (1).
Their results, displayed in Figure 2, show that cooperators do survive for small
values of r, but below a threshold r. a phase transition occurs and detractors
dominate entirely. Figure 3 shows that near r; cooperators are found in small
clusters, islands in a sea of detractors. In clusters, interior cooperators only
interact with other cooperators and so gain more from the PPG than cooperators
on the boundary playing against detractors and more than those detractors.
They gain sufficiently more to stave off invasion until r; at which point the gains
on the interior cannot offset the cost on the boundary and detractors creep in.
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Figure 2 -Hauert and Szabé [4] —-Frequency of cooperators (squares) and detractors (diaomns) vs. r
The line represents the frequency of defectors in pair approximation
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Figure 3 - Hauert and Sazabé [2] — Spatial configuration of cooperators (black) and detractors (white)



A bit more complex is a regular small world network (RSW), which has the
same number of connections (k=4), but a certain fraction reach beyond the
nearest neighbor of the simple lattice. More complex still is the random regular
graph (RGG), which again has the same number of connections, but here all the
connections are randomly selected from the entire population, not just the
nearest neighbors. The two graphs have increasing the spatial variety of the
connections. Examples are shown in Figure 4 below.
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Figure 4 - Hauert and Szabé [2] - (a) regular lattice, (b) RSW, (c) Bethe lattice or tree, (d) RRG

One might expect that for the heterogeneous graphs the proportion of
cooperators would decrease, as their interactions are no longer confined to
clusters of neighboring cooperators. However, this is not the case. Cooperators
actually have better chances on the random regular graphs.”? The cooperators
hold on for smaller benefit-to-cost ratios and the nature of their eventual
extinction changes. Figure 5 shows the sharp fall off of the lattice compared to
the more linear decrease of RSW and RRG graphs. It is also evident that our
results are highly sensitive to topological features of the graph.
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Figure 5 - Hauert and Szabé - Frequency of cooperators vs. 1/r for the lattice (squares), RSW
(circles), RRG (+), and predictions of pair approximation (line)




Social Diversity

To this point, the graphs introduced have had a constant connectivity, k,
between all vertices. Santos et. al. have introduce heterogeneous graphs that
include highly connected individuals alongside sparsely connected ones; closer
to true human interactions in their diversity.®™® Their graphs are scale-free,
meaning the proportion of vertices with k connections P(k)~k™. In this case, the
cost-benefit measure must be renormalized to reflect the varied degree of

connectivity. Santos et. al. use a renormalized enhancement factor n = [r(z+1)]'1

where z in the average connectivity of the graph. Their results are shown in
Figure 6. Also shown is a drawing of the various PGGs at play for a particular
individual and their cost to a cooperator in two different cases.

Fraction of cooperators

Figure 6 - Santos et. al. [3] - Fraction of cooperators vs. n for scale-free (black line) and regular (grey
line) graphs. In all cases z=4. (a) Fixed cost model. (b) Shared cost model.

Figure 6a shows the added benefit of social diversity to cooperation compared to
the previously discussed regular graphs. In this fixed cost method, cooperators
begin to dominate the population at smaller enhancement values.

However, there is no reason that an individual must contribute the same
amount to every game. Figure 6b shows the results of cooperative contributions
that depend on group size; the cost is ¢/(k+1). Here there is a large improvement
of cooperation compared to regular graphs and the fixed cost, scale-free graph.
In this case, the payoff of an individual is not only determined by their designation



as a cooperator or detractor, but also by their connectivity. Highly connected
individuals are natural advantage over the sparsely connected and it happens
that large hubs tend to be vulnerable to cooperator take over. Consider a
defector hub. Its payoff or fitness will increase more dramatically than the less
connected vertices around it. Hence, its neighbors will begin to convert to
detractors as well. This produces negative feedback as it leaves the hub in a sea
of detractors that contribute nothing to the game, decreasing the hub’s fithess
and leaving it vulnerable. Figure 7 illustrates this phenomenon for a simple, 2-
hub graph. In this way, cooperation can dominate quite quickly.
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Figure 7 - Santos et. al. [3] - Detractor hub take over. (a) The initial scenario, r is the value above
which the hub's fitness exceeds all of its neighbors. (b) Evolution of the hub.

Voluntary Participation

Another variation on the standard model allows players, known as loners,
to opt out of participation. Cooperators and detractors still engage in their games
while loners sit out and receive a flat benefit o, where o must be smaller than the
payoff of two cooperators, but larger than zero (the payoff of two detractors).
The loners produce a Red Queen effect, in which all three types of players
coexist in a dynamic equilibrium for certain values of r.2#IeIl’]

The loner alternative provides a balance natural balance to the system.
When there are many detractors in the population, it becomes more favorable to
opt out and become a loner. When detractors become scarce, cooperation is
more favorable, because there are no free riders to split the benefits with. And
when cooperators begin to dominate, more detractors will pop up to take
advantage and the cycle will repeat.

Figure 8 shows sample trajectories of the evolution of frequencies of
cooperators, defectors, and loners in the PGG that bear this out. Well-mixed
populations, shown in Figure 8a, relax to an all loner state rather than the all
detractor state seen earlier. Figure 8b shows RRG trajectories that could
potentially end on any of the three absorbing states, but tend to end in favor of
the loners. Figure 8c represents RSW networks and leads to an asymptotically



stable limit cycle, oscillating between the three strategies. The regular lattice
case is in Figure 8d and evolves toward a stationary state with all three strategies
coexisting. Figure 9 shows the change in the frequency with time between the
three strategies in the oscillatory limit of RSW networks. Notice the succession
of dominant strategies is as described; large numbers of cooperators cause an
increase in the number of detractors, more detractors paying cause more loners
to opt out, and the lack of PGG players bring out the cooperators once again.

a D b D

L C L C
Figure 8 - Hauert & Szab6 - Evolution of frequencies of loners (L), defectors (D), and cooperators (C).
(a)Well-mixed case. (b)RRG case. (c)RSW case. (d)Lattice case.
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Figure 9 - Hauert & Szab6 - Frequency of strategies changing in time on an RSW network.
Cooperators (dotted line), detractors (solid line), and loners (dashed line)

The value of r also has a significant effect on the relative dominance of
strategies. In the simple lattice case, there are three distinct regimes. For a
significantly small value of r, the cost will be too high to allow cooperators.
Therefore below a transition point, rp, loners will dominate as cooperators
disappear since opting has a larger payoff than detracting and receiving nothing.
At a significantly high benefit level, r;, cooperation will reign as in the compulsory
case since defection will not pay off and o is smaller than joint the cooperative
case. For re<r<r., the three strategies coexist. Figure 10 clearly shows these



three regimes and compares the compulsory case (A) to the voluntary case (B).
It also shows at in all cases the cooperative strategy provided the highest payoff.
This is somewhat surprising because to start we determined the best paying
option in the prisoner’s dilemma was to defect. Figure 11 shows the spatial
configuration in the rec<r<r. regime. Notice the distinct regions strategy regions
that appear to invade each other for dominance.
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Figure 10 - Hauert et. al. [6] — Average frequencies and payoff of each strategy plotted vs. r in the (A)
compulsory case and the (B) voluntary case. Cooperators (blue), Defectors (red), Loners (green),
Average payoff (black)
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Figure 11 - Hauert & Szab¢ [2] - Snapshot of the spatial configuration of cooperators (black),
defectors (white), and loners (grey) in a state of dynamic equilibrium



Conclusions

Public goods games present a social dilemma in that if all participants did
what is individually most beneficial, no one benefit at all. To examine the
problem, we assigned individuals randomly to be selfish detractors or altruistic
cooperators and ran simulations to see which emerged as the dominant or best
choice. It turned out that for large enough payoffs, the cooperators would
outnumber the detractors despite the initial conclusion that rational selfishness
was the safest bet. We then layered that with non-local spatial connections and
variation in vertex connectivity and found that heterogeneous graphs produced a
stronger and stronger tendency toward cooperation. And when participants were
allowed voluntary participation, this allowed for dynamic equilibriums that cycled
through the possible strategies and allowed cooperation to survive under
conditions of lower r.

These models are necessarily simplistic and cannot account for emotions
or similar human traits, but it is interesting that without changing the fundamental
rules of the game, we were able to see surprisingly decisive results that show a
dominance of cooperation. Just rearranging connections between players and
the choice or whether to play or sit out, significantly changed the results of the
game.
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