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BOSE HUBBARD MODEL

The hubbard model was originally proposed to describe the motion of electrons in metals
with the motivation of understanding their magnetic properties. Specific aim was to yield
both band like and localized electron levels. This original model remains a very active
subject of research today.
We examine a simpler bose hubbard model. The elementary degrees of freedom are spin
zero bosons, which take the place of spin-1/2 electrons in the original model. Importance
of this model lies in providing one of the simplest realizations of quantum phase
transition.

Let us define the degrees of freedom of the model of interest. In d dimensions we have a
lattice of M sites and we introduce the N boson operators each of which annihilates boson
on the site i, ic . These operators obey the usual bosonic commutation relationship. We

also introduce the boson number operator i
t

ii ccn = , which counts the number of bosons
on each site. The number of bosons on each site can be arbitrary.

The Hamiltonian for the bose hubbard model (BHM) is
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The first term allows hopping of bosons from site to site (nearest neighbor pairs).

The second term represents the chemical potential of the bosons. Its is the same as the
energy offset due to the harmonic trapping in case of an optical lattice. A change in the
value of iµ  changes the number of bosons at that site.

The third term represents the simplest possible repulsive (U>0) interaction between
bosons. Just the onsite repulsion is taking into account. Off-site and longer range
repulsion is important in realistic systems.

Hamiltonian having the first term in the absence of the third can be shown to lead to the
many body condensate wave function with long range phase coherence. It’s analogous to
the conventional band spectrum and one electron Bloch levels in which each electron is
distributed throughout the entire lattice (original hubbard model). On the other hand just
the third term without the first in the Hamiltonian leads to tighter localization of the wave
functions at the lattice sites and it can be shown that the ground state energy is minimized
when each lattice is filled with the same (integer) number of bosons.  Local magnetic
moments in case of the original hubbard model.



To get exact results when both the terms are present in the Hamiltonian is a difficult task.
Next section shows some of the theoretical results in this case.

THEORETICAL METHODS

Analytical

As discussed above the system we are dealing with covers regimes which show very
different qualitative behaviour. When the atoms are delocalized the system is weakly
correlated. As the strength of the lattice potential increases the atoms become localized
and the system becomes strongly correlated. One interesting point in case of the later
regime is

The existence of a mean field in the system depends on the number of atoms per site being
integer or not.

When the number of atoms per site is integral there is no mean field (the state of the
system is product of localized states at each site) – commensurate filling of lattice

When the number of atoms per site is non integral there is non zero mean field –
incommensurate filling of lattice.

Hence if we start with a integral average site filling then the transition between MI and
SF is noticed when one passes from no mean field to finite mean field.

Now we discuss some analytical theories[4].

Bogoliubov approximation:

First we transform the Hamiltonian to momentum space by introducing creation and
annihilation operators k

t
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The Hamiltonian becomes
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where �=
j

jk akt )cos(2ε , j running from 1 to d (dimension).

As in other cases here also we replace the creation and annihilation operators of the
ground momentum state by the average 0N  and a fluctuation.



Calculating the effective Hamiltonian and then finding the condensate density we find
that as U/t goes to infinity the condensate density doesn’t go to zero. Hence the
bogoliubov theory doesn’t predict the phase transition.

Mean Field Theory:

To have a mean field approach which can correctly describe the mott insulator state, we
must decouple the tunneling term (treated as a perturbation) to effectively decouple the
total Hamiltonian into single site energies. We first make the substitution

The effective Hamiltonian then becomes

where z is the number of nearest neighbors, z=2d.

The critical value of U for which condensate density becomes zero can now be found
analytically by using the second order perturbation theory. The value for cU  is found to
be 5.83.

THE EXPERIMENT

Experimentalists have realized the superfluid to Mott insulator transition in an ultracold
gas of rubidium atoms with repulsive interactions trapped in an optical lattice. The
experimental technique and set up is described below. [3]

Set up

A spherically symmetric bose condensate of Rb atoms is created in a magnetic trapping
potential with equal radial and axial trapping frequencies.

A three dimensional optical lattice is formed by six criss-cross laser beam with their
crossing point positioned at the center of the bose condensate. By controlling the intensity
of the laser beams the periodic potential height is controlled. The depth of the potential is



measured in terms of the recoil energy 
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Where k is the wavevector of the laser light and 0V  is the maximum potential depth.

The magnetically trapped condensate is transferred into the optical lattice potential by
slowly increasing the intensity of the laser beams. The slow ramp speed ensures that the
condensate always remained in the many body ground state of combined magnetic and
optical trapping potential.

After raising the lattice potential the condensate has been distributed over more than
150000 lattice sites with an average number of 2.5 atoms per lattice site. In order to test
whether the system is still superfluid the combined trapping potential is suddenly turned
off and the atomic wavefunctions are allowed to interfere. A high contrast 3-D
interference pattern is observed. Each time the lattice depth is changed the same
procedure is repeated.

The transition

As the lattice depth is increased, the strength of higher order maxima increases. This is
due to increased localization of the atomic wavefunctions at a single site. Remembering
that this was a SF phase owing to the fact that atoms could tunnel through easily,
increasing the lattice depth would lead to freezing of atoms in one lattice site. This would
deplete the condensate fraction and the definite phase between that lattice site would be
accompanied by finite fluctuations. This leads to the broadening of interference maxima.
But as the depth of around 13 E (E being the recoil energy) is reached the interference
maxima no longer increase in strength. Instead, an incoherent wave pattern comes up,
getting more prominent as the potential is further increased. Eventually at 22 E no
interference pattern is visible.



Restoring Phase Coherence:

How do we make sure that the state we are getting a state having perfect number
correlation between sites and not just a dephased condensate. Two more sets of
experiments confirm that there indeed is a transition to a Mott insulator state.

A notable property of the Mott Insulator is that phase coherence can be restored within
order of tunneling time when the optical potential is lowered again to a value for which
the ground state is a superfluid. This rapid restoration of coherence from a Mott Insulator
can be compared to that of a phase incoherent state where random phases are present
between neighboring sites. It is observed that while the width of the central interference
peak exponentially goes down with time for a Mott Insulator, it remains constant for a
dephased condensate.

Now to restore coherence potential is ramped down suddenly to 9E where the ground
state is a superfluid. After this the combined trapping and periodic potential is turned off
and subsequent interference patterns are observed and analysed. It should be noted that
the perfect number correlation characteristic of the Mott insulator strictly depends on the
lattice potential (the controlling parameter in the quantum phase transition) and once
below the critical value there are high fluctuations which lead to phase coherence. Hence
with time any fluctuation in the number of atoms per lattice site leads to a stabilization of
the phase because there is no other alternative owing to the reduced periodic potential.



A dephased condensate is creatd by 22 E by introducing non linear interactions in the
system during the ramp up period. Even after the potential is ramped down to 9E these
interactions remain and prevent the system to become a superfluid.



The second way to know that we indeed have a new state is to probe into the excitation
spectrum. Mott insulator is characterized by a gap in the excitation spectrum.

Conclusion:

Mott insulator is an emergent state of matter. Temperature is an important factor for a
convincing demonstration of a controllable Quantum phase transition. Thermal
fluctuations can completely wash out the effect of their quantum counterparts. Future
study in this field could be the experimental demonstration of finite T effects. This
transition has been successfully realized in 1, 2 and 3 dimensions. Here the transition is
realized by reducing the tunneling. Increasing U or the basically the scattering length
(Feshbach resonances) and demonstrating the transition could be some of the future
experiments in this field.
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