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Abstract

The fluctuations of two-dimensional extended objects (membranes) is a
rich and exciting field with many solid results and a wide range of open issues.
In this term paper we review the distinct universality classes of membranes,
determined by the local order, and the associated phase diagrams. After a
discussion of several physical examples of membranes we turn to the physics
of crystalline (or polymerized) membranes in which the individual monomers
are rigidly bound. We discuss the phase diagram with particular attention to
the dependence on the degree of self-avoidance and anisotropy. The resulting
renormalization group flows and fixed points are illustrated graphically. We
then turn to a brief discussion of the role of topological defects whose liberation
leads to the hexatic and fluid universality classes. We finish with conclusions
and a discussion of promising open directions for the future.



1 Introduction

The subject of two-dimensional extended objects (membranes) is a fascinating field
of research. The statistical mechanics of these random surfaces is far more complex
than that of polymers because two-dimensional geometry is far richer than the very
restricted geometry of lines. Membranes are subject to shape fluctuations and their
macroscopic behavior is determined by a subtle interplay between their particular
microscopic order and entropy of shape and elastic deformations. For membranes,
unlike polymers, distinct types of microscopic order (crystalline, hexatic, fluid) will
lead to distinct long-wavelength behavior and consequently a rich set of universality
classes.

Flexible membranes are an important member of the enormous class of soft
condensed matter systems, those which respond easily to external forces. Their
physical properties are to a considerable extent dominated by the entropy of thermal
fluctuations.

2 Physical Examples of Membranes

Many concrete realizations of membranes exist in nature. Crystalline membranes,
also called tethered or polymerized membranes, possess in-plane elastic moduli as
well as bending rigidity and are characterized by broken translational invariance in
the plane and fixed connectivity due to relatively strong bonding. The cytoskeletons
of cell membranes are beautiful and naturally occurring crystalline membranes
that are essential to cell membrane stability and functionality. The simplest
and thoroughly studied example is the cystoskeleton of mammalian red blood
cells (erythrocytes). They are a fishnet-like network of triangular plaquettes
formed primarily by the proteins spectrin and actin. The links of the mesh are
spectrin tetramers approximately 200nm-long and the nodes are short actin filaments
typically 37nm-long. There are roughly 70,000 plaquettes in the mesh. There are
also inorganic realizations of crystalline membranes. Graphitic oxide membranes
are micron size sheets of solid carbon with thickness on the order of 10A, forms
by exfoliating carbon with a strong oxidizing agent. Metal dichalcogenides such as
MoS, have also been observed to form rag-like sheets. Similar structures also occur
in large sheet molecules, believed to be an ingredient in glassy B5Oj3.

In contrast to crystalline membranes, fluid membranes are characterized by
vanishing shear modulus and dynamic connectivity. They exhibit significant shape
fluctuations controlled by an effective bending rigidity parameter. A rich realization
of these is found in amphiphilic systems. Amphiphiles are molecules with a two-fold
character - one is hydrophobic and the other hydrophilic. The classical example
is lipid molecules, such as phospholipids, which have polar or ionic head groups
(hydrophilic) and hydrocarbon tails (hydrophobic). Such systems are observed
to self-assemble into an array of ordered structures, such as monolayers, planar
and spherical bilayers (vesicles and liposomes) as well as lamellar, hexagonal and
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bicontinuous phases. In each case the basic ingredients are thin and highly flexible
surfaces of amphiphiles. Related examples of fluid membranes arise when the
surface tension between two normally immiscible substances, such as oil and water
is significantly lowered by the surface action of surfactants, which preferentially
orient with their polar heads in water and their hydrocarbon tails in oil. For some
range of amphiphile concentration both phases can span the system, leading to a
bicontinuous complex fluid known as a microemulsion.

The structures formed by membrane/polymer complexes are of considerable current
theoretical, experimental and medical interest. It has recently been found that
mixtures of cationic liposomes and linear DNA chains spontaneously self-assemble
into a coupled two-dimensional smectic phase of DNA chains embedded between
lamellar lipid bilayers. For the appropriate regime of lipid concentration the
same system can also form an inverted hexagonal phase with DNA encapsulated
by cylindrical columns of liposomes. In both cases the liposomes may act as
non-viral carriers for DNA with many potentially important applications in gene
therapy. Liposomes themselves have been studied and utilized in the pharmaceutical
industry as drug carriers. On the materials science side the self-assembling ability
of membranes is being exploited to fabricate microstructures for advanced material
development. One example is the use of chiral-lipid based fluid tubules as a template
for metallization. The resultant hollow metal needles may be half a micron in
diameter and a millimeter in length. They have potential applications as, for
example, cathodes for vacuum field emission and microvials for controlled release.

3 Crystalline Membranes

A crystalline membrane is a two-dimensional fishnet structure with non-breaking
bonds (links). For the moment let’s keep the discussion general and consider a
D-dimensional object embedded in d-dimensional space. These are described by
a d-dimensional vector 7(x), with x the D-dimensional internal coordinates, as
illustrated in Fig.1. The case d = 3 and D = 2 corresponds to the physical crystalline
membrane.

To construct the Landau free energy, one must recall that it must be invariant under
global translations, so the order parameter is given by derivatives of the embedding
7, that is £, = %, with o = 1,---,D. This latter condition, together with the
invariance under rotations, both in internal and bulk space, give a Landau free
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where higher order terms may be shown to be irrelevant at long wavelength.
The physics in eq.(1) depends on five parameters,
k , bending rigidity: This is the coupling to the extrinsic curvature (the square



of the Gaussian mean curvature). This term may be replaced by its long-wavelength
limit. For large and positive bending rigidities flatter surfaces are favored.

t,u,v, elastic constants: These coefficients encode the microscopic elastic
properties of the membrane.

b, excluded volume or self-avoiding coupling: This is the coupling that imposes
an energy penalty for the membrane to self-intersect. The case b = 0, no self-
avoidance, corresponds to the Phantom model.

7(x) is generally expanded as

m(z) = (Cx + u(z), h(z)), (2)

with » the D-dimensional phonon in-plane modes, and A the d — D out-of-phase
fluctuations. If { = 0 the model is in a rotationally invariant crumpled phase, where
the typical surfaces have fractal dimension, and there is no real distinction between
the in-plane phonons and the out-of-plane modes. If ( # 0 the membrane is flat up
to small fluctuations and the full rotational symmetry is spontaneously broken.

We will begin by studying the phantom case first. This simplified model may be
viewed as a first step toward the understanding of the more physical self-avoiding
case to be discussed later. Combined analytical and numerical studies have yielded
a thorough understanding of the phase diagram of phantom crystalline membranes.

3.1 Phantom model

The phantom case corresponds to setting b = 0 in the free energy of eq.(1)
1 t
F(F) = / APalSR(O27) + 5 (0ui)? + w(0aT037) + v(0u70° 7). (3)

The mean field effective potential using, eq. (2), becomes

t
V(Q) = DE(5 + (u+vD)C), (4)
with solutions
e { 0 : t>0
e t .
" 4(utvD) - t<0

- (5)

There is therefore a flat phase for ¢t < 0 and a crumpled phase for ¢ > 0, separated
by a crumpling transition at ¢ = 0. See Fig.2.

The phase diagram of the model is shown schematically in Fig.3. The crumpled
phase is described by a line of equivalent FPs (GFP). There is a general hyper-
surface, whose projection onto the x — ¢ plane corresponds to a one-dimensional
curve (CTH), which corresponds to the crumpling transition. Within the CTH
there is an infrared stable FP (CTFP) which describes the large distance properties



of the crumpling transition. For large enough values of x and negative values of
t, the system is in a flat phase described by the corresponding infrared stable FP
(FLFP). The evidence for the phase diagram comes from combining the results of a
variety of analytical and numerical calculations.

3.1.1 The crumpled phase
In the crumpled phase, the free energy for D > 2 simplifies to

F(r) = %/dD:r(aaF)Q + Irrelevant terms (6)

All derivative operators in 7 are irrelevant by power counting since the model is
completely equivalent to a linear sigma model in D < 2 dimensions having O(d)
symmetry. The parameter ¢ labels different Gaussian FPs. In RG language, it
defines a completely marginal direction. This is true provided that ¢t > 0 is satisfied.
The Hausdorff dimension dg, or equivalently the size exponent v = D/dy, is given
for the membrane case D = 2 by

dH = oo(v = 0) — R ~ log L. (7)

This result is in complete agreement with numerical simulations of tethered
membranes in the crumpled phase where logarithmic behavior of the radius of
gyration is accurately checked.

3.1.2 The crumpling transition

Different estimates give a continuous crumpling transition with a size exponent in
the range v ~ 0.7 £ .15. Further evidence of this is also provided by numerical
simulations where the analysis of observables like the specific heat or the radius of
gyration give textbook continuous phase transitions, although the precise value of
the exponents at transition are difficult to pin down. Since this model has also been
explored numerically with different discretizations on several lattices, there is clear
evidence for universality of the crumpling transition.

3.1.3 The flat phase
In terms of the strain tensor

Uap = aaUg + 85ua + 8ah85h (8)

the free energy becomes

K A
Fu,h) = [ d%[5 (@adsh)* + piagu® + 5 (ug)?], 9)

where irrelevant terms have been dropped.
As apparent from Fig.4, there are three FPs in addition to the FLFP already
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introduced. These turn out to be infrared unstable and can be reached for very
specific values of the coefficients. In this phase, the membrane is essentially
a flat two-dimensional object up to fluctuations in the perpendicular direction.
The rotational symmetry is spontaneously broken, being reduced from O(d) to
O(d — D)xO(D). Let’s study the critical exponents of the model. There are two
correlators involving the in-plane and the out-of-plane photon modes. Using the RG
equations, at any given FP, the low-p limit of the model is given by

Ty ~ P12+ (10)
Thn = [p1*K(D) ~ |21*~"

where the last equation defines the anomalous elasticity «(p) as a function of
momentum p. These two exponents are not independent, since they satisfy the
scaling relation

ny=4—D —2n. (11)

Another exponent is the roughness exponent ( which measures the transverse
fluctuations. It can be expressed as ( = (4 — D — n)/2. The long wavelength
properties of the flat phase are described by the FLFP. Results obtained from large-
scale simulations of the model using very large meshes give

e = 0.50(1) 1 =0.750(5) ¢ =0.64(2) (12)

There are two experimental measurements of critical exponents for the flat phase of
crystalline membranes. The static structure factor of the red blood cell cystoskeleton
has been measured by small-angle x-ray and light scattering, yielding a roughness
exponent of ¢ = 0.65(10). Freeze-fracture electron microscopy and static light
scattering of the conformations of graphitic oxide sheets revealed flat sheets with
a fractal dimension dy = 2.15(6). Both these values are in good agreement with
the best analytic and numerical predictions. Finally another critical regime of the
flat membrane is achieved by subjecting the membrane to external tension. This
allows a low temperature phase in which the membrane has a domain structure,
with distinct domains corresponding to flat phases with different bulk orientations.
This describes physically a buckled membrane whose equilibrium shape is no longer
planar.

3.2 Self-avoiding model

It is necessary to include self-avoidance interaction in any realistic description of a
crystal membrane. It is usually introduced as a delta-function repulsion in the full
model eq.(1). The question before us is the effect of self-avoidance on each of the
different phases. The first phase we analyze is the flat phase. Since self-interactions
are unlikely in this phase, it is intuitively clear that self-avoidance is irrelevant in the



flat phase. This argument receives additional support from numerical simulations,
where it is found that self-avoidance is extremely rare in the flat phase. It seems
clear that self-avoidance is most likely an irrelevant operator, in the RG sense, of
the FLFP.

The addition of self-avoidance in the crumpled phase consists of adding the self-
avoiding interaction to the free energy

) = 5 [ aPa@2? + 3 [ dPadPys(r(a) - ), (13)

Standard power counting shows that the GFP of the crumpled phase is infra-red
unstable to the self-avoiding perturbation for

2—D
2
which implies that self-avoidance is a relevant perturbation for D = 2 objects at any

embedding dimension d. The preceding results are shown in Fig.5.

In summary, the flat phase of self-avoiding crystalline membrane is exactly the
same as the flat phase of phantom crystalline tethered membranes. The crumpled
phase of crystalline membranes is destabilized by the presence of any amount of
self-avoidance.

The next issue we need to elucidate is whether this new SAFP describes a crumpled
self-avoiding phase or a flat phase and discuss more quantitatively the critical
exponents describing the universality class.

e(D,d)=2D —d >0, (14)

3.2.1 The nature and properties of the SAFP

The key issue is whether this model still admits a crumpled phase, and if so to
determine the associated size exponent. On general grounds we expect that there
is a critical dimension dc, below which there is no crumpled phase. Within a Flory
approximation, a D-dimensional membrane is in a crumpled phase, with a size
exponent given by v = (D + 2) = (d + 2). From this it follows that d. = D.
In contrast, an e-expansion provides a systematic determination of the critical
exponents. At lowest order in ¢, the membrane is in a crumpled phase. Some
authors argue in favor of a scenario with a critical dimension d. ~ 4. Within a
Gaussian approximation, v = 4/d, and since one has v > 1 ford d < 4, one may
conclude that the membrane is flat for d < d. = 4. Since we cannot determine the
accuracy of the Gaussian approximation, this estimate must be viewed largely as
interesting speculation.

We have seen that numerical simulations provide good support for analytic results
in the case of phantom membranes. When self-avoidance is included, numerical
simulations become invaluable, since analytic results are harder to come by. Early
simulations provided a first estimate of the size exponent at d = 3 fully compatible
with the Flory estimate. The lattices examined were not very large, however, and
subsequent simulations with larger volumes found that the d = 3 membrane is
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actually flat. A different approach to weakening the flat phase, bond dilution, found
that the flat phase persists until the percolation critical point. In conclusion the
bulk of accumulated evidence indicates that flatness is an intrinsic consequence of
self-avoidance. If this is indeed correct the SAFP coincides with FLFP and this
feature is an inherent consequence of self-avoidance.

Given the difficulties of finding a crumpled phase with a repulsive potential,
simulations for larger values of the embedding space dimension d have also been
performed. These simulations show clear evidence that the membrane remains flat
for d = 3 and 4 and undergoes a crumpling transition for d > 5, implying d. > 4.
The enormous efforts dedicated to study the SAFP have not resulted in a complete
clarification of the overall scenario since the existing analytical tools do not provide
a clear picture. Numerical results clearly provide the best insight. For the physically
relevant case d = 3, the most plausible situation is that there is no crumpled phase
and that the flat phase is identical to the flat phase of the phantom model. For
example, the roughness exponents (54 from numerical simulations of self-avoidance
at d = 3 and the roughness exponent at the FLFP compare extremely well,

Csa = 0.64(4), ¢ =0.64(2). (15)

So the numerical evidence allows us to conjecture that the SAFP is exactly the same
as the FLFP, and that the crumpled self-avoiding phase is absent in the presence of
purely repulsive potentials (see Fig.6).

4 Anisotropic Membranes

An anisotropic membrane is a crystalline membrane having the property that the
elastic or the bending rigidity properties in one distinguished direction are different
from those in the D — 1 remaining directions. What this leads to is the generation
of a completely new phase, in which the membrane is crumpled in some internal
directions but flat in the remaining ones. A phase of this type is called a tubular
phase and does not appear when studying isotropic membranes. So here, the phase
diagram contains a crumpled, tubular and flat phase. The crumpled and flat phases
are equivalent to the isotropic ones, so anisotropy turns out to be an irrelevant
interaction in those phases. The new physics is contained in the tubular phase,
which we describe briefly now.

4.1 The tubular phase

Since the physically relevant case for membranes is D = 2 we concentrate on the
properties of the y-tubular phase. The key critical exponents characterizing the
tubular phase are the size exponent v, giving the scaling of the tubular diameter R,
with the extended L, and transverse L, sizes of the membrane, and the roughness



exponent ( associated with the growth of height fluctuations A,;:
Ry(Ly, Ly) o< L' Sg(Ly/L7) (16)

hyms(L, Ly) o< L§Sy(Ly/L7)

Here Sk and S) are scaling functions and z is the anisotropy exponent. One can
prove that there are some general scaling relations among the critical exponents.
All three exponents may be expressed in terms of a single exponent:

3 1-D

== 17
¢ 2 + 2z (17)
v=2_z
The phantom case can be solved exactly. The result for the size exponent is
5—2D 1
VPhantom(D) = 4 - VPhantom(2) = Z (18)

with the other exponents following from the scaling relations above.
The self-avoiding case may be treated with techniques similar to those in the
isotropic case. For example, in a Flory approximation, one obtains

D+1
VFlory = m (19)

5 The Crystalline-Fluid Transition and Fluid
Membranes

A flat crystal melts into a liquid when the temperature is increased. This transition
may be driven by the sequential liberation of defects. With increasing temperature,
a crystal melts first to an intermediate hexatic phase via a continuous transition, and
finally goes to a conventional isotropic fluid phase via another continuous transition.
Two main points are worth keeping in mind when studying the more difficult case
of fluctuating geometries. 1) The experimental evidence for the existence of the
hexatic phase is not completely settled in those transitions which are continuous. 2)
Some 2D crystals (like Xenon absorbed on graphite) melt to a fluid phase via a first
order transition without any intermediate hexatic phase.

The straight-forward translation of the previous results to the tethered membrane
would suggest a similar scenario. There would then be a crystalline to hexatic
transition and a hexatic to fluid transition. Although the previous scenario is
plausible, there are no solid experimental or theoretical results that establish it.
The Kosterlitz-Thouless argument shows that defects will necessarily drive a 2D
crystal to melt. The entropy of a dislocation grows logarithmically with the system
size, so for sufficiently high temperature, entropy will dominate over the dislocation
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energy and the crystal will necessarily melt. If the same argument is applied now to a
tethered membrane, the entropy is still growing logarithmically with the system size,
while the energy becomes independent of the system size, so any finite temperature
drive the crystal to melt, and the low temperature phase of a tethered membrane
will necessarily be a fluid phase, either hexatic or a conventional fluid if a first order
transition takes place. This problem has been investigated in numerical simulations,
which provide some concrete evidence in favor of the hexatic phase scenario, although
the issue is far from being settled.

The hexatic membrane is a fluid membrane that, in contrast to a conventional fluid,
preserves the orientational order of the original lattice.

6 Conclusions

In this paper we have described the distinct universality classes of membranes with
particular emphasis on crystalline membranes. We have presented qualitative and
descriptive aspects of the physics with some technical results . We have shown
that the phase diagram of the phantom crystalline membrane class is theoretically
very well understood both by analytical and numerical treatments. To complete
the picture it would be extremely valuable to find experimental realizations for this
particular system. An exciting possibility is a system of cross-linked DNA chains
together with restriction enzymes that catalyze cutting and rejoining. The difficult
chemistry involved in these experiments is not yet under control, but it is hoped
that these technical problems will be overcome in the near future.

There are several experimental realizations of self-avoiding polymerized membranes
discussed in the text. The experimental results compare very well with the the-
oretical estimates from numerical simulations. As a future theoretical challenge,
analytical tools need to be sharpened since they fail to provide a clear and unified
picture of the phase diagram. On the experimental side, there are promising experi-
mental realizations of tethered membranes which will allow more precise results than
those presently available. Among them there is the possibility of very well controlled
synthesis of DNA networks to form physical realizations of tethered membranes.
The case of anisotropic polymerized membranes has also been mentioned. The phase
diagram contains a new tubular phase which may be realized in nature. There is
some controversy about the precise phase diagram of the model, but definite predic-
tions for the critical exponents and other quantities exist. Anisotropic membranes
are also experimentally relevant. They may be created in the laboratory by poly-
merizing a fluid membrane in the presence of an external electric field.

Probably the most challenging problem, both theoretically and experimentally, is a
complete study of the role of defects in polymerized membranes. There are a large
number of unanswered questions, which include the existence of hexatic phases, the
properties of defects on curved surfaces and its relevance to the possible existence
of more complex phases. This problem is now under intense experimental investi-
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gation.

Lastly, crystalline membranes also provide important insight into the fluid case,
since any crystalline membrane eventually becomes fluid at high temperature. Due
to its relevance in many physical and biological systems and its potential applica-
tions in material science, the experimental and theoretical understanding of fluid
membranes is one of the most active areas in soft condensed matter physics.
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Figure 1: Representation of a membrane.
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Figure 2: Mean field solutions for crystalline membranes.
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Figure 5: The addition of self-avoidance at the crumpled and flat phases.
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Figure 6: The conjectured phase diagram for the self-avoiding crystalline membrane

in d=3. With any degree of self avoidance, the flows are to the flat fixed point of
the phantom model(FLFP).

17



