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Abstract

A spin glass describes a system of spins on a lattice (or a crystal) where the in-
teractions are frustrated as well as disordered. Studying such systems presents many
theoretical difficulties, but over the last twenty years considerable advances have been
made. In this paper I will discuss some of the experimental results that motivated
theorists and some of the concepts that were developed to deal with the physics of dis-
ordered system. Specifically, the Edwards-Anderson model and their formulation the
the relevant order parameters will be discussed as well as the Sherrington-Kirkpatrick
model which gave a mean field, exactly soluble version of Edwards-Anderson model. I
will also talk about Parisi’s solution and the non-trivial ergodicity breaking that occurs
in spin glasses. Spin glasses and the physics of disordered systems have found a wide
range of applicability and it is the goal to review some of the experimental features
and theoretical concepts developed.
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1 Introduction

Spin glasses first came to the attention of physicists in the mid- to late 1960’s through the
study of magnetic impurities in non-magnetic materials. The name was first coined by Bryan
Coles when he was studying magnetic ions Mn or Fe on non-magnetic host metals Cu or
Au. The term ”glass” was used to indicate two observed facts about these systems: (1) The
magnetic ions tended to ”freeze in” but without any particular ordering (so it was like an
amorphous solid such as glass) and (2) The low temperature specific heat was observed to
be linear in T, a feature that is present in conventional glasses.

In the early 1970’s that more accurate experiments were able to measure a cusp in the
magnetic susceptibility when external magnetic fields were kept small. This had to be a
phase transition of some sort, and it was Edwards and Anderson who produced a paper
in 1975 that introduced a convenient and simple physical picture. They established that
the two important factors leading to spin glass behavior were: (1) Competition between
the different interactions amongst the magnetic moments so that no single configuration is
uniquely favored (frustration) and (2) The interactions must be at least partially random
(disordered).

From this basic frame work, a number of theoretical questions arise: (1) The ”ordered”
phase is characterized by an order parameter. What is the order parameter for spin glasses?
(2) The ”ordered” phase generally has a lower symmetry than the corresponding disordered
phase. What is the broken symmetry? (3) How does one do statistical mechanics for a
system with structural disorder? (4) If the relaxation time for the system is long, then the
system is inherently non-ergodic. What is the proper way to treat ergodicity breaking?

In this brief report, I will review some of the experimental results that were found and how
this motivated Edwards and Anderson to propose their model for spin glasses. I will also
discuss the Sherrington-Kirkpartick model, an exactly soluble mean field simplification of
the Edwards-Anderson model which led to insights about ergodicity and replica symmetry
breaking. Since the mid-1970’s many of these techniques presented have made their way
into other fields. It is a goal of this report to give a general overview of these methods and
motivations.

2 Experimental Results

In this section, I will briefly review these experimental results and their implications for
theory. There are essentially three experimental results that is characteristic of all spin
glasses (1) Frozen in disorder, (2) lack of periodic long range order and (3) remanence
magnetic fields. There are other effects such as hysteresis, but these depended strongly on
the type of material [6].
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2.1 Frozen-in Disorder

The fact that there is no long range order but ”frozen-in” disorder (i.e. the system relaxes to a
disordered state below some temperature Tf ) and no long range order means that one should
expect the average magnetization ~m = 1

N

∑
i ~mi to be zero, but the local magnetization,

mi = 〈si〉 should be non-zero.

Now, anti-ferromagnetic ordering also has a vanishing average magnetization, but this case
can be ruled out through neutron scattering experiments which should find Bragg peaks
if there was a periodic spin structure. But in a large system, how does one measure the
susceptibility of a single site?

The answer is that the the spontaneous local magnetization will decrease the expected sus-
ceptibility from the usual Curie-Weiss law. To see this, recall that the single site susceptibility
is defined as the amount of magnetization induced at a site, i by an external magnetic field
acting only at the site. Call this field, hi. The local susceptibility is defined as:

χii =
∂mi

∂hi

(1)

Now, the fluctuation-correlation theorem relates the susceptibility to the correlation func-
tions by:

kBTχii = 〈(Si − 〈Si〉)2〉 = 1−m2
i (2)

In obtaining the last equality, I used that S2
i = 1. Now, averaging over all sites relates this

quantity to the average susceptibility that one would calculate in say the Ising model. One
finds:

χloc =
1

N

∑
i

χii =
1− 1

N

∑
i m

2
i

kBT
(3)

Now, the Curie-Weiss law says that χ ∝ 1
T

and so comparing with the above expression, one
finds that the average susceptibility deviates from the standard 1/T behavior in a way that
depends on the local spontaneous magnetization. In general, it is difficult experimentally to
apply a magnetic field at a single site. Rather, people measure the uniform susceptibility.
For an approxmately Gaussian random distribution of spin interactions, it can be shown that
the off diagonal elements are vanishingly small and the dominant contribution is from the
local magnetization, χ ∼ χloc [6]. If there is a singular behavior in χloc, then there should
also be a singular behvaior in χ. This singularity can be seen in Figure 1. Now the local
spontaneous magnetization explains the cusp in the susceptibility curves, but one can see
that the critical temperature Tf depends on the frequency of the applied magnetic field. It
turns out that this cusp like behavior occurs for a wide frequency range (see Figure 2). This
is in contrast to a conventional magnetic where there is no significant frequency dependence
below the characteristic microscopic frequencies of the system.
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Figure 1: Singularity in the magnetic susceptibility. The data points are for various frequen-
cies of the magnetic field [10]

Figure 2: Differeing frequencies give different critical temperatures [4].
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2.2 Remanence Effects Below Tf

Another important feature of all spin glasses is the onset of remanence effects below Tf .
As shown in the figure, the behavior of the susceptibility depends strongly on how the
experiment is done. Applying the field and then cooling the sample in this field (”field
cooling”) results in a larger susceptibility while cooling the sample down in zero field (”zero
field cooling”) and then applying the magnetic field results in a lower susceptibility. More
importantly, they found experimentally that the effect was reversible, meaning they were
able to go up in down in temperature and measure the susceptibility and obtain the same
value (the susceptibility is independent of history). This is indicated in by the arrows in
Figure 3.

Figure 3: The remanence effects. The behavior of the low temperature susceptibility depends
on how one cools the material [11]

2.3 Experimental Conclusions

From these types of experiments, physicists at the time came to conclusion that these systems
must have many metastable states below Tf . There are many roughly equal spin configu-
rations which the system can pick out and the exact one depends on the details of the
experiment like the frequency of the applied magnetic field, the speed at which the sample
is cooled or whether or not the sample is cooled in a magnetic field. The picture phase space
that people had in mind in the mid-1970’s was one where there were many possible ground
states separated by finite potential wells.
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3 Edwards-Anderson Spin Glass

Because spin glasses appear in such a wide variety of different materials, it suggested that
there might be a simple model that could describe a spin glass material if the essential
features were somehow modeled. Edwards and Anderson surmised correctly that what was
essential for spin glass phenomena was (1) competing interactions (frustration) and (2) ran-
domness [15].

The phenomenological model they developed was one based on experiments. They observed
that there was a lack of long range order and thus chose the interactions to be Gaussian ran-
dom with mean zero for simplicity and created a random bond model where the interactions
between spins are chosen probabilistically.

H = −1

2

∑
〈i,j〉

Jij
~Si · ~Sj (4)

Here Jij represents the interaction between neighboring sites i, j and is a random variable
with a Gaussian distribution. In addition to this, they postulated that the frequency depen-
dence and the remanence magnetic fields could be explained by the presence of many energy
minima. When the system cools down past Tf the spins notice that there is a minimum
in the energy and settle down to this state. This is a fairly simple physical picture, but it
presents several difficulties. To make any predictions, Edwards and Anderson had to intro-
duce new techniques to deal with random interactions and characterize an order parameter
without long range order [15].

3.1 Random Interactions: Annealed vs. Quenched Disorder and
Self Averaging

In the systems of interest, one placed magnetic impurities onto a substrate that is in general
non-magnetic and it is these impurities which create the random and frustrated interactions.
These random variables themselves may fluctuate with time. For instance, the atoms may
take some time to diffuse through the material on a time scale τdis [3].

The other important time scale is the observation time, τexp. When τexp � τdis the random
variables come to thermal equilibrium first. In the partition function, one can replace the
random interaction by the average equilibrium value. This is called annealed disorder. The
free energy is then

F = −kBT log ([Z]av)

The other extreme is when τdis � τexp. This is called quenced disorder and is different from
annealed disorder in that the impurities have not reached their equilibrium configurations.
This situation is like that of salad dressing. If one shakes the dressing, on a short enough time
scale, the oil drops will be distributed through the vinegar with some probability distribution,
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but on a long enough time scale, the oil and vinegar will separate. Clearly the statistical
distribution used depends on the time scale [14].

The question is, what quantity is close to the equilibrium value and not fluctuating wildly?
It turns out that the quantity is the free energy. Let the energy of each subsystem by E +δE
where δE is the sample-to-sample fluctuation. Putting all the samples together, the energy
is extensive and so scales as N and one expects the fluctuations to scale as

√
N . The relative

fluctuation should then scale as δE/E ∼ N−1/2 which goes to zero as the system size goes to
infinity. Such a quantity is called self averaging. Implicit in this is that the interactions are
short ranged. Since the fluctuations go to zero, one can make a prediction for E and thus a
theory should be centered around such a quantity [6].

In summary, one finds that for spin glasses, average over interactions can not be done;
magnetic impurities are not in equilibrium. Instead, if one considers a quantity (generally
extensive) that is self averaging then one can calculate the average of such a quantity over
many samples. For a large enough system, the fluctuations in this quantity will then be
small and a predictive theory can be made.The relevant self-averaging quantity is the free
energy and one averages the free energy over many samples [3].

[F ]av = −kBT [log(Z)]av (5)

3.2 The Replica Trick

The trick is based on the identity log(Z) = limn→0
Zn−1

n
which comes from noting the Taylor

expansion of Zn ∼ 1 + n log(Z) + . . . . about n ∼ 0. Hence,

[F ]av = −kBT [log(Z)] = lim
n→0

[Zn]av − 1

n
(6)

The average now is over a partition function which has been replicated n-times. This is
much easier to compute than averaging a logarithm. If the interactions have a Gaussian
distribution, evaluating [·]av amounts to doing Gaussian integrals.

One can then perform [·]av by averaging over the interactions as in the annealed case. The
different replicas do not interact with each other and hence, Zn is easily computed. The
Hamiltonian is simply a sum of Hamiltonians for each individual copy.

Hea{Sα} = −1

2

∑
ij

JijS
α
i Sα

j −H
∑

i

Sa,z
i (7)

Now, it is clear that such a Hamiltonian is symmetric with interchanging any of the replicas
with each other, but it is not clear that this symmetry remains intact as one continues to
n ∼ 0. This is the source of replica symmetry breaking which I discuss later.
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3.3 New Order Parameters

The first important to task is to find an order parameter which will allow one to distinguish
between the two different states. Edwards and Anderson first proposed an order parameter
that looked at the order parameter as something dynamical. Then, they formulate this in
terms of thermodynamic variables by thinking of different time slices as replicas.

The first type of order parameter is much more physical. Edwards and Anderson considered
the situation where an experimenter measures a spin at one moment and after an infinitely
long time, measures the spin again. If there is a local spontaneous magnetization, then this
quantity will be non zero [3, 5, 6].

qea = lim
τ→∞

lim
N→∞

q(τ) ; q(τ) =
1

N

∑
i

[〈Si(0) · Si(τ)〉t]av (8)

This can be assessed probabilistically [5]. They find an order parameter that has the right
singularity structure, namely it has different behavior above and below Tf . This is encourag-
ing, but the problem with this order parameter is that it is dynamical and its computation
in a microscopic theory is hard; it does not use the machinery of equilibrium statistical
mechanics [15].

Instead they note that the above situation is similar to the replica theory only that the copies
occur in time. Within the replica theory formulation of the free energy, they propose the
order parameter (the replica overlap)

qab = 〈Sa
i Sb

i 〉 a 6= b a, b replica indices (9)

If one passes through the transition, the spin at i will be frozen in and thus q will be non-zero.
Above the transition, the spins in different replicas (subsystems) are uncorrelated and so q
will vanish. Utilizing the quenched free energy, they are able to calculate the susceptibility
that has the cusp behavior seen in experiment [5]. χc is the Curie-Weiss law, χc ∼ 1/T .

χ = χc

[
1−

(
Tc

T

)2
]

(10)

In Edwards-Anderson’s paper they essentially assumed that these two were the same, namely,
the replica overlap qab is given by a replica independent order parameter qEA. It will be seen
later that this is not the case.

4 Sherrington-Kirkpatrick Model: Mean Field Spin

Glass

The results of the Edwards-Anderson calculation were certainly promising. With random
interactions and the replica trick, one was able to predict a cusp behavior in the susceptibility
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but to arrive at this result, a number of approximations had to be made to make computing
the integrals tractable. Sherrington and Kirkpatrick were motivated by this to develop a
theory in which an exact solution is possible [15]. To do this, they drew analogies to the
mean field Ising model.

The Ising model is soluble in the thermodynamic limit if (1) The spins interact equally with
one another (they interact with a mean field at each location, hence the interactions are
long ranged ) and (2) the exchange scales inversely with the number of spins (to have a finite
energy when the thermodynamic limit is taken) [6]. This lead to the Sherrington-Kirkpatrick
Hamiltonian which has a Hamiltonian similar to the EA model but whose interactions come
from a distribution with a mean and variance that scales inversely with the number of spins.

H = −
∑
ij

JijSiSj − h
∑

i

Si P (Jij) =
1√
2πσ

e−(Jij−µ)2/(2σ2

(11)

where P (Jij) is the distribution from which the interactions are drawn from and µ = J0/N
and σ2 = J2/N constants. They solve this by using the replica trick and replicating the
Hamiltonian n times. By the Hubbard-Stratantovich (integrating the Gaussian backwards)
they obtain a quadratic model in which the exponential terms are proportional to N . Now,
if one is allowed to exchanged the thermodynamic limit with the replica limit n → 0, then
the exponential is sharply peaked and a steepest descent approximation can be done [6]. It
is believed that this order of limits is not really allowed and is the source of the error in the
SK solution [1].

In this way, they obtain an effective partition function which they solve via the saddle point
methods at the expense of introducing self-consistency equations that have to be solved.
They then choose the simplest possible ansatz which is the EA ansatz, namely,

yab = lim
n→0

[〈SaSb〉]av = qab = qea xa = lim
n→0

[〈Sa〉]av = m for all a (12)

Essentially, they guess the solution that yab and xa are independent of their replica indices.
This yielded the cusp in the susceptibility for a set of external parameters. However, Almeida
and Thouless showed that this solution is in fact is an unstable point for low temperatures
and in fact leads a negative entropy solution which is unphysical [1].

4.1 Non-trivial Ergodicity Breaking

The SK mean field solution gives an unphysical result and the naturally one wants to know
why? It turns out that the answer lies in the ansatz used. Typically, when one takes the
thermodynamic limit one is assuming that the energy barrier is approximately proportional
the length of the boundary Ld−1. The probability of jumping to another valley is simply
given by the Arrhenius relation. In the limit as N → ∞, one expects that the activation
energy to jump into a different microstate is infinitely large and so the system is trapped in
a potential minimum [6].
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For the case of spin glasses, the situation is much more complicated. For a spin glass it turns
out that there are many metastable states (see Figure 4). By taking the thermodynamics
limit, one restricts the system to a valley but the valley has many metastable states.Thus,
there are contributions to the quantity qab that come from the probability of being in different
sub-valleys. [6].

Contrast this with the definition of qEA. In qEA one asks the question of what is the proba-
bility that a spin is in a state s at time t and at a later time t+τ . In other words, the system
picks a well with probability Pa and a spin configuration s in that well. In qab it is possible to
have replica a in one sub-valley and replica b in another sub-valley. The system picks a well
with probability Pa with some spin configuration sa and another well with probability Pb

with some spin configuration sb. Thus a joint probability of the two wells enters. Notice too
that this can not be cured by a symmetry breaking field h. This only breaks the degeneracy
s → −s but not the degeneracy in possible metastable states. The two clearly are not be
the same in the case of metastable sub-valleys [3].

Figure 4: Cartoon phase space of a spin glass. There are many degenerate minima possible
whose activation energy does not scale with the system size. The thermodynamic limit
does not break ergodicity in the usual sense (restricting to a single phase space coordinate).
Rather it breaks ergodicity down to a subset of metastable phase space coordinates. [3]

4.2 The Parisi Solution

Parisi had the insight that the thermodynamic limit placed one in a valley, but that this
valley had many degenerate minima. One should not have a single order parameter, but
rather a set (potentially infinite) of order parameters. He viewed qab the replica overlap as
an n×n matrix with zeros on the diagonal (or 1, it is simply a constant factor) [13,15]. Near
the critical temperature, he then applied Landau theory to the problem. The symmetry
of the problem is the replica symmetry: changing the labelling of the replicas should not
changed the replicated free energy. [13]. Expanding in powers of the order parameter, he
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obtained the effective free energy

F [q] = lim
n→0

1

2n

[
θtr

(
q2

)
− 1

3
tr

(
q3

)
− 1

6

∑
ab

(qab)4

]
(13)

Here, the trace preserves the replica symmetry (which amounts to permuting indices). There
are many possible fourth order terms, but the one Parisi choose to keep is the one shown
above [13]. Other terms would only add small corrections [6, 16].

Parisi then considered dividing up this matrix into an integral number of smaller intervals
and assigns variational parameters qi as follows: take the n× n and assign q0 to every entry
of the matrix. Now divide this matrix into n/m1 · n/m1 number of sub blocks of size m1.
In the off diagonal blocks nothing is changed while in the diagonal blocks all the q0’s are
changed to q1’s. One then does this for each of the sub blocks along the diagonal (see Figure
5). Each of the qi then is a possible order parameter for the system. The system qα,β can be

Figure 5: Matrix representation of the Parisi ansatz. The blocks represent the value of the
order parameter [15]

in a block with values q0 or in a block with value q1. In this way, Parisi achieved an infinite
set of order parameters. Replica symmetry breaking, then, is the inequivalence of each of
these values [3, 6].

The Parisi solution for the order parameter matrix can also be written down as a tree (see
Figure 6). The circles represent the n replicas, the vertical distance represents the value of
q and qab is where the branches from a, b meet [3]. In the limit where this is done an infinite
number of times, one has mi → x, x ∈ (0, 1), and one can then think of the qi as q(x) a
function. For different parameters of phase space, Parisi found stable solutions [13].

1. q(x) = q = qEA ; replica symmetric solution

2. q(x) = q0 for 0 ≤≤ x1 and q(x) = q1 for x2 ≤ x ≤ 1 and monotonically increasing
between x1 and x2. ; replica symmetry breaking solution
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Figure 6: Replica symmetry breaking scheme. The circles represent the n replicas. To find
the order parameter qab simply follow the branches of the tree from a and b until they meet.
The intersection is the value of their order parameter. [3]

For a certain temperature, Parisi found a solution where all the order parameters are the
same. This is the replica symmetric solution that Sherrington-Kirkpatrick and Edwards-
Anderson found (qab = qEA). Below the critical temperature, the other solution appears
and one finds that all the order parameters do not have to be the same. This corresponds
to replica symmetry breaking. [3, 6, 15]. With his anstaz, Parisi was able to obtain the SK
solution for a certain set of parameters (q(x) = qEA) and at the same extend the result to
the low temperature regime where the SK ansatz gave unphysical results (negative entropy).
The picture for a spin glass is that above the critical temperature the valleys in phase space
do not have a wealth of degenerate minima. Hence the SK solution is valid. Below a critical
temperature, there are many degenerate minima and the SK solution is no longer valid; there
are many degenerate minima. This is the source of glassy behavior below Tf such as the
remanence effects and frequency dependence found in experiment.

5 Future Directions

Thus far only the mean field model has been discussed. It is clearly not a realistic situation,
and as with the Ising model, one would like to move away from mean field theory. Exactly
how to do this is still unknown and is the main research thrust in spin glass research. Indeed,
it is still a mystery as to whether or not Parisi’s solution is an artifact of the mean field replica
approach. Fisher and Huse have proposed a droplet picture based on percolating spins from
droplets of aligned spins [7,8]. In this case there is no replica symmetry breaking solution, but
it is still open to debate whether their methods are valid. Personally the interesting questions
are SLE (percolation) descriptions of spin glasses. Several recent works have explored the
use of SLE’s in solving the short range spin glass problem [2,9].

However, physicists are not boring enough to study the same problem for thirty years.
Disordered systems and systems with competing interactions occur in many different areas
of science and it is no surprise that many of the techniques and ideas outlined here have
appeared in other fields. People have applied the study of spin glasses to optimization
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problems in mathematics, neural networks, immunology and even error correcting codes [12].
In either case, spin glasses are still an interesting theoretical problem.
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