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How predictable are turbulent flows? Here, we use theoretical estimates and shell model simulations to
argue that Eulerian spontaneous stochasticity, a manifestation of the nonuniqueness of the solutions to the
Euler equation that is conjectured to occur in Navier-Stokes turbulence at high Reynolds numbers, leads to
universal statistics at finite times, not just at infinite time as for standard chaos. These universal statistics are
predictable, even though individual flow realizations are not. Any small-scale noise vanishing slowly
enough with increasing Reynolds number can trigger spontaneous stochasticity, and here we show that
thermal noise alone, in the absence of any larger disturbances, would suffice. If confirmed for Navier-
Stokes turbulence, our findings would imply that intrinsic stochasticity of turbulent fluid motions at all
scales can be triggered even by unavoidable molecular noise, with implications for modeling in
engineering, climate, astrophysics, and cosmology.
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Spontaneous stochasticity is a recently discovered phe-
nomenon [1–3] in turbulent flows [4,5], whereby solutions
of model fluid equations remain unpredictable and sto-
chastic due to diverging Lyapunov exponents in the high
Reynolds number limit, even though random perturbations
to the flow are negligible asymptotically. It is an open
question as to whether or not it occurs in real fluids or in the
Navier-Stokes equations. Here, we report that at large (but
finite) Reynolds numbers, a stochastic wave propagating
from small to large scales, as first postulated by Lorenz [6],
rapidly randomizes the large-scale flow, even if the only
sources of noise to trigger the wave are molecular
fluctuations at small scales. Going beyond Lorenz, we
show that flow fluctuations at large scales exhibit universal
statistics due to spontaneous stochasticity and not directly
due to whatever small-scale noise triggers the stochastic
wave. Spontaneous stochasticity is not inevitable; for it to
be triggered, the small-scale noise must become negligible
in the large Reynolds number limit sufficiently slowly.
The surprise is that even thermal noise satisfies this
condition. These new indirect effects at large scales are
distinct from a growing body of work showing that thermal
noise directly alters the turbulent dissipation range
below the Kolmogorov scale [7–16], and, in fact, other
small-scale disturbances, typically much larger than ther-
mal agitation, will produce indistinguishable large-scale
stochasticity. To demonstrate our claim that the probability
distributions of relevant flow quantities have a universal,

non-delta-function form at large but finite Reynolds num-
bers, we are forced to employ a simplified but well-studied
dynamical model [17] of turbulence, since the Navier-
Stokes equations are computationally unfeasible at the
large Reynolds numbers required for convincing conver-
gence to universal statistics. These results suggest an
essential indeterminism of turbulent flows at scales of
practical interest, with potentially far-ranging implications
for engineering, geophysics, and astrophysics.
Fluctuating hydrodynamics.—The fluctuating hydrody-

namics of Landau-Lifshitz [18] describes the effect of
thermal noise in fluid flows by including fluctuating
stresses into the Navier-Stokes equation. It is expressed
in a form nondimensionalized by large-scale velocityU and
outer or integral length L as

∂tuþ ðu ·∇Þu ¼ −∇pþ 1

Re
△uþ

ffiffiffiffi
Θ

p ∇ · ξ þ Ff; ð1Þ

where the fluctuating stress is modeled as a Gaussian
random field ξ with mean zero and covariance

hξijðx; tÞξklðx0; t0Þi ¼
�
δikδjl þ δilδjk −

2

3
δijδkl

�

× δ3ðx − x0Þδðt − t0Þ: ð2Þ

Here, the Reynolds number is defined as Re≡UL=ν,
where U is the large-scale velocity of the flow, L is the
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forcing scale at which energy is injected, and ν is kinematic
viscosity. Θ≡ 2νkBT=ρL4U3 appears due to the presence
of noise and characterizes its strength according to the
fluctuation-dissipation relation. kB is Boltzmann’s constant,
T is absolute temperature, and ρ is mass density. To drive
turbulence, we have added an external forcing f non-
dimensionalized by rms value frms, with prefactor F ¼
Lfrms=U2 setting the magnitude. Strictly speaking, Eq. (1)
describes a coarse-grained velocity field on length scale
Λ−1 larger than the mean free path, and some care is needed
to interpret this mathematically; see Supplemental Material
(Sec. I) [19] for details [41–44].
Using flow parameters characteristic of the atmos-

pheric boundary layer (ABL) [45] T ¼ 300° K, ν ¼
1.5 × 10−5 m2= sec, ρ¼1.2 kg=m3, ε¼4×10−2m2=sec3,
L ¼ 103 m, and U ¼ 3.42 m= sec, where ε is the mean
energy dissipation per mass, we find Θ ≃ 2.59 × 10−39,
naively justifying dropping the fluctuating stress term from
the Landau-Lifshitz equations and supporting the conven-
tional wisdom that physically relevant turbulent fluid flows
are well modeled by the deterministic (cutoff) Navier-
Stokes equations. This conclusion is consistent with
numerical findings [12–14] that the turbulent steady-state
statistics at scales larger than the Kolmogorov length η ¼
ν3=4ε−1=4 are unchanged by molecular fluctuations but not
addressing the issue of the flow predictability.
Fully developed fluid turbulence in the ABL has

Re ≃ 2.28 × 108, justifying dropping as well the viscous
term proportional to Re−1 from the equations [46].
However, the limiting equations with no viscosity, no wave
number cutoff, and no thermal noise are the continuum
Euler equations, which do not have unique solutions and
are formally ill posed [47–49]. Such nonuniqueness or
“flexibility” of solutions suggests an intrinsic unpredict-
ability of turbulent fluid motions at high Reynolds numbers
known as Eulerian spontaneous stochasticity [3,50] and
provides a possibility for tiny thermal noise to influence the
predictability of all scales of the flow up to the largest.
Spontaneous stochasticity.—Spontaneous stochasticity

can be given a precise meaning through a probability
distribution on solutions of the governing stochastic differ-
ential equation. In the case of Eulerian spontaneous
stochasticity triggered by thermal noise, the corresponding
equation is (1). The solution of this equation may be
expressed in terms of a transition probability density
PRe;Θðuf; tfjui; tiÞ as follows:

PRe;Θðuf;tfÞ¼
Z

DuiPRe;Θðuf;tfjui;tiÞPRe;Θðui; tiÞ; ð3Þ

where PRe;Θðui=f; ti=fÞ is a probability distribution of
velocity fields at the initial or final time. The transition
probability PRe;Θðuf; tfjui; tiÞ satisfies the Fokker-Planck
equation corresponding to Langevin equation (1), and it is

parametrized by the nondimensional numbers Re and Θ. In
the limit of zero noise Θ → 0 with Re fixed, the transition
probability becomes deterministic, that is, expressed as a
delta distribution on the unique solution of the limiting
deterministic problem. The issue of uniqueness of solutions
plays the central role in emergence of spontaneous sto-
chasticity: See Supplemental Material Sec. II [19] for more
details. Note that the limiting equations for the fluctuating
hydrodynamics of Landau-Lifshitz in the limit Θ → 0 are
Navier-Stokes equations with the finite cutoff Λ, so that
uniqueness of solutions to the Cauchy initial-value problem
is then elementary and well known. This physically
necessary cutoff is crucial, since the uniqueness of Leray
solutions of the continuum Navier-Stokes equations is a
major open problem in pure mathematics [51]. However, if
the zero-noise limit is taken together with Re → ∞ and
Λ ∝ Re → ∞, it leads to singular Euler dynamics with no
unique solutions. Then the limiting transition probability
may cease to become deterministic:

PRe;Θðuf; tfjui; tiÞ ⟶
Θ→0

Re→∞
P∞ðuf; tfjui; tiÞ: ð4Þ

If such a nontrivial limiting transition probability exists, the
limit is called spontaneously stochastic and corresponds to
stochastic behavior of a formally deterministic Euler
system, which each realization of the limiting distribution
satisfies in a weak sense [1,3,50,52,53].
Because the spontaneously stochastic limit is a double

limit Re−1, Θ → 0, there is no unique way to arrive at it.
Furthermore, if the noise strength is taken to zero suffi-
ciently fast, the limit becomes deterministic. In many cases
of practical importance, such as turbulent flows past a grid
or a cylinder, experimental evidence [54,54,55] points at a
nonvanishing energy dissipation with the limiting dissipa-
tion rate satisfying a relation first proposed by Taylor [56]
ε ¼ CU3=L, where C is a dimensionless constant. In this
scenario, we can control the macroscopic flow parameters
U (or ε) and L, while ν, T, and ρ are fixed material
parameters of the fluid. These considerations motivate as a
“canonical limit” the one obtained by fixing the ratioU3=L,
along with ν, T, and ρ, while taking Re → ∞. This leads us
to define the second nondimensional number as θη ¼
2kBT=ρν11=4ε−1=4 (see [12]) and consider the limit Θ ¼
Re−15=4θη → 0 with θη held constant. This is the physically
relevant continuum limit in which also Λ ∝ Re → ∞,
describing fully developed 3D hydrodynamic turbulence.
Numerical verification of Eulerian spontaneous stochas-

ticity.—In order to check that the limit (4) is indeed
spontaneously stochastic, we need to simulate Landau-
Lifshitz equations at very high Reynolds numbers. State-of-
the-art simulation can achieve only Re ≈ 500 [14,57] for
incompressible flows, so we use here the Sabra model [17],
a simplified dynamical model of turbulent cascade that
preserves many key features of Navier-Stokes equations (1)
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but discretizes length scales as ln ¼ 2−nL and keeps only
one complex mode un to represent velocity increments
δlu ∝ junj at scale ln. We also include a stochastic term to
model thermal noise and a deterministic forcing fn that acts
only at large scales. In nondimensionalized form, this
modified Sabra model is given by the stochastic ordinary
differential equations:

dun
dt

¼ i

�
knþ1unþ2u�nþ1 −

1

2
knunþ1u�n−1 þ

1

2
kn−1un−1un−2

�

−
1

Re
k2nun þ

ffiffiffiffi
Θ

p
knξnðtÞ þFfn; n¼ 1;…;N; ð5Þ

where kn ¼ 1=ln, covariance of the white noise
hξ�nðtÞξmðt0Þi ¼ 2kαnδnmδðt − tÞ, and the second nondimen-
sional number group is Θ ¼ Re−βθη, β ¼ 3ðαþ 2Þ=4.
Here, we take the number of shells N ∝ 3

4
log2ðReÞ,

sufficient to resolve a few shells above the Kolmogorov
wave number kη ¼ 1=η. The choice α ¼ 3 in the noise
covariance is dimensionally identical to 3D Landau-
Lifshitz, with β ¼ 15=4, and it produces also an energy
spectrum ∝ k2 in the dissipation range, the same as for 3D
fluids, but violates the shell-model fluctuation-dissipation
relation. On the other hand, the choice α ¼ 0 preserves this
relation, although the equipartition energy spectrum in the
dissipation range is ∝ k−1 rather than ∝ k2. Since it is
impossible to match exactly all relevant properties of 3D
Landau-Lifshitz equations with a single choice of α, we
investigated both choices α ¼ 0 and α ¼ 3, and we find the
overall results are insensitive to this choice. We emphasize
that for either choice of α the noise does not serve as a large
scale forcing, and, in fact, together with the viscous
damping, it becomes vanishingly small in the limit
Re → ∞. For more details on the numerical simulations,
including the forcing fn used and the choice of α, see
Supplemental Material, Secs. III–VI [19].

We study the Cauchy problem for (5) with two different
deterministic but “quasisingular” initial data that are not
smooth uniformly in Reynolds number. It is convenient to
study spontaneous stochasticity with such quasisingular
initial data, since with large-scale initial data independent
of Re one would otherwise have to wait for singularities
to form by finite-time blowup [50]. The first is the
Kolmogorov initial datum un ¼ −iAε1=3k−1=3n , which is
an exact stationary (but unstable) solution of the inviscid,
deterministic Sabra model if suitable deterministic forces
fn are added to the two lowest shells n ¼ 1, 2 [58]. The
other initial datum is a “burst” state selected from the
ensemble of turbulent steady states of the Sabra model at
very high Re (see Supplemental Material, Sec. V [19]).
This particular initial datum has approximately a power-law
form un ∝ k−hn in the inertial range, with Hölder exponent
h ≃ 0.258; by construction, this is not intended to be the
scaling of the statistical steady state. Both of these initial
data are quasisingular with exponent h < 1, regularized
only at very high wave number either by the cutoff N or by
viscosity ν. The numerical details of how Re was varied
differs for the two initial data: See Supplemental Material,
Sec. IV for the K41 case and Sec. VI for the burst case [19].
The key statistical quantities which we calculate are the

probability density functions (PDFs) of local-in-scale
variables, such as the absolute values of velocities at a
fixed shell numbers n, fixed time tf, at an increasing
sequence of Reynolds numbers. These reduced PDFs are
integrals over the transition probability densities in (3).
Without external noise, these are delta distributions; see
Supplemental Material, Sec. VII [19]. Presented in Fig. 1 are
plots of the PDFs for shelln ¼ 18 and time tf ¼ 1 (a),(b) and
tf ¼ 1.477 × 10−3 (c), where Figs. 1(a) and 1(b) are for the
K41 initial datum with noise exponents α ¼ 0 and α ¼ 3,
respectively, and Fig. 1(c) is for the burst initial datum with
α ¼ 0.As seen clearly, thePDFs convergewith increasingRe
to nondelta distributions and, therefore, do not become

(a) Self-similar initial state with noise
scaling α = 0.

(b) Self-similar initial state with noise
scaling α = 3.

(c) “Burst” initial state with noise scaling
α = 0.

FIG. 1. Transition probability density function for the absolute values junj at a single fixed shell number n ¼ 18 and time tf ¼ 1 (a),(b)
and tf ¼ 1.477 × 10−3 (c) in inertial units for Reynolds numbers spanning almost two decades. The bottom axis represents the inertial
range units, while the top axis represents the SI units for the ABL parameters. All the errors are estimated as standard errors using the
bootstrap method. Reference [19] contains details on how the Reynolds number was varied, Sec. IV for the K41 initial condition and
Sec. VI for the “burst” initial condition.
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deterministic. The direct effects of thermal fluctuations at this
scale can be estimated from θη, and the resulting rms velocity
fluctuations are 4–5 orders of magnitude smaller than the
ones shown in Fig. 1. Thus, the universal statistics reflect
spontaneous stochasticity, not direct effects of thermal noise.
We have obtained similar results for the PDFs of other scale-
local variables, e.g., energy flux Πn (see Supplemental
Material, Sec. VIII [19]).
These observations constitute our crucial numerical

evidence for Eulerian spontaneous stochasticity triggered
by thermal noise in the Sabra model and, presumably, for
the Landau-Lifshitz equations. The two cases in Figs. 1(a)
and 1(b) correspond to the same initial datum and the same
limiting equations when Re → ∞ but a different scale-by-
scale approach toward it. Nevertheless, the limiting prob-
ability distributions are the same and independent of the
type of regularization and the type of noise that triggers
random perturbations.
Inverse error cascade and stochastic wave.—What

causes this unpredictability if the direct effects of thermal
noise are too small? The mechanism was first suggested by
Lorenz: an inverse cascade of error [6] that has since been
extensively studied [59–62]. Perhaps the simplest way to
illustrate this mechanism is to look at the time-dependent
variances Var½un� ¼ E½jun − E½un�j2� calculated across an
ensemble of noise realizations with fixed initial datum.
These are shown in Fig. 2 for the K41 datum. Initially,
variances at all scales exhibit diffusive linear growth in
time, with higher rate at larger kn. Next, modes become
chaotic scale by scale, starting from high wave numbers,
and eventually the variance for a particular shell saturates
when it reaches twice the average energy at that scale. In the
early stage of development of the stochastic wave, the
total variance of the system VarðuÞ ¼ P

n VarðunÞ grows

exponentially (see Supplemental Material, Sec. IX [19]),
and this regime is fully consistent with the work of
Ruelle [10] on the effects of thermal noise in predictability
of developed turbulence. However, when the stochastic
front starts to propagate across the inertial range [50,63],
the system enters the spontaneously stochastic regime. In
the case of a self-similar initial state u0;n ∝ Ak−hn , the front
is self-similar, located at length scale lðtÞ ¼ ðAtÞ1=ð1−hÞ
with amplitude uðtÞ ¼ ðAthÞ1=ð1−hÞ at time t. Plotted as
VarðunÞ=u2ðtÞ versus knlðtÞ, the curves collapse for the
three late times t ¼ 12.14, 48.56, 194.24 s. For more details
on the stages of the stochastic wave formation and
propagation, see Supplemental Material, Sec. IX [19].
Furthermore, after the stochastic front passes some scale,
the statistics of Kolmogorov multipliers [64] at that scale
converges to the steady state distribution. Such super-
universality has been observed before in [50]; see
Supplemental Material, Sec. X [19]. We draw attention
to the striking resemblance of our Fig. 2 to Fig. 2 of
Lorenz [6], which he obtained for two-dimensional
Euler equations using a turbulence closure model. For
the analogous plot with the burst initial state, see
Supplemental Material, Sec. XI [19], where the same
picture holds qualitatively, although there is no exact
self-similarity. The large spontaneous fluctuations illus-
trated in Fig. 1(a) are, thus, due to effects of thermal noise
in the dissipation range which are propagated up into the
inertial range by nonlinear error cascade and not due to the
direct local effects of thermal noise.
An important feature of this “inverse error cascade”

is that in the inertial range the universal statistical distri-
butions are achieved at each length scale l in a time which
is a constant multiple of the eddy-turnover time τl ¼ l=ul,
indifferent to the noise magnitude. This should be
contrasted with a predictability horizon in conventional
chaotic systems, which is dependent on the noise

FIG. 2. Twice ensemble average energy E½ϵn� (orange) for
ϵn ¼ 1

2
junj2 and velocity variances (blue, green, and black) across

the ensemble as a function of wave number in SI units for four
increasing times. The smallest time in the variances plots the
initial non-self-similar transient, and the subsequent three times
show the self-similar propagation of the stochastic wave toward
large scales. 2E½ϵn� is almost unchanged in time and forms the
envelope of the propagating wave.

FIG. 3. Local randomization times trðnÞ as a function of length
scale ln ¼ 2−nL for the K41 initial datum. trðnÞ is defined as the
time in which the nth shell’s variance reaches the ensemble
average energy E½ϵn�. The inset plot depicts trð18Þ as a function of
the Reynolds number.
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strength [3,6,65,66]. To illustrate this point, Fig. 3 shows
the randomization time trðnÞ, defined as the time when
the nth shell’s variance reaches its ensemble average
energy, plotted versus index n. As is clear from the figure,
the randomization times above the length scale of 10 cm
for the flow parameters of the ABL are given by trðnÞ ¼
3.4ε−1=3l2=3

n . Therefore, we conclude that the length scales
of about the size of a coffee mug and above in 3D ABL
turbulence behave in a spontaneously stochastic fashion. In
Supplemental Material, Sec. XII [19], we provide a
theoretical estimate on dimensional grounds of that length
scale as a function of Re and Θ. Crucially, we observe that
trðnÞ approaches the asymptotic value ∝ ε−1=3l2=3

n for any
shell n in the limit Re → ∞: See the inset in Fig. 3. Thus,
all scales are spontaneously stochastic in that ideal-
ized limit.
Discussion.—It is important to emphasize our finding

that the spontaneous large-scale statistics are universal with
respect to the small-scale noise that triggers them, as long
as the noise amplitude becomes negligible with respect to
the deterministic equation more slowly than some
Re-dependent threshold. On dimensional grounds, we
estimate this threshold to be ∼ expð− ffiffiffiffiffiffi

Re
p Þ as Re → ∞

(see Supplemental Material, Sec. XII [19]). Even the
inevitably present molecular noise satisfies this criterion,
and our simulations suggest that it is sufficient to trigger
spontaneous stochasticity. In one turnover time of the
largest 3D turbulent eddies, the unknown molecular
motions will impact the evolution, rendering only statistical
predictions possible.
Our work has implications for turbulence across multiple

scales. For climate models, even if the projected goal of
1 km horizontal resolution in the next decade is achieved
[66], such refined resolution will not obviate the need for
stochastic models [65–68]. For the dynamics of galaxy
formation, it has already been shown that microscale chaos
and stochasticity lead to large variations in star-formation
histories and distribution of stellar mass [69], and our
results suggest that these effects may be even more severe
than currently thought. At the large scale of hydrodynamic
simulations of cosmological galaxy formation, the sensi-
tivity of simulations to minute perturbations has also been
examined with regard to chaotic dynamics [70] and would
be expected to be amplified further by the results we have
discussed [71]. Closer to home, there have been recent
efforts to reconstruct best-fit individual solution trajectories
of Navier-Stokes equations using variational data assimi-
lation techniques [72,73]. It is already recognized that
these reconstruction problems are highly ill conditioned
due to chaotic dynamics. The inclusion of spontaneous
stochasticity into this program poses even more severe
limitations and implies that a well-posed problem is instead
the reconstruction of statistical ensembles of solutions
[74,75]. These examples show that there are many potential
ramifications of spontaneous stochasticity in turbulence

and related phenomena. It will be important to determine if
our findings, based admittedly on a shell model, are valid
beyond the necessary simplifications entailed in our work.
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I. Landau-Lifschitz Fluctuating Hydrodynamics and the Role of the UV Cut-Off Λ

Here we review briefly the equations of Landau-Lifschitz fluctuating hydrodynamics and the role of the wavenumber
cut-off Λ. We explain also why taking the limit Λ → ∞ at fixed Re, Θ to obtain a continuum SPDE is physically
irrelevant to the understanding of 3D fluid turbulence.
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The fluctuating hydrodynamics equations for an incompressible fluid are given in dimensional form by:

∂tu+ (u ·∇)u = −∇p+ ν△u+

√
2νkBT

ρ
∇ · ξ, ∇·u = 0 (S1)

where ν is kinematic viscosity, T is absolute temperature, kB is Boltzmann’s constant, ρ is mass density, and the
fluctuating stress is modeled as a Gaussian random matrix field ξ with mean zero and covariance

⟨ξij(x, t)ξkl(x′, t′)⟩ =

(
δikδjl + δilδjk − 2

3
δijδkl

)
δ3Λ(x− x′)δ(t− t′). (S2)

For example, see [1, 2]. Here we consider these equations for simplicity in a periodic box and note that δ3Λ(r) in (S2)
is a “cut-off delta-function”, defined as [3]

δ3Λ(x− x′) =
1

V

∑
|k|<Λ

eik·r. (S3)

In the microscopic derivation of these equations using Zwanzig-Mori techniques, e.g. see [3–5], the viscosity is given by
Green-Kubo-type formulas which show that ν = νΛ must be cut-off dependent. This Λ−dependence of the effective
viscosity has been studied also by renormalization-group methods for a quiescent fluid in thermal equilibrium [1]. In
practical computations the values of νΛ are often fixed by comparison with molecular dynamics simulations, as in [6],
Appendix C.

The choice of the high-wavenumber cut-off Λ in the Landau-Lifschitz equations (S1) is somewhat arbitrary, but
subject to important constraints. The microscopic derivations [3–5] show that Λ must be chosen somewhat smaller
than the microscopic wavenumber 1/λmicr, where λmicr = max{λmfp, λintp} with λmfp the mean-free-path length

and λintp = n−1/3 the interparticle spacing (where n = ρ/m is the number of molecules of mass m per volume).
Note that λmicr = λmfp ≫ λintp in a low density gas and λmicr = λintp ≳ λmfp in a liquid. Empirically, the model
(S1) is found to be accurate with Λ just moderately smaller than 1/λmicr (e.g. see [7]). On the other hand, Λ must
not be chosen too small, so that the only velocity fluctuations which are eliminated by coarse-graining correspond to
local thermodynamic equilibrium fluctuations. In a turbulent flow, this implies that, at least, Λ ≳ 1/η, with η the
Kolmogorov length, so that the eliminated wavenumber modes are not subject to turbulent fluctuations. However, as
discussed at some length in our previous work [2], intermittency effects can lead to turbulent effects propagating to
sub-Kolmogorov lengths much smaller than η. In that case, it would be safer to choose Λ just a factor of a few smaller
than 1/λmicr. Note that the integral length L and η are related through the scaling L/η ≃ Re3/4 using Taylor’s relation
ε ∝ U3/L. L and λmfp are related through L/λmfp ≃ Re/Ma using the kinetic theory estimate ν = λmfpc where c is
the sound speed. In dimensionless units in terms of the outer scales, it therefore follows that the cut-off wavenumber
at the Kolmogorov-scale is Λ̂ := ΛL ∼ Re3/4 whereas the cutoff at the molecular scale is Λ̂ ∼ Re/Ma. It should be
emphasized that even the latter cut-off may not be sufficient to guarantee validity of fluctuating hydrodynamics. As
discussed in [2], extremely large, rare events could produce turbulent fluctuations at the length scale λmicr. If such
extreme events occur, then the Landau-Lifschitz equations (S1) would break down, at least locally in space-time.

The well-known renormalization group analysis of Forster et al. [1] suggests that there is a UV strong-coupling
regime in model (S1) in 3D, because the “Reynolds number” Reθ = uθ

Λ/νΛΛ of thermal velocity fluctuations uθ
Λ =

(kBTΛ
3/ρ)1/2 increases with Λ for fixed Re (even for Re ≪ 1!) Although the equations (S1) are not continuum

stochastic partial-differential equations, because of the cut-off Λ, the mathematical methods of stochastic partial
differential equations (SPDE’s) developed to study the formal Λ → ∞ limit might be relevant to describe the UV
strong-coupling regime at finite Re, if the latter occurred in a physical range of wavenumbers. However, simple
estimates [2] show that the nonlinear coupling becomes strong in (S1) only for Λ−1 of order the mean-free-path
length, or smaller, where any hydrodynamic description breaks down! This is in contrast to the situation for similar
stochastic models in less than two dimensions, such as 1D KPZ, where the RG analysis of [1] showed that the strong-
coupling regime occurs instead in a physical regime at low wavenumbers. Thus, the methods of stochastic PDE’s
to study the limit Λ → ∞ for KPZ [8] are physically very relevant, since that limit corresponds to the nontrivial
IR-attractive RG fixed point which governs KPZ scaling at low wavenumbers [9]. In other words, the infrared limit
k ≪ Λ for a microscopic stochastic growth model with physical UV cutoff Λ corresponds mathematically, by a simple
rescaling, to holding wavenumber k fixed and taking Λ → ∞.
The latter limit should be clearly distinguished from that considered in our work. Here we keep the dimensional UV

cutoff Λ fixed at some value between 1/η and 1/λmicr, while taking Re = UL/ν → ∞. In this limit, the outer-scaled

cutoff Λ̂ lies between Re3/4 and Re/Ma and thus Λ̂ → ∞, similar to KPZ. Simultaneously, however, the dimensionless
viscosity ν̂ = 1/Re and thermal noise Θ = Re−15/4θη both vanish, so that the solution of the Cauchy problem for (S1)
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with initial data u0 is described in this limit by a statistical ensemble of solutions to deterministic Euler equations,
each with initial datum u0 [10]. The infinite Re limit is governed not by an SPDE but instead by a deterministic
PDE, the Euler equations, with spontaneously stochastic solutions.

II. Spontaneous Stochasticity and Non-uniqueness of Solutions

The concept of spontaneous stochasticity was first introduced in the seminal paper [11] that studied the Kraichnan
model of passive scalar advection (see also [12]). This work showed that trajectories of Lagrangian particles advected
by a rough velocity field remain stochastic even in the limit of zero noise, a phenomenon now known as Lagrangian
spontaneous stochasticity. The limiting distribution is over the set of non-unique particle trajectories and is responsible
for the anomalous dissipation of scalars advected by turbulence [11, 13] and the emergence of universal particle
statistics in finite time. This is in sharp contrast to chaos, where universality is associated with infinite times.
Eulerian spontaneous stochasticity is a related phenomenon with the limiting distribution over the non-unique velocity
fields solving the Euler equation [14, 15]. Recently, by PDE methods of convex integration it has been shown that
there is at least a dense set of “rough” initial data for which infinitely many solutions of the Cauchy problem for
the Euler equations exist, even if one imposes the conditions that the Euler solutions are locally dissipative and
Hölder continuous in spacetime [16–18] as required for the energy cascade by Onsager’s theorem [19, 20]. Such
non-uniqueness, as illustrated by the more tractable example of Lagrangian spontaneous stochasticity, may lead to
Eulerian spontaneous stochasticity, as has been recently verified rigorously in some simple toy models [21, 22].

It is clear in retrospect that Lorenz in his seminal work [23] anticipated several key components of the modern
concept of spontaneous stochasticity. Lorenz understood the essential difference between now-standard chaos and
spontaneous stochasticity, stating that the predictability horizon of the latter would not increase with decreasing
noise. Lorenz recognized also that this fundamental property would lead to essentially stochastic dynamics. In his own
words from [23], “certain formally deterministic fluid systems which possess many scales of motion are observationally
indistinguishable from indeterministic systems”. What is added here is the clear understanding that spontaneous
stochasticity is a phenomenon that occurs in a singular limit such as Re → ∞ [11]. In this limit, Lyapunov exponents
are not merely positive, as in standard chaos, but in fact diverge to positive infinity. In Eulerian stochasticity the
divergence happens at small scales, while in the Lagrangian case divergence happens at rough points of the fluid flow.
Ultimately this is the root cause of the qualitative difference in predictability horizon of chaotic and spontaneously
stochastic systems. We furthermore stress the importance of the insight of [11] that connects spontaneous stochasticity
with non-unique solutions of a limiting singular initial-value problem. It is precisely the non-uniqueness of singular
solutions of the limiting ideal dynamics which permits the randomness from vanishingly small stochastic perturbations
to persist and to yield robust, universal statistics in a finite time, independent of the noise source. The “formally
deterministic fluid system” envisioned by Lorenz to have stochastic solutions must be the ideal Euler equation, and
not the viscous Navier-Stokes equation. The latter equation at finite Reynolds number exhibits spontaneous statistics
only if it is subject to tiny random perturbations, either in the dynamics or in the initial data, which vanish in the
limit Re → ∞. The stochastic behavior of solutions of the deterministic Euler equations requires not merely “many
scales of motion”, but in fact infinitely many infinitesimally-small scales in the asymptotic high-Re limit. We believe
that identification of the “real butterfly effect” [24] of Lorenz with Eulerian spontaneous stochasticity clarifies the
mathematical foundations of this effect and should accelerate further progress.

III. Shell Model and Numerical Methods

The recent state-of-the-art simulations of Bell et al. [25] could attain only Re = 554, which is orders of magnitude
below the value in the atmospheric boundary layer, for example. Likewise, Gallis et al. [26] using the molecular gas
dynamics method of Direct Simulation Monte Carlo (DSMC) could achieve only Re = 500 for nearly incompressible
flow and Re = 2000 for supersonic flow. While this latter paper did observe effects of thermal noise on large scales, their
Reynolds numbers were not high enough to verify the convergence of statistics which is the signature of spontaneous
stochasticity. Therefore to verify our claims it was necessary to use the Sabra shell model supplemented with an
appropriate thermal noise term.

Dynamics of velocities un in the noisy Sabra model in its nondimensional form is governed by the following system
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of stochastic ODEs (equation [9] in the main text):

dun

dt
= Vn[u, u

∗] +
√
Θknξn(t) = Bn[u, u

∗] + fn − 1

Re
k2nun +

√
Θknξn(t) =

= i
(
kn+1un+2u

∗
n+1 −

1

2
knun+1u

∗
n−1 +

1

2
kn−1un−1un−2

)
− 1

Re
k2nun +

√
Θknξn(t), (S4)

where kn = 2n/L are wavenumbers, Re = UL/ν is Reynolds number, fn represent a deterministic external forcing
to drive turbulence, and ξn are white noises that model thermal fluctuations, so that Θ = 2νkBT/ρL

1+αU3 is the
second dimensionless number due to the presence of the thermal noise term. The latter depends upon the scaling
power α of the covariance of white noise ⟨ξ∗n(t)ξm(t′)⟩ = 2δnmkαnδ(t− t), which is an important degree of freedom at
our disposal. As noted in the main text, we may write alternatively Θ = Re−βθη with θη = 2kBT/ρν

(3α+2)/4ε(2−α)/4

and with ρ assigned dimensions (mass)/(length)α. In our work we studied two different values, α = 0 and α = 3. The
noise spectrum given by α = 0 leads to high-wavenumber modes that are in equipartition and form a thermal bath.
This choice implies that there is detailed balance in the stochastic dynamics of small-scale modes. This can be seen
from the Fokker-Plank operator L

LP =

N∑
n=0

(
− ∂

∂un

(
Vn[u, u

∗]P
)
− ∂

∂u∗
n

(
V ∗
n [u, u

∗]P
)
+ 2Θk2+α

n

∂2

∂un∂u∗
n

P
)

(S5)

of stochastic dynamics (S4) with fn = 0, which is self-adjoint with respect to the Gaussian equilibrium measure

PG[u, u
∗] = exp

{
− 1

ReΘ

∑N
n=0 ϵn

}
, ϵn = 1

2 |un|2 for α = 0. See [2], Appendix A. In molecular fluids, the validity of the
hydrodynamic approximation is predicated on the assumption of local thermodynamic equilibrium. This is indeed
equivalent to high-wavenumber modes remaining in thermal equilibrium, which is why the case α = 0 is a good choice
to represent this feature of molecular fluids.

In contrast, the noise spectrum given by α = 3 leads to breaking of detailed balance and therefore the high-
wavenumber modes are not in equipartition. However, in this case the energy spectrum En := ϵn/kn scales as k2n,
as is expected in 3D fluids, and thus closer to 3D turbulence from this perspective. The k2n−scaling can be expected
from the balance of the viscous and noise term in (S4), neglecting the nonlinear interactions. To numerically verify

this expectation, we ran a simulation with the K41 initial data un = −iAϵ1/3k
−1/3
n . Figure S1 shows the modal energy

ϵn averaged over different noise realizations as a function of wavenumber at time t = 1 in dissipation units. The
modal energy at high-wavenumbers is fit to a power-law scaling, with fit depicted in green. The power-law fit has the
power of 3.00, and thus the spectrum En ∝ k2n, as expected. Since it is impossible to match exactly all of the relevant
properties of 3D Landau-Lifschitz equations with a single choice of α, we investigated both choices α = 0 and α = 3
and the overall results are insensitive to this choice.

Stochastic integration of (S4) has been performed using a slaved Taylor-Ito scheme from [27] which is nominally
3
2 -order but, in practice, 2nd-order. The details of the derivation of the scheme for stochastic Sabra model may be
found in reference [2], and here we just state the update rule for complex velocity un

un(tk+1) = e−νk2
n∆t

{
un(tk) + ∆t[Bn(tk, u(tk)) + fn(tk)] +

1

2
(∆t)2(νk2n[Bn(tk, u(tk)) + fn(tk)] + ḟn(tk))+

+
1

2
(∆t)2

∑
m

[
am

∂Bn

∂um
(tk, u(tk)) + a∗m

∂Bn

∂u∗
m

(tk, u(tk)) + 2b2m
∂2Bn

∂um∂u∗
m

(tk, u(tk))
]
+

∑
m

bm

[
∆Zm(tk)

∂Bn

∂um
(tk, u(tk)) + ∆Z∗

m(tk)
∂Bn

∂u∗
m

(tk, u(tk))
]
+ bn[(1 + νk2n∆t)∆Wn(tk)− νk2n∆Zn(tk)]

}
(S6)

Bn(u) = Vn[u, u
∗], an = Bn + fn, bn =

√
Θkn, (S7)

where fn is forcing at shell n.

IV. Stationary Kolmogorov self-similar solution, Reynolds number and time-inertial units

A few words are required to explain how to define a “Reynolds number” for the K41 solution un = −iAϵ1/3k
−1/3
n ,

which has no natural large scale L. Note that we can truncate this self-similar state at any arbitrarily large scale,
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FIG. S1: Energy ensemble average as a function of wavenumber at time t = 1 in dissipation units for the K41 initial
datum in a simulation with noise exponent α = 3. The modal energy at high-wavenumbers is fit to power-law

scaling, with fit depicted in green. The power-law fit has the power of 3.00

.

the dynamical effect of which is negligible at short enough times. As a suitable proxy for L, we instead introduce an
“observation time” to, which we will employ for non-dimensionalization. To that end we state dimensions of all the
basic dimensionful quantities

[t] = [time], [kn] = [length]−1, [u] = [length][time]−1, [f ] = [length][time]−2,

[ν] = [length]2[time]−1,
[kBT

ρ

]
= [length]2[time]−2,

[ϵ] = [length]2[time]−3, [η] = [time]−1/2.

This leads us to introduce a length-scale lo = ϵ1/2t
3/2
o , which we note from Fig. 4 in the main text is the length scale

reached by the spontaneously stochastic wave at time to. The corresponding velocity is uo = (ϵlo)
1/3 = (ϵto)

1/2. We
then non-dimensionalize the equations with these scales to obtain the Sabra model dynamics in “time inertial units”
as

dun

dt
= Bn[ui]−

1

Reo
k2nun + fn +

√
Θoknξn(t), (S8)

upon introduction of dimensionless parameters Reo = uolo
ν =

ϵt2o
ν and Θo = 2kBT

ρu3
ol

1+α
o

= Re
−3(2+α)/4
o θη. In this manner,

the limit of large Reynolds number Reo ≫ 1 over a unit time interval is achieved by simulating the model at Reo = 1,
Θo = θη for a long “observation time” to and then non-dimensionalizing as discussed above. The Reynolds numbers
Re = 6.25× 106, 15.75× 106, 39.68× 106, 100× 106 reported in Figure 1 were achieved with to = 2500, 3968, 6299,
10000.
Although the K41 solution does not have a natural cutoff, we had to introduce one for numerical purposes, employing

40 shells in our computations. In order for the inviscid solution to remain stationary with a cutoff, forcing can be
introduced at the two shells that correspond to the largest scales, which are the only shells that are directly affected
by the introduction of the cutoff. Dynamics at these two shells is given by

∂tu0 = 0 = B0[ui] + f0 = ik1u2u
∗
1 + f0 (S9)

∂tu1 = 0 = B1[ui] + f1 = i
(
k2u3u

∗
2 − 1/2k1u2u

∗
0

)
+ f1 (S10)

Hence the forcing that ensures stationarity is the following

f0 = −ik1u2u
∗
1 (S11)
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FIG. S2: Variances of shell velocities averaged over the noise ensemble for the K41 initial datum, plotted as a

function of wavenumber in the time-inertial units scaled with ℓo = ε1/2t
3/2
0 and uo = ε1/2t

1/2
o , for several Reynolds

numbers.

f1 = −i
(
k2u3u

∗
2 − 1/2k1u2u

∗
0

)
(S12)

These values of forcing held constant were used in the whole simulation with K41 initial state.

To illustrate that, beyond the initial transient, stochastic evolution from the K41 state is self-similar, we plot
variances of shell velocities across the noise ensemble as a function of wavenumber for several Reynolds numbers in
time-inertial units (see Fig. S2). Outside the dissipation range and the region close to the numerical large-scale
cutoff the data points collapse to a very good approximation, which provides evidence of self-similarity of stochastic
dynamics. An even more refined evidence in terms of probability distributions of the absolute values of shell velocities
is given in the main text.

V. Burst initial datum

The “burst” state was generated to represent a quasi-singular state that naturally arises in the dynamics of Sabra
model. Because of the very high Reynolds number required, the state was not generated via direct dynamics, but rather
by a sequence of three steps. Each step corresponds to evolution of 40 shells with decreasing viscosity ν = 106, 103, 1.
At the first step the dynamics was carried out for 10 large eddy turnover times L/U . The second and third steps were
carried out for 104 and 103 viscous times respectively. This was done to ensure that the small scales are representative of
dynamics with the corresponding viscosity, while keeping overall simulation time manageable. At ν = 1 the simulation
had only 5 shells in the dissipation range, which is marginally adequate for calculating statistical steady states but
suffices to construct a single realization. In our subsequent simulation with thermal noise the randomness washes out
the fine details of the deterministic evolution in the dissipation range and reduces the resolution requirements [2].
Furthermore, the effects we are examining and measuring occur in the inertial range, which is well-resolved.
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FIG. S3: Absolute values of shell velocities of a burst initial state as a function of shell index n = log2kn + log2L,
and a power-law fit with exponent −0.258.

Using this procedure we identified the following “burst” state:

u = [2.70338267×103−4.29501775×103i,−5.99644021×102−1.08362024×103i,−1.73526401×102−8.70031976×102i,

−6.62990674×102+4.43382806×102i, 3.50125557×102+1.94712011×102i,−2.90199477×102−1.47957982×102i,

1.99604442× 101+3.17275261× 102i,−3.87134201× 101− 6.38137074× 101i,−6.81213766× 101+2.00246718× 102i,

−3.05298025×102+9.49052891×101i, 4.02510712×102+8.48877540×101i,−2.93971753×102−1.75452647×102i,

−1.65022863×102−2.13115578×102i,−2.33841272×102+1.26798430×102i,−6.08830647×101+1.50048655×102i,

−1.28391586×101−1.20865013×102i, 1.98177167×101+1.51201621×102i,−1.47897620×101+1.33319974×102i,

−2.35708969×10−1−1.15215796×102i,−6.96084174×101+6.92793032×101i,−7.05189999×101−5.46971275×101i,

−4.89715996×101+3.74218157×101i,−3.41976233×101+4.18048345×101i, 6.54699804×100+1.35739046×101i,

1.50962455× 101 + 2.39918367× 101i,−2.04000328× 101 − 3.26894560× 101i, 1.65019396× 101 − 3.49312633× 100i,

− 2.94633411× 10−1− 7.39808658× 100i, 2.77261064× 100+1.71067071× 100i, 4.92888927× 100+1.19176886× 100i,

−1.09264397×100−2.89297482×100i, 1.92793947×100+3.61432832×100i,−2.40679385×100+2.32440175×100i,

2.66376041×100+1.05559511×10−1i, 4.77644022×10−1−2.06105535×100i, 7.31776213×10−1+6.51759355×10−1i,

8.37075637×10−2+1.93103368×10−1i,−1.07909657×10−2−4.72826940×10−3i, 7.46353392×10−5+3.30852429×10−6i,

6.18596728× 10−9 − 1.20561074× 10−8i].

In Fig. S3 we depict the absolute values of the burst state as a function of shell index. The scaling of the absolute
values is roughly described by the Hölder exponent h ≃ 1/4. The values of u0, u1, u2 given above were used to calculate
the constant forcing in the simulation of the dynamics of the burst state from (S11) and (S12).

VI. Supplement to Figure 1(c): Varying Reynolds number for the “burst” initial condition.

We explain here briefly how we performed the numerical simulations for the “burst” initial datum at different
Reynolds numbers Re = UL/ν obtained by varying ν. The main computational issue in performing these integrations
was the choice of time-step ∆t. The scaling of the viscous wavenumber is given by

kν ∝ (ϵν−3)1/4. (S13)

Therefore increasing of viscosity by a factor of 25 decreases the viscous wavenumber by a factor of 215/4, which is
equivalent to a shift of index n by −3.75. Given that our slaved integration scheme requires νk2n∆t to be small,
decreasing our truncation index by 4 allowed us to increase the timestep in our simulation as follows

∆t′ ∝ 1

(25ν)k2N−4

= 23∆t. (S14)



8

FIG. S4: Transition probability density function for the absolute values |un| at a single fixed shellnumber n = 18
and time tf = 1, exactly as in Fig.1(a) in the main text, but with thermal noise turned off. The PDF’s for

Re = 6.25× 106 and Re = 108 are identical and lie on top of each other. For comparison, the original PDF’s from
Fig. 1(a) in the main text are replotted here as well.

The nominal Reynolds numbers achieved by this approach are extremely large, up to 1014. However, for the study of
spontaneous statistics at shell n = 18 in Figure 1, panel (c) these large Reynolds numbers are unrealistically inflated,
because the modes with shell numbers n < 18 are essentially frozen on the time-scales of interest and play no role. We
have therefore defined Reynolds number for the purpose of Figure 1(c) by the length-scale ℓn and root-mean-square
velocity Un that correspond to the shell of interest, that is n = 18. The final-time r.m.s. velocity is calculated by an
average over noise realizations.

VII. Supplement to Figure 1: Control experiment without thermal noise

As a simple control experiment, we have recalculated the transition PDF’s plotted in Fig. 1(a), but now with
thermal noise set identically to zero. The results are plotted in Fig. S4, where it can be seen that the PDF’s become
Dirac delta functions. This is expected because, in the absence of external noise, we are solving deterministic ODE’s in
finitely many variables with deterministic initial data. There is thus exactly one solution of the initial-value problem
for each Reynolds number and the corresponding unique value of |u18| lies in a single bin of the histogram plotted
below for the control experiment. There is no discernible limit as Re → ∞. In fact, we observe periodicity in Re,
explaining why the result for Re = 6.25× 106 and Re = 108 coincide. Our observations are consistent with rigorous
results of [28, 29], who proved that solutions of the viscous Sabra shell model will in general converge as Re → ∞ to
a weak solution of the inviscid Sabra model with infinitely many shells. However, such convergence is only obtained
along a suitable subsequence of Reynolds numbers, and the limiting solution may depend on the subsequence. Fig. S4
illustrates how essential is the thermal noise (or some external noise) for the results in Fig. 1 of the main text.

Although the randomness appearing in Fig. 1 of the main text is due to the thermal noise, it is not a direct effect
of that noise. As discussed in the main text of the letter, the observed randomness is due instead to the “inverse error
cascade” of Lorenz, which propagates the effect of thermal noise from the dissipation range up to any inertial-range
scale in a few local turnover times. To explain why the direct effects of thermal noise are negligible, let us consider
the parameter values α = 0, n = 18, and tf = 1 used in Fig. 1(a). Note that the direct thermal noise effects are even
smaller for the other cases illustrated in Fig. 1(b,c). The r.m.s. velocity due to the direct effect of thermal noise is
uθ
rms = (2Θk2+α

n tf )
1/2 with Θ = Re−βθη, where for all cases considered we took the value θη = 2.83 × 10−8 typical

of the atmospheric boundary layer. Thus, for n = 18 at the lowest considered Reynolds number, Re = 6.25 × 106,
we have uθ

rms = 4.99 × 10−4 and at the highest Reynolds number, Re = 108, we have uθ
rms = 6.24 × 10−5. These

values are obviously negligible compared with the r.m.s velocity of the spontaneous statistics exhibited in Fig.1(a).
These large spontaneous values originate from the stochastic wave shown in Fig. 2 of the main text, which arrives
to shellnumber n = 18 at a dimensionless time t = 3.4(218)−2/3 = 8.3 × 10−4, asymptotically independent of Re.
The large spontaneous fluctuations seen in Fig. 1(a) are thus due to thermal noise effects in the dissipation range
propagated up into the inertial range by nonlinear error cascade, and not due to direct local effects of thermal noise.
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(a) Self-similar initial state with noise scaling α = 0. (b) Self-similar initial state with noise scaling α = 3.

FIG. S5: Probability density functions of the energy flux Π18 for a fixed wavenumber and time in inertial units for
several Reynolds numbers. All the errors are estimated as standard errors using the bootstrap method.

(a) n = 10 (b) n = 20

FIG. S6: Growth of variance Var[un] (blue line) as a function of time. For comparison we also plot the function
4θηk

2
nt (orange line), which clearly coincides with Var[un] for early times once the variance supersedes the roundoff

error.

VIII. Supplement to Figure 1: Energy flux probability density functions

In Fig.1 of the main text we plotted probability density functions of |un| for multiple Reynolds numbers as evidence
of spontaneous stochasticity. To provide more evidence, Fig. S5 plots probability density functions of energy flux
Πn = 1

2Tn−1 + Tn with Tn = knIm{u∗
nu

∗
n+1un+2}. These appear as well to converge to limiting distributions with

increasing Re.

IX. Dimensional analysis of the self-similar stochastic wave

The self-similarity of the stochastic wave propagation is best visible in the evolution of the total variance Var(u) =∑
n Var(un) summed over all shells, with

Var(un) := ⟨|un − ⟨un⟩|2⟩. (S15)

Here the average is over the ensemble of noise realizations. This quantity is plotted in Fig. S7 for both the K41
(panel a) and the “burst” (panel b) initial conditions, at several values of Re. Note that the thermal noise in
(S4) by itself would produce diffusive variance growth, linear in time for each shell. This linear growth is given by
Var(un) ∼ (2θη/Re3/2)k2nt, or Var(un) ∼ (4νkBT/ϱ)k

2
nt before non-dimensionalization, which is what we observe for
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(a) Stationary K41 initial state. (b) “Burst” initial state.

FIG. S7: Total variance growth as a function of time in inertial range units for the two initial states. The inset plots
show the total variance growth as a function of time in SI units for the largest Reynolds number. The green line on
the inset plots shows predicted power-law growth in the self-similar regime, and the red line on the inset plots shows

exponential fit in the chaotic regime.

each shell separately at early time. This can be seen in Fig. S6 for n = 10 and n = 20, but similar behavior is
found for all n. Note the slight deviation from linear growth near t = 0 due to round-off error of the double precision
arithmetic.

Exponential growth, indicated by the red curve in the insets in Fig. S7, commences when the nonlinearity starts
to dominate, which is the chaotic phase predicted by Ruelle [30]. Finally, however, power-law growth ensues, to a
very good approximation for the K41 initial datum and to rough approximation for the “burst” datum. For any
exactly self-similar initial condition scaling as un = Ak−h

n , the variance could be expected to grow as a power law

Var(u) ∝ A
2

1−h t
2h

1−h on dimensional grounds. This is observed in Fig. S7 for the K41 solution, where h = 1/3 gives
Var(u) ∝ εt, in good agreement with the numerical results. Notice that this is the same power-law observed in
previous studies of predictability of turbulence, both by analytical closure [31] and by direct numerical simulation
[32, 33]. For the “burst” solution the power-law Var(u) ∝ t2/3 predicted for h

.
= 1/4 is only crudely consistent with

the data. In the spirit of the multifractal model [34], we conjecture that power-law growth would be recovered if
the variance were averaged over many such “burst” initial data all selected from the statistical steady-state with the
same Hölder exponent h. Averaging further over a distribution of h-values should reproduce the anomalous growth
⟨|δu(t)|p⟩ ∼ tξp , with ξp nonlinear in p, previously observed for growth of differences δu(t) = u′(t) − u(t) between
solutions in shell models [35].

X. Statistics of Kolmogorov multipliers and super-universality

Once the stochastic wave has passed a given shell n, further changes at that scale are due only to the intermittent
nature of the turbulent dynamics behind the front, which we find to be similar to that in the infinite-time statistical
steady-state. To expose this deep similarity, we consider the Kolmogorov multipliers [36] for the shell amplitudes ωn =
|un|/|un−1| and the phase multipliers [37] ∆n = arg

(
un−2un−1u

∗
n

)
, which have been used previously to characterize

the build-up of intermittency in the turbulent cascade. The PDF’s of angle multipliers are shown in Fig. S8 for three
fixed shells, n = 16, 18, 20, as a function of time. They are invariant under the shift n 7→ n − 1, t = τn 7→ t = τn−1,
which is a consequence of the self-similar growth. Furthermore, unlike the PDFs of modal energy and energy flux,
which keep evolving in time for each shell and only coincide in time-inertial units, the PDFs of multipliers saturate
and become time-invariant past the front. This is indicative of the scale-invariance of the multiplier statistics, a well-
known feature in the turbulent steady-state which has been explained there by a “hidden symmetry” [38, 39]. In fact,
the multiplier PDFs in the stochastic wake of the traveling wave are indistinguishable from those in the infinite-time
steady state. This is what we call super-universality of the multiplier statistics, distinct from the usual universality
of the spontaneous statistics, that is, its independence from the precise regularization and the small-scale noise
that triggers it [14]. As evidence of super-universality in the Sabra model, we compare the probability distribution
functions of magnitude and angle multipliers in the wake of the stochastic front with those same probability densities
observed in a turbulent steady-state from our previous study [2]. As seen in Fig. S9, there is excellent agreement.
As a consequence, we expect that structure functions ⟨|un|p⟩ calculated in the stochastic wake will exhibit anomalous
scaling ∼ (ε/kn)

p/3(knℓ(t))
−δζp , exactly as in the steady-state cascade but with usual outer length L replaced by ℓ(t).
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(a) n = 16 (b) n = 18 (c) n = 20

FIG. S8: Probability density functions of angle multipliers as a function of time in SI units for several shell indices
in the inertial range. The three subfigures illustrate the self-similarity of the stochastic wave, which follows from

identical probability density functions for different shells up to a time shift.

(a) Angular multipliers (b) Magnitude multipliers

FIG. S9: Comparison of the probability distributions of angle and magnitude multipliers in the steady-state with
the probability distribution in the stochastic wake past the front.

Super-universality thus implies that characteristic turbulent statistics are reached in finite time, unlike the universal
steady-state distributions in low-dimensional chaotic systems which require an infinite time limit.

XI. Supplement to Figure 2: Lorenz plot for “burst” initial datum

In Fig.2 of the main text we presented a plot analogous to that of Lorenz (1969) [23], in his Figure 2, for our shell
model with K41 initial data. Fig. S10 shows the similar plot for the “burst” initial datum, exhibiting a similar spread
of stochasticity across scales.

XII. Theoretical Estimate of the Condition for Eulerian Spontaneous Stochasticity.

Building on the earlier work of Ruelle [30] and Lorenz [23], we can provide a theoretical estimate of the randomiza-
tion times tr(n), which will also allow us to estimate how we can take the double limit Θ,Re−1 → 0 to arrive at the
spontaneously stochastic state. According to Ruelle’s estimate [30] the time it takes for a thermally-triggered distur-

bance ∆ of velocity to become significant at the Kolmogorov scale η of a turbulent flow is tR ∼ (ν/ε)1/2log(θ
−1/2
η ).

The growth of a disturbance in Ruelle’s regime is exponential with Lyapunov exponent that corresponds to the Kol-
mogorov scale, but after it reaches the inertial range it enters the Lorenz regime, and grows in a self-similar way
across the cascade. If we assume complete self-similarity, then by dimensional argument the disturbance grows as
∆(t) ∼ ε1/2(t− to)

1/2, and its length-scale propagated up the cascade is ℓ(t) ∼ ε1/2(t− to)
3/2. Both of these scalings

have been verified in our numerical simulations as can be seen in Fig.S7 and in Fig. 2 of the main text. Here to is a
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FIG. S10: Twice ensemble average energy E[ϵn] (•) for ϵn = 1
2 |un|2 and velocity variances (•,•,•,•) across the

ensemble as a function of wavenumber in SI units for 4 increasing times. The smallest time in the variances plots the
initial transient and the subsequent three times show the propagation of the stochastic front across the inertial range

towards large scales. 2E[ϵn] of the initial state is provided for comparison with the Fig. 2 of the main text.

constant to be determined from matching Ruelle’s and Lorenz’ regimes. From the condition that Kolmogorov-scale
velocity perturbations are of order ∆(tR) ∼ (εν)1/4 and the expressions for ∆(t) and ℓ(t), we deduce to ∼ tR−(ν/ε)1/2.
This implies that the randomization time tr(ℓ) required for the stochastic wave to reach the scale ℓ is the sum of
two terms: one proportional to the eddy-turnover time (ℓ/L)2/3(L/U) ∼ ε−1/3ℓ2/3 and the other dependent on the

magnitude of thermal noise and proportional to Re−1/2
(
log(θ

−1/2
η )− 1

)
(L/U). If the limit Re−1, Θ → 0 is taken in

any manner such that

Re−1/2logθη → 0 (S16)

we arrive at the self-similar randomization time tr(ℓ) → Cε−1/3ℓ2/3, which is independent of the noise strength. The
existence of a non-zero limit for tr(n) is the precise statement of spontaneous stochasticity. This result is consistent
with earlier investigations of toy models of spontaneous stochasticity [21, 40], which suggest it is sufficient that the
double limit be taken with Θ not decaying faster than e−γRe, where γ is a constant. Such extreme robustness of
spontaneous stochasticity is one of its characteristic features.

The above heuristic arguments based on “eddy-turnover times” at each length-scale are closely related to the

spectrum of Lyapunov exponents observed in chaotic shell models [41], where local exponents λn ∼ ±ε1/3k
2/3
n are

observed by numerical calculations at each wavenumber kn in the inertial-range of scales. The existence of such a
Lyapunov spectrum implies that the leading (largest positive) Lyapunov exponent must diverge as Re → ∞. Such a
spectrum of Lyapunov exponents thus constitutes a more refined criterion for existence of the “inverse error cascade”
conjectured by Lorenz.
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