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Abstract

Rubber is composed of long stringlike polymer molecules, which are pinned
together at random points by crosslinks. As the density of crosslinks is in-
creased, the molecules get localized and the system undergoes a phase transi-
tion from a liquid to an amorphous solid state. The elastic properties of the
resulting solid are very different from those of metals, and are primarily due
to changes in the entropy of the chains upon stretching. This paper discusses
why rubber solidifies, and why the solid has the properties it does.
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1 Introduction

The substances known as rubber—natural rubber, gutta-percha, and various synthetic
compounds—are amorphous solids composed of long polymers.1 They vary somewhat
in chemical composition, melting point, and so on; however, they have the same elastic
properties, and for our purposes the distinctions between various kinds of rubber
are unimportant. Pure rubber is a viscous liquid; it solidifies upon vulcanization, a
chemical reaction between rubber and sulfur that produces cross-links between the
polymer chains. The most important elastic properties of vulcanized rubber are the
following: (1) it is much more extensible than crystalline solids, (2) it contracts when
heated, and gives up heat when stretched.

Rubber becomes less elastic as it is cooled, and at a certain temperature (around
−70◦C for vulcanized rubber) it undergoes a continuous phase transition into a typ-
ical brittle glass-like state as the rotational degrees of freedom of the joints freeze
out. (Confusingly, the literature sometimes refers to vulcanization as a kind of glass
transition. There are in fact two unrelated transitions—from liquid to rubber, upon
adding cross-links, which this paper is about; and from either liquid or rubber to a
non-rubbery glass, upon cooling, which will not be discussed further.) If it is suffi-
ciently pure, raw natural rubber (i.e. the viscous liquid) crystallizes when held at a
temperature below 0◦ C for a long time. Neither of the amorphous solid states can
crystallize, at least on the usual timescales, because the disorder in the positions of
the chains is frozen in.

The distinctive (and useful) part of the phase diagram is, of course, the vulcanized
solid. Its elastic properties are striking, and the physics behind them is quite different
from that behind ordinary elasticity. As one might expect in the spirit of Landau
theory, this goes together with the fact that the vulcanization transition is an unusual
sort of phase transition. Vulcanization lies at the intersection of three areas of sta-
tistical physics—polymers, disordered systems, and critical phenomena—and yields
important insights into all three. The basic questions a theory of vulcanization must
explain are why, and how, a long-chain liquid turns into an amorphous solid; why
crosslinking leads to rigidity; and how the usual ideas about spontaneous symmetry
breaking are to be applied to systems in which the solid state is amorphous.

Besides, vulcanization is not unique to rubber, but is part of a more general class
of transitions, known collectively as sol-gel or gelation transitions. Rubber is closely
related to a substance like gelatin, which also consists of long chainlike polymers that
crosslink to form an amorphous solid. The essential qualitative difference is that most
of these gels are dilute solutions of polymers, while liquid rubber is a polymer melt.
The field theoretic treatment of vulcanization extends straightforwardly to other gels;

1This paragraph and the next summarize Chapter 1 of Treloar’s book [1].
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however, their elastic properties are different from those of rubber, and will not be
considered here.

This paper is organized as follows: section 2 introduces relatively simple theories of
rubber elasticity (the phantom chain model) and of vulcanization (percolation), and
discusses their limitations; section 3 sketches how a Landau theory might be developed
and used to derive the theories of section 2; and section 4 discusses extensions of these
ideas to other problems in statistical physics. The reason for this arrangement is that
the naive theories are substantially easier on the intuition than the Landau theory.

2 The Intuitive Picture

2.1 Entropy and Elasticity

A lot of things about rubber can be explained qualitatively by considering the statis-
tical mechanics of a single chain. There are many more possible configurations with
the chain partially stretched than with it fully stretched, so the entropy of the chain
increases when it contracts; therefore, heating up the chain makes it contract (because
F = U − TS, and entropy wins at higher temperatures). Similarly, a stretched poly-
mer gives up heat because stretching reduces entropy, and the heat transfer Q = T∆S.
The restoring force can be calculated from one of various thermodynamic identities,
e.g. f/a = P = T (∂S/∂V )U . While the statistics of a chain can be calculated exactly,
the calculation simplifies if the chain is very far from being fully stretched, in which
case one assumes a gaussian distribution of chain extensions.

The phantom chain model of Kuhn [1] is a simple extension of this model to deal
with crosslinked networks of polymer chains. It treats each “free” segment between
cross-links as an independent polymer, and assumes that: (1) stresses do not change
the volume of the network (i.e. the bulk modulus is infinite, or at least much larger
than the shear modulus), (2) the cross-link locations deform affinely,2 (3) the cross-
link locations do not fluctuate, and (4) the entropy of the network is the sum of the
entropies of the segments, calculated as if they were free polymers [1].

To see why these assumptions are convenient, we sketch how one might compute
the free energy change upon deformation.3 Suppose we start with a unit cube of
rubber, and deform it so that it has sides λi such that λ1λ2λ3 = 1 (by assumption
1). Consider an individual polymer segment with one end at the origin and the
other at (x, y, z). The origin is fixed by the deformation, and the other end goes to
(λ1x, λ2y, λ3z) by assumption (4). The entropy of a chain in the gaussian approxima-

2This means that the shear is treated as a linear transformation. For example, a crosslink that’s
originally at the midpoint of a side moves to the midpoint of the deformed side.

3This is worked out in Chapter 3 of Treloar’s book [1].
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Figure 1: Theory vs. Treloar data for various kinds of stress [2]

tion is given by c−br2, where r is the end-to-end length; therefore, we know the change
in entropy of each chain, and we can add them all up by (4) to get the total entropy
change. This entails some assumptions about where the crosslinks are, but this depen-
dence drops out of the final answer, and we find that ∆S = −1

2
NkB(λ2

1 +λ2
2 +λ2

3− 3)
for the block of rubber. This gives us the free energy change upon deformation, which
is −T∆S because U is unaffected by the deformation. The restoring force, which is
a thermodynamic quantity, is easy to calculate from the free energy.

The experimental data cited in Chapter 4 of Ref. [1] are in good agreement
with this model for sufficiently small stresses. Treloar [1] compares the model with
experiment for all sorts of shears, compressions, stretches, etc.; a typical plot is shown
below. All the plots show two sorts of deviations—at intermediate stresses, explained
later in this paper, and at very large stresses, where the gaussian approximation for
individual chain statistics breaks down.

An essential feature of this model is that the chains are treated as non-interacting
except at the cross-links. The reliability of this assumption obviously depends on the
extent to which the chains get in one another’s way. An intuitive picture is to think
of a polymer as a self-avoiding random walk [3], in which case a polymer chain is a
branched self-avoiding random walk. The phantom chain model approximates this
as an ideal random walk; therefore it should be reliable when such an approximation
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is reliable—which it isn’t, in fewer than six dimensions [3]. In practice things are
not quite so bad because the two neglected effects—the self-avoiding character of the
polymer, which makes it spread out, and the repulsion from the other polymers, which
tends to squeeze it into as small a space as possible—cancel out. (This is not true
for dilute polymer gels, in which self-avoidance is much stronger than interactions.)
To include these effects would require a thoroughgoing field theoretic approach. Be-
fore we consider the field theoretic problem, though, let us discuss the vulcanization
transition using the more intuitive percolation model.

2.2 Percolation and its Disconents

When does vulcanization take place? A reasonable hypothesis would be that it hap-
pens when a network of crosslinks extends over an appreciable fraction of the system
size. We know it couldn’t happen earlier, because it would take an enmeshing net-
work to keep the crosslinked blobs of size V ′ � V from sliding about. (One can
construct special cases for which this isn’t true, but it usually is.) This hypothesis
reduces vulcanization to a case of percolation. A simpler case of percolation is the
following: suppose we have a two-dimensional N × N grid of sites, and draw αN2

lines at random between nearest-neighbor points. For small α the lines are sparse
and isolated; for α ≈ 1, each point on the grid is connected to every other by many
paths. At some critical value of α, there are on average just enough segments to
join up and form one large path through the system. The extension to the case of
rubber, in which the crosslinks form a network of chains that eventually encompasses
the system, is conceptually straightforward.

Percolation has been extensively studied as a kind of critical phenomenon; the
critical exponents are known, and agree with the direct renormalization group treat-
ment of rubber, and also with experiment [13, 14]. However, the percolation model
is unsatisfactory because it doesn’t help us study the thermal fluctuations that de-
termine rigidity and elasticity—and an account of elasticity is a sine qua non for
any theory of rubber. Besides, while it is plausible that a phase transition should
happen, a connected network isn’t necessarily rigid [5]. This leads us to consider a
different approach to the problem, which is to construct a Ginzburg-Landau theory
of rubber. There are obvious obstacles to this program: it isn’t obvious how one is
to construct an order parameter or a coarse-grained Hamiltonian, for a start. These
difficulties have been worked out; while the details are very technical, the following
section sketches the most important steps.
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3 A Landau Theory of Rubber

The practical objectives of developing a Landau theory of rubber are to show that
the liquid is unstable to an amorphous solid, to derive the theory of elasticity from
an effective equation for Goldstone modes, and to set up the renormalization group
treatment of the critical behavior of rubber. In addition to these goals, it would be
conceptually satisfying to understand how vulcanization relates to more elementary
phase transitions.

3.1 The Order Parameter

How does one construct an order parameter for rubber? The nearest conventional
ordered state is a crystal, which also breaks translational invariance, but unlike a
crystal, rubber doesn’t look ordered; there are, for instance, no Bragg peaks. The
intuitive picture behind defining the order parameter is as follows. Suppose you took
a snapshot of the microscopic system at a time t = 0 and then again at t → ∞,
and superimposed them. The strands in the liquid would have an entirely different
configuration; in the amorphous solid, they would all be in roughly the same place.
It is essential that our order parameter be sensitive to this distinction.

The order parameter generally used in the literature is:

Ω(kn) =
1

N

∑
i

∫ 1

0

ds〈exp(ik1 · ci(s))〉χ〈exp(ik2 · ci(s))〉χ . . . 〈exp(ikg · ci(s))〉χ

Here ci(s) is the (suitably normalized) position vector of the point at arclength s on
the ith polymer, and χ is a particular (random) distribution of crosslinks. In the liquid
state, each of the terms is zero on average because the strands are delocalized; in the
solid state, the strands fluctuate around well-defined mean positions, and therefore
the average is nonzero, e.g. for gaussian fluctuations,

〈exp(ik · x)〉 = eik·xe−k
2ξ2 6= 0.

The reason you need more than one k vector is that, in an amorphous system, eik·x

would average to zero because of destructive interference in the sum over chains. On
the other hand, suppose we had multiple k vectors. Then each term in the average
would be

ei(k1+k2)·xe−k
2ξ2 6= 0

and therefore, for k1 + k2 = 0 the average would be nonzero. Goldbart [9] elegantly
describes this as causing a a bump at k = 0 in the liquid state to turn into a fin of
k-vectors such that

∑
k = 0 in the amorphous solid.
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Figure 2: Improbable (“kaleidoscope eyes,” L) and probable (R) types of crosslinked
configurations. The crosslinks are shown as red dots.

To complete our definition of the order parameter, we must average it in the end
over all possible realizations of the crosslink positions. This is done using the Deam-
Edwards probability distribution [7, 8], which is based on the idea that the crosslinking
process glues together strands that happen to be nearby in the uncrosslinked liquid.
Therefore, the only crosslink distributions with statistical weight are those that (to
quote Ref. [7]) “are compatible with some reasonably probable configuration of the
uncrosslinked liquid.”

Finally, one should note that the cross-link positions are defined by arclength
along the crosslinked monomers (which are assumed to be distinguishable), and not
by spatial coordinates; thus, crosslinking does not explicitly break translational in-
variance.

3.2 The Coarse-Grained Hamiltonian

Deam and Edwards [8] wrote down a Hamiltonian that accounts for the chain-chain
interactions by a repulsive delta function pseudopotential that prevents the chains
from sitting on top of each other. This is not quite realistic, but contains as much of
the physics as we need. There are two parts to this Hamiltonian, called the Edwards
Hamiltonian: the first, to penalize the stretching of individual links and “softly”
enforce the integrity of each polymer, and the second to make the links avoid each
other.

HE
1 =

1

2

N∑
i=1

∫ 1

0

ds

∣∣∣∣dci(s)

ds

∣∣∣∣2 +
g

2

N∑
i,j=1

∫ 1

0

ds

∫ 1

0

ds′δ(ci(s)− cj(s
′))
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Formally, the next step would be to compute the partition function Z subject to
a specific realization of the crosslink positions, calculate the free energy, and then
average the free energy over the Deam-Edwards crosslink probability distribution.4

What we would really like, though, is to have a continuum representation of the
Hamiltonian in terms of the order parameter. This is achieved through the replica
trick [6], an odd but important technique in statistical mechanics. The replica trick
relies on the identity

logZ = lim
n→0

Zn − 1

n

applied to the partition function. The idea is that Zn, the partition function of n
identical copies of the system, is easier to average than logZ. If you were wondering
what determines the n (the number of independent k vectors) in the order parameter,
this is where it comes from. Zn = exp(−Sn), and Sn can be written in terms of the
n component piece of the order parameter. The expression here is derived in [9] from
symmetry principles; we merely state the result:

Sn = N
∑

k̂∈HRS

(−aτ + b|k̂|2/2)|Ω(k̂)|2 −Ng
∑

k̂i∈HRS

Ω(k̂1)Ω(k̂2)Ω(k̂3)δk̂1+k̂2+k̂3
.

(The HRS, or higher replica sector, condition means that we need multiple k vectors
to detect the amorphous solid, as discussed above. For our purposes, let a, τ and b
be phenomenological parameters.) So far, we have not proved that the uniform liquid
state, with Ω = 0, is ever unstable; the theory hasn’t yet predicted that vulcanization
happens. One straightforward if tedious way to get at the transition is to apply a
technique like linear stability analysis to the liquid state in the n-replica theory, locate
the instability, and appropriately take the n→ 0 limit; see Ref. [6] for details.

3.3 Ergodicity and Topology

It is expected that the breaking of translational invariance should lead to breaking of
ergodicity. In the case of rubber, there is a further breaking of ergodicity due to the
fact that the strands cannot go through each other [4, 5]. Even with the same crosslink
distribution, the two configurations in the figure belong to entirely separate parts of
phase space. This feature is common to the liquid and the solid, and has nothing to
do with vulcanization as such. It does establish, however, that if the crosslinks are
permanent then the vulcanized solid really is an equilibrium amorphous state. Given
a realization of crosslink locations and a region of phase space fixed by, say, the center

4It won’t do to average the partition function over the disorder, because that would imply that
the system can explore disorder space, which it can’t because the crosslinks are permanent.
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Figure 3: Two configurations with the same crosslinks but different topology.
Adapted from [6].

of mass coordinate, there will be a minimum-free-energy configuration, perhaps with
additional ordering; however, one might be permanently stuck in a bad neighborhood
of configuration space from which this configuration is inaccessible.

It is clearly impractical to try to solve the Landau theory for a particular topol-
ogy; in fact, there are no satisfactory techniques for dealing with the topological
partitioning of phase space, and the literature [7] typically treats the different topo-
logical sectors of configuration space as separated by finite energy barriers, i.e. as
analogous to topological defects. The consistency of this approach is questionable: it
assumes that the topological constraints can relax on timescales where the crosslinks
are permanent, which is not generally true because the polymers must break to go
through each other.

3.4 Goldstone Modes

Now that we have a coarse-grained Hamiltonian, we should be able to find the Gold-
stone modes that determine rigidity. Since it is translational symmetry that is broken,
we know that these will be phonon modes, and that the corresponding rigidities will
be shear moduli. The detailed derivation is worked out in Ref. [11]. One possible
strategy is to note that the order parameter is invariant under uniform translations
of all the positions; therefore, since

〈eik·x〉 = eik·xe−k
2ξ2 ,

we could perform a displacement x 7→ x + v(x), where v is a smooth slowly-varying
function, and calculate an effective Hamiltonian for the elastic degrees of freedom.
The upshot is that you can calculate the shear modulus, µn, in the n-replica theory
and take n→ 0 to get a formula for the shear modulus.
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Deriving the phantom chain model from this theory takes a fair amount of work;
see Ref. [11]. The strategy is to calculate the free energy increase upon deformation.
One minimizes the Landau free energy, i.e. solves for δL/δΩ = 0, subject to the
constraint that the boundary of the system is deformed. Once this is done, the free
energy change can be calculated, and the elastic properties can be deduced as before.

3.5 An Improved Theory of Elasticity

Related to this is the question of how rubber responds to a large static deformation.
The phantom chain model predictions have been known to disagree with experiment
for a fairly long time [1], but the mechanism was only recently explained [12]. The
experimental result is that instead of being constant, the rigidity µ varies nonmono-
tonically with the strain.5 The key to this behavior is in a fact that we didn’t put
into our model: that rubber is locally incompressible. In general, since each phonon
mode carries kBT of energy, and the phonon density of states is 1/ξd where ξ is
the average distance between crosslinks, there is a contribution of order kBT/ξ

d to
the free energy from the phonons [12]. This affects the elastic properties because,
for a locally incompressible system, the spectrum of phonon fluctuations is altered
by large shear deformations. (This is because the crosslinks can’t fluctuate as they
please; they have to stay clear of all the other stuff. The effect is nonlinear and hard
to describe intuitively.) The resulting change in free energy was taken into account
using some fancy mathematics by Xing et al. [12], who found that the modified free
energy density for a uniaxial stretch is

f =
1

2
µ0(λ

2 + 2λ−1) + µ1

[
tanh−1

√
1− λ−3

√
1− λ−3

− log λ

]
.

The stress-strain relation that follows from this equation is in excellent agreement
with experiment.

3.6 Experiments on the Vulcanization Transition

While most of the experiments on rubber elasticity were done in the 1940s, studies of
the vulcanization transition and its analogues in polymer gels have been quite active.
Since, by an argument of de Gennes [3], the critical region in rubber is expected to be
relatively small, most of these experiments have been done in dissolved polymer gels.6

5The genteel term for “strain-dependent rigidity” is “Mooney stress.”
6This is related to the argument in Section 2 that the effects of self-avoidance and interactions

cancel out. In general, mean field theory works better for rubber than for gels. This fact is explicitly
derived in Ref. [13] from the renormalization group.
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Figure 4: Theory vs. experiment for the strain-dependent rigidity. The horizontal
line is the phantom chain model prediction. The dashed line fits the revised theory
to the data. The other lines are interpolations for finite bulk moduli. [12]

If the liquid state is sufficiently viscous (as in some biological macromolecules) a very
direct way to investigate critical properties is to measure the viscous/elastic response
near the transition directly using a rheometer. Ref. [15] follows this procedure,
and finds that the shear viscosity diverges with concentration of solute, with critical
exponents that are consistent with percolation.

A more sophisticated technique is to inject a colored or fluorescent dye into the
solution. Since the fluorescent properties of the dye molecules are strongly affected
by the number of crosslinks [14], one can use the fluorescence yield to measure how
far one is from the transition, and compare it against a transport coefficient (in this
case, the speed of sound) that exhibits critical behavior.

4 Summary and Further Directions

We set out to understand how our ideas about spontaneous symmetry breaking could
be applied to an amorphous solid like rubber. With the help of the replica trick, we
were able to write down a coarse-grained Hamiltonian and an order parameter, which
we (i.e. the references) then used to predict (1) that the liquid state is unstable to an
amorphous solid state, (2) that the amorphous solid has incompressible phonon modes
that determine its elastic properties, and (3) that the critical behavior is the same
as that predicted by the percolation model. Essentially, the field theoretic treatment
justifies, as limiting cases, both the phantom chain model and the percolation model,
which are more intuitive ways to think about rubber, and gives us a systematic way
to go beyond these limits.
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Figure 5: Critical exponent a of the ultrasound velocity for gelatin and tetram-
ethoxysilane (TMOS) at various concentrations. Percolation predicts a = 0.625 [14].

While there are still aspects that need to be tested (e.g. some of the predictions
of Ref. [12]), it seems clear that the theory described in this paper is substantially
correct. One of the remaining weaknesses is the lack of any systematic procedure for
dealing with the topological issues. The difficulties here seem related to some of the
issues in loop models of topological quantum computation [17], and progress there
might apply to rubber (or vice versa). Another difficulty is that our Landau theory
works well only near the transition, and is less reliable deep in the solid state; there is
still scope for an effective theory of the solid state [7]. Possible extensions proposed
in Ref. [9] are to see if there are analogues to vulcanization in the theory of quantum
phase transitions (quantum rubbers), and to study dynamic critical phenomena at the
vulcanization transition [16]. An intriguing question along these lines is whether one
can crosslink vortices in superfluid helium to produce a vortex rubber. In addition to
these direct extensions, the general treatment of rigidity in polymer networks might
apply to at least some of the myriad network problems in communications, engineer-
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ing, geology, ecology etc.—particularly those with fluctuating degrees of freedom that
cannot be treated by percolative methods.
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