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Abstract: Cooperation is a fundamental aspect of biological systems. The evolution of complex organism, 
intelligence and complex societies all depend on cooperative behavior. Yet it is not clear how cooperation can 
evolve through natural selection. This essay will review game theoretical models of cooperation following a 
chronological approach with the final aim to explore their connection to physics.  

 

 

 

 

 

 

 



 
Motivation and Historical Background: 

Cooperation is a fundamental aspect of biological systems.  The emergence of mutli-cellular 
organisms from uni-cellular ones, collective behavior in groups of animals, human societies 
are just a few of the countless examples of complex biological systems that depend on 
cooperative interactions. Yet it is not clear how cooperation can emerge in the face of 
exploitation. Cooperators make an investment for the common good while exploiters reap of 
the benefit avoiding costs, thus based on the evolutionary principle that the fittest survives or 
simply on rational behavior to generate the highest payoff one would expect exploitation to be 
dominant and cooperation to be rare in nature. Therefore the problem of finding mechanisms 
the can lead to the evolution of cooperation through natural selection has remained a core 
problem of biology since Darwin.  

Darwin’s theory provides a mechanism for evolution (natural selection) but also is explicitly 
competitive (the survival of the fittest) and based on the struggle for existence. One of the first 
to criticize the prevailing blindly competitive interpretation of evolution and draw attention to 
cooperation in evolution was P. Kropotkin in his classic “Mutual Aid- A Factor of Evolution” 
first published in 1890[1]. Still, until the 1960’s collective phenomena drew little attention. 
Selection was mainly thought of as happening at the level of populations or even species. 
Cooperation was regarded as being adaptive. One of the first extensions of evolutionary 
theory accounting for cooperation and altruism was Hamilton’s kinship theory [2] which took 
the gene-eye’s view of evolution. This theory regarded the gene to be the fundamental unit of 
evolution that looks beyond its mortal bearer and seeks a potentially immortal set of its 
replicas to exist in a population related to it and explained altruism and cooperation as a 
mechanism for a gene to increase its frequency [3]. But still there are a lot of examples of 
cooperation, though rarely at the level of self sacrifice, between unrelated individuals and 
even different species in nature that this argument fails to explain.  

Following the pioneering paper by Trivers, Axelrod used game theory to explain the 
emergence of cooperation based on a well studied game the Prisoners Dilemma. Since then 
game theoretical approaches in evolution have attracted huge interests and have been widely 
used to explain mechanisms through which cooperation can emerge and be maintained in 
different settings. The game theoretical approach is based on the theory first formulated by 
Morgenstern and Von Neumann [4] in the 1940’s and applies methods previously developed 
in economics to evolutionary settings.  

Game theory offers a mathematical framework for addressing these questions. In this paper 
we are going to review the most promising results of this approach and try to establish a link 
to physics.  

 

 



Introduction 

The Prisoners Dilemma 

Game theoretical approaches to the evolution of cooperation are generally based on two 
player games called social dilemmas of which the most widely studied one is the prisoner’s 
dilemma (PD). In game theory games are generally represented using payoff matrices. The 
PD game is explained in the table below.  

 

Table 1. The payoff matrix of the PD game. Another 
commonly used terminology is in terms of cost (c) and 
benefit (b), c represents the cost to cooperate whereas b 
is the benefit obtained from cooperating. If a one of the 
players cooperates and the other deflects the deflector 
get all of the benefit. 

 

In the PD each player has two choices to cooperate C or to deflect D. If both cooperate each 
gets the payoff R (for reward), if one cooperates and the other deflects the cooperator gets the 
S (for sucker’s payoff) and the deflector get T (for temptation), and if both deflect each gets P 
(for punishment). The prisoners dilemma is characterized by the payoff structure T>R>P>S. 
Therefore no matter what the opponent does the rational choice is D, but if both players 
deflect they do worse than they could have by both cooperating. Hence the dilemma.  

The Iterated Prisoners Dilemma Game, Axelrod’s-Tournaments [5] 

If two individuals play the PD only once the only strategy that is a solution to the game is to 
deflect. This solution is stable in the sense of Nash equilibrium which can be defined as a 
state where none of the players can increase its gain by changing its strategy unilaterally. 
Therefore first extension used to study cooperation was the iterated prisoners dilemma in 
which players play a series of consecutive PD’s. This provides greater room for cooperation. 
To see which strategies are effective Axelrod organized a series of round-robin computer 
tournaments. The rules of the tournament were:1)interactions are between pairs of 
players,2)Each player had two choices and choices were made simultaneously, 3)Payoffs 
were fixed,4)At each move of the game each player had access to the history of the game up 
to that move. Then in later tournaments an additional “shadow of the future was introduced” 
which corresponds to the game having a certain probability that it will end at the next round.  

In these tournaments tit for tat (TFT) emerged as a clear winner against even quite 
sophisticated strategies. TFT consists of cooperating on the first move and then repeating the 
opponent’s previous move in the next round. The success of TFT was explained by it being 
the nice as it did not deflect first, provocable as it retaliates against deflection by deflection, 
forgiving as even after deflection it still was ready to respond to cooperation by cooperation 
and at last simple in the sense that it was easy to understand for the opponent. Once TFT was 



established as a model for cooperation based on reciprocity it was investigated further in 
ecological simulations based on population dynamics were in a initially mixed population of  
strategies the frequency of a strategy was changed proportional to its success in the previous 
round. In these, TFT also quickly became the most common strategy. The next question that 
arises is how a strategy like TFT can emerge and invade an initially uncooperative population 
and maintain itself in the face of reinvasion. People soon realized that this needed the 
population to have some kind of structure that assured cooperative players interacted more 
with themselves rather than with the average population. This corresponds to the formation of 
clusters.  

Axelrod’s TFT attracted a great deal of interest and subsequent research concentrated on 
changing the game environment and relaxing the assumptions on various aspects of the game. 
The effects of changing interactions, choices, payoffs, population structure, noise etc. were 
studied extensively.  The possibilities to extend the approach are numerous so we refer the 
reader to the review articles [6], [7] and [8] for further details. Instead we would like to 
concentrate on the connection between the evolutionary game theory approach to cooperation 
and physics. For this we will, first, take a look at the effects of spatial structure on the 
emergence of cooperation. Second, we will see how increasing the number of players and 
giving them the choice to stay out of the game changes the game dynamics.    

Mixed Populations and Replicator Dynamics 

In a mixed population with no structure (every player interacts with the others randomly with 
equal probability) the population dynamics is given by the replicator equations. In a 
population with a fraction ρ of cooperators and 1- ρ of deflectors the average payoff is 

 for cooperators and   for deflectors[9]. Then the 
rate of change of ρ is given by: 

 as PD >PC, ρ converges to zero with time. Thus this 
shows that in well mixed populations cooperators are doomed to extinction. To overcome this 
dilemma one has to consider structured populations where players only interact with a 
restricted neighborhood.   

PD on lattices  

The above problem was already pointed out by Axelrod in his original paper. But what really 
increased the interest in games with structured populations, sometimes called games on grids, 
was the work of Nowak and May in 1992 [10]. We refer the reader to [11] for other examples 
of games on grids and a very accessible and interactive online tutorial on evolutionary game 
theory.   

In the paper n2 players play PD on a two dimensional n by n lattice. Each payer is either 
always cooperates of deflects. At each round players play the PD with their neighbors. Then 
the player on each site is replaced by the highest scoring player in the neighborhood including 
the player itself. The PD has a payoff matrix with R=1, T=b (b>1), S=P=0. As the dynamics is 



discrete one can identify a range for the parameter b (1.8< b < 2.0) for which the outcome of 
the system is chaotic. In this range of parameter values the system exhibits a variety of 
fascinating spatial patterns. Moreover Nowak and May demonstrated that for a very large set 
of initial conditions the fraction of cooperators approaches to 12log2-8=0.318. Some of the 
patterns and the plot of cooperator frequencies from the article are shown below. 

 

 

PD on graphs and networks 



Complex networks are widely used as models of social and biological interactions. Therefore 
the relation between well known network topologies and the evolution of cooperation is of 
great interest.  In [12] a simple condition for the evolution of cooperation on networks and 
graphs is described in terms of cost to benefit ratio and the degree of the graph.  

In the model each player occupies a vertex on the graph. Cooperators help neighboring 
cooperators at a cost c, so if a cooperator has i cooperating neighbors the payoff he receives is 
bi-ck . On the other hand deflectors don’t help each other so they don’t have any costs but 
they can benefit from cooperators so the payoff a deflector receives when it has j cooperating 
neighbors is bj. The updating is through a “death-birth” mechanism that is at each round a 
player is chosen at random and replaced by one of his neighbors with a probability that 
depends on the fitness of each neighbor. The model assumes weak selection which is 
commonly used in models which means that the fitness is not directly proportional to the 
payoff but rather 1-w+wP, where P is the payoff and w is a small parameter w<<1. Then the 
fixation probability for a cooperator is calculated through computer simulations.  The fixation 
probability is the probability that a single cooperator turns an entire population from 
deflection to cooperation. If selection is neutral to cooperation the probability is 1/N (N being 
the size of the population). So if the fixation probability is greater the 1/N selection favors 
cooperation. The condition b/c>k (k=the average number of neighbors) for the evolution of 
cooperation initially derived using approximations is confirmed by the simulations. The 
results of the paper [12] are summarized in the figure below.  

 



A noticeable property of these results is their similarity with Hamilton’s rule of kin selection 
which states that selection can favor cooperation if rb>c. Where r is the degree of relatedness 
b is the benefit and c the cost. Thus one can identify 1/k with r.  

The Public Goods Game and Loners 

Another extension of the PD is to increase the number of players. This generalization is called 
the public goods game (PGG). In this game n players have the option to invest in a common 
pool which is then increased by a certain factor α and consequently divided equally among the 
participants regardless of their individual contribution. The case where everybody deflects is 
the only Nash equilibrium of the game. Therefore, as in the PD, the rational thing to do is to 
deflect but this means that the group will forego the possible benefit of the game ([7] box 2, 
[13]).  

One of the solutions offered to this dilemma is to make participation voluntary, creating 
another option L (for loner). Loners rely on a small but steady income σ. This results in rock-
paper-scissors type of hierarchy between the strategies. If everybody cooperates it pays off to 
deflect, if everybody deflects it is better to leave the game and if there are many loners the 
effective number of players decreases which favors cooperation.  As a result different 
strategies coexist with oscillating frequencies. The PGG has very rich dynamical properties 
and can lead to interesting phase transitions and the formation of rich spatiotemporal patterns.  

Physical Models-Phase Transitions 

After the spatial PD became popular there was an effort to apply methods of statistical and 
condensed matter physics to evolutionary game theory [14],[15],[16]. These models in 
general heavily depend on Monte Carlo simulations. The models consider players distributed 
on a certain lattice, and assign a payoff dependent transition probability between two 
strategies x and y that is given by: 

Eq. 1. 

 
Here P(x) and P(y) are the payoffs of the strategies in the previous round and τ is a parameter 
that represents the cost of changing strategies. K has an interpretation as a measure of the 
noise in the system that allows for irrational strategy changes which don’t maximize payoffs 
and also as measure of variations in the payoffs.  The payoffs are rescaled such that R=1, 
T=1+r, S=-r, and P=0, where r=c/(b-c) denotes the ratio of the costs of cooperation to the net 
benefits of cooperation. Note that this is differs from the cost to benefit ratio in the previous 
part. With these rules established cites are updated in an asynchronous fashion in a Monte 
Carlo simulation starting from random initial conditions. At each step a two neighboring cites 
are selected at random and x adopts the strategy y with the probability W described in Eq. 1. 
Then the stationary state is characterized by averaging over the sampling time. The Monte 
Carlo simulations allow the determination of critical exponents near the critical value rc which 
characterizes the extinction threshold for cooperators. Moreover using the critical exponent of 
the phase transition from the cooperative to the non-cooperative state on a square lattice can 
be classified to be in the directed percolation universality class [15].  



The figures below show the results of the simulations (τ=0) for a square lattice and various 
network topologies [15].  
 

 
 

 
 
Maybe we should mention the pair 
approximation at this point which is a widely 
applied analytical method in evolutionary game 
theory. The pair approximation is mean field 
theory based on tracking the frequency of pairs 
of strategies. But in general the pair 
approximation fails to predict the frequencies 
accurately and is mainly used as a tool to predict 
trends in strategy frequencies. We refer the 
interested reader to the appendix of [15] for 
further details.  
 
 
 

 
Another problem this method has been applied to is the voluntary PGG[16]. The extension of 
the model is straightforward. In this variant a PGG is played with nearest neighbors on a 
square lattice, i.e. a PPG with 5 players. The transition probability between strategies is again 
given by Eq.1. The payoffs for a round with nC +nD+ nL =5 cooperating, deflecting and loner 
players is given by: 
 

 
Where r is the multiplication factor of the common 
good and σ is the loner payoff.  



 This can also be generalized to lattices with arbitrary structure. Using the above described 
Monte Carlo method the frequencies of the strategies and their sample trajectories as a 

function of r can be calculated. The interesting 
aspect of the voluntary PGG is that it has two 
phase transitions corresponding to the 
disappearance of loners and cooperators. The 
critical exponents of these transitions can also 
be calculated. Moreover the cyclic rock-
paper-scissors hierarchy can lead to the 
formation of various patterns[18]. The figures 
7, 8 and 9 show some of these results from 
[16]. 

These results show that methods and concepts 
of statistical physics and condensed matter 
physics can be provide new insights to 
evolutionary game theory.  

 

 

 

 

 

 

 

 



 

Other Mechanisms-Mobility 

A recently discovered factor that can increase cooperation is mobility, which can be describe 
as the ability of players to migrate to locations with more promising conditions. A recently 
published article [17] demonstrates that a combination of mobility and imitation of successful 
strategies can result in dominantly cooperating population even in an initially purely 
deflecting one. Moreover mobility has been shown to promote bio-diversity in rock-paper-
scissors type cyclic competitions [18]. This article [18] also shows how such competition can 
lead to spiraling spatial patterns under suitable conditions.  

Some Empirical Examples 

 Predator inspection in fish: In many species of fish individuals separate from their shoal and 
approach predators for inspection. This behavior was studied extensively by Milinski in 
stickleback fish [19]. Using a system of mirrors, Milinski provided the fish approaching a live 
predator with either a simulated cooperating companion or a simulated defecting one. The 
results were consistent with tit for tat. Though, it is still argued whether the game is a PD or 
the less stringent version of the PD, the snowdrift game.   

Yeast : Certain kind of yeast produce an enzyme to hydrolyze sucrose, the enzyme  is used in 
common and thus there might exist cells which produce enzyme while some others profit 
from the common resource without contributing.  

Cooperation in humans: Actually humans are very promising subjects for the experimental 
study of cooperation. Because repeated and controlled experiments are possible. In general 
this is not the case for other social animals whose natural behavior can’t be observed under 
controlled conditions. Cooperative behavior in human has been the subject of extensive 
research [20]. Maybe the most relevant experiments to our discussion are public goods games. 
Interestingly human subjects don not follow rational reasoning in experimental public goods 
games and cooperate much more than expected [21]. This has led people to question the 
rationality assumptions in economics.  

For a more detailed list of empirical examples see [7] box 6. 

Conclusion 

Evolutionary game theory is a very diverse subject and a still very active field of research. 
There are a huge number of mechanisms which can promote cooperation, in this essay only a 
fraction of them were explored. The aim was to introduce the subject in a consistent way with 
the outlook to establish a link to physics.  

The theory of evolution is one of the most important intellectual achievements of mankind 
and dominates our way of thinking. The results explored in this essay show that even simple 
models of cooperation can lead to complex and diverse outcomes. This shows that 
mathematical models are crucial to advance our understanding of evolution.  
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