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Abstract

In this thesis, I consider systems from two seemingly different fields: fluid dynamics and microbial ecology.

In these systems, the unifying features are the existences of global non-equilibrium steady states. I consider

generic and statistical models for transitions between these global states, and I relate the model results with

experimental data. A theme of this thesis is that these rather simple, minimal models are able to capture a

lot of functional detail about complex dynamical systems.

In Part I, I consider the transition between laminar and turbulent flow. I find that quantitative and

qualitative features of pipe flow experiments, the superexponential lifetime and the splitting of turbulent

puffs, and the growth rate of turbulent slugs, can all be explained by a coarse-grained, phenomenological

model in the directed percolation universality class. To relate this critical phenomena approach closer to

the fluid dynamics, I consider the transition to turbulence in the Burgers equation, a simplified model for

Navier-Stokes equations. Via a transformation to a model of directed polymers in a random medium, I find

that the transition to Burgers turbulence may also be in the directed percolation universality class. This

evidence implies that the turbulent-to-laminar transition is statistical in nature and does not depend on

details of the Navier-Stokes equations describing the fluid flow.

In Part II, I consider the disparate subject of microbial ecology where the complex interactions within

microbial ecosystems produce observable patterns in microbe abundance, diversity and genotype. In order to

be able to study these patterns, I develop a bioinformatics pipeline to multiply align and quickly cluster large

microbial metagenomics datasets. I also develop a novel metric that quantifies the degree of interactions

underlying the assembly of a microbial ecosystem, particularly the transition between neutral (random)

and niche (deterministic) assembly. I apply this metric to 16S rRNA metagenomic studies of 6 vertebrate

gastrointestinal microbiomes and find that they assembled through a highly non-neutral process. I then

consider a phase transition that may occur in nutrient-poor environments such as ocean surface waters. In

these systems, I find that the experimentally observed genome streamlining, specialization and opportunism

may well be generic statistical phenomena.
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Chapter 1

Introduction

My work has been seemingly in different fields: microbial ecology and fluid dynamics. In particular, I have

considered phase transitions in these systems. The underlying question that I asked in this thesis is: how

do complex, spatially-extended and non-equilibrium systems transition between global states? My interest

has been in answering aspects of this question in the context of quantitative biology and microbial ecology,

as well as in fluid dynamics.

1.1 Transition to Turbulence

In fluid dynamics, my research has focused on the study of the transition to turbulence. Some background

information about transition to turbulence is given in Chapter 2, but we give a brief introduction here. The

phase of fluid flow depends upon the Reynolds number, Re, the dimensionless ratio of the inertial forces to

viscous dissipation. In pipe flows, even at high Re, laminar flow is possible but the slightest disturbance

nucleates the state of turbulence. The regions of turbulence (turbulent slugs) can expand but they can also

spontaneously decay back to laminar flow (turbulent puffs). In physics, the abstract process of directed

percolation has these same properties: sites on a lattice that are active can expand or spontaneously become

inactive (absorbed).

Directed percolation is a ubiquitous process in nature: it occurs in a wide range of problems such as

fluid percolation through porous rock, species expansion in ecology and spread of infections and immunity.

Could the transition to turbulence problem in fact be in the directed percolation universality class? Yves

Pomeau had this intuition in 1986 [1] and I set out to quantitatively test its validity. The results of this

work are presented in Chapter 3. I simulated the directed percolation process in 3+1 dimensions in a

pipe geometry. Under the critical threshold, I found that the characteristic lifetimes of the active states

are superexponential in percolation probability. The same functional form for lifetimes of puffs in pipe

flow experiments has been observed experimentally [2]. Also, the front growth rates of active regions in

supercritical directed percolation match those observed in turbulent slug experiments [3]. Without using
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any details of the Navier-Stokes equation of fluid flow, I find that Directed Percolation model fits the

functional form of many generic properties of pipe flow turbulence, with no adjustable parameters.

Pomeau gave intuitive arguments but no proof to support his conjecture. It is important to be able

to show in more detail how the mapping between Navier-Stokes turbulence and directed percolation might

arise. To answer this, I considered the transition to turbulence in Burgers Equation. This work is described

in Chapter 4. Burgers’ equation is a simplified form of Navier-Stokes equation, with the pressure term

dropped. The pressure term is important for creation of vorticity in turbulence. However, it may be the

case that at the directed percolation transition point the pressure is an irrelevant variable in the sense of

Wilson [4]. The Burgers equation has a mapping to the KPZ equation, which in turn has a mapping to a

statistical model of directed polymers in a random external potential. In this directed polymers model, it is

known that scaling of the polymer fluctuations can undergo a directed percolation transition [5].

Taken together, this quantitative evidence suggests that the transition to turbulence occurs as a statistical

phenomenon, a non-equilibrium phase transition in the directed percolation universality class. The details

of Navier-Stokes equations governing the flow are not necessary to explain the universal features of observed

puff lifetimes and turbulent front growth rates in pipe flow experiments. More generally, the transition

to turbulence in any fluid described by Navier-Stokes equation appears to be in the Directed Percolation

universality class.

1.2 Microbial Ecology

My study of microbial ecology began with my interest in the forces that structure communities of microbes,

such as those inhabiting the gastrointestinal tract or waters in the oceans. Because culturing bacteria in

the environment is essentially impossible in such cases, for many reasons, research focuses on sampling

cellular DNA/RNA from these communities, using techniques known as metagenomics. In metagenomic

studies, one sequences the living matter within an environment in order to ascertain the composition of

the microbiome, the community formed by the microbes living within that environment. One can observe

interesting ecological patterns in metagenomic datasets, such as functional forms of the species abundance

curves and the extent of their diversity. Metagenomics and ecology is introduced in more detail in Chapter

5.

The questions one naturally asks are: what species are present? In what abundance? And how does this

community drive the function and evolution of the ecosystem? In the case of microbes, these questions are

hard to answer because the species concept is not strictly applicable, and one has to resort to genomics to
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identify, classify and count the organisms.

In order to be able to study these patterns, I developed a bioinformatics pipeline to process microbial

metagenomics datasets. This pipeline is described in Chapter 6. While developing this pipeline, I addressed

the problem of multiply aligning large metagenomic 16S rRNA datasets in such a way that analysis artifacts

are kept at a minimum. Secondary structure (base pairing structure) is important for RNA sequences, and

hence one should use a secondary-structure aware aligner for regions with strong secondary structure. For

regions with no fixed secondary structure (hyper-variable regions), template based aligners are appropriate.

I showed that the procedure of combining the two alignment methods using our pipeline outperforms each

tool used separately.

To correctly study the ecology of a microbiome using 16S rRNA sequencing, it is also necessary to be

able to cluster the sequenced 16S tags into OTUs (Operational Taxonomic Units), a proxy for species that

is widely used by microbiologists. I developed a tool that can perform a good clustering procedure in a way

that minimizes the artifacts due to overlapping clusters. The clustering algorithm is also sufficiently fast

that it is applicable to larger datasets. I also investigated more heuristic clustering algorithms that may be

applicable to even larger, contemporary datasets. The clustering work is described in Chapter 7.

With the appropriate bioinformatics tools developed, I turned my attention to the problem of under-

standing the diversity, composition and ecological community structure of the gastrointestinal microbiomes.

The perspective that I acquired is a physical one: the OTUs are considered as points in a high-dimensional

sequence space. With this view of a metagenomic dataset, the next question was: how do microbial commu-

nities assemble? When capacity in the environment becomes available for an additional bacterium, where

does this additional bacterium come from? Does it enter the community through a cell division, or immi-

gration? I implemented fast large dataset dimensional reduction methods, as well as physical models and

digital life simulations to study this problem. As a result, I have formulated a novel metric that quantifies

the degree by which interactions underlie the assembly of a microbial ecosystem.

I applied this metric to 16S rRNA metagenomic studies of 6 vertebrate gastrointestinal microbiomes

and found that they assembled through a highly non-neutral process. This is despite the fact that OTU

abundance curves in these datasets perfectly match the results of Hubbell’s Neutral Theory which assumes

that species (OTUs here) behave as if they were functionally equivalent. This indicates that abundance

approaches alone are not sufficient in studying microbial communities; an approach that combines abundance

and genomic data is necessary. This work is presented in Chapter 8.

I then turned my attention to the study of ocean picoplankton microbiome. This work is described in

Chapter 9. Again, a fusion of genomic and abundance data shows that, in these energy-starved conditions,

3



the picoplankton populations split into two different subpopulations. One population is abundant, special-

ized and adapted to living in such conditions. The other population is rare, generalist and opportunistic.

I modeled this system with a rather general, energy-centric agent model. I found that, in steady state

conditions, the organisms in the model simulations undergo an interesting symmetry-breaking transition

towards a specialized state. They also streamline their genome shedding unnecessary functions, much like

the picoplankton microbes do. However, in fluctuating conditions, the opportunistic plankton thrive. In the

theme of this thesis, there is a phase transition of the evolution of the genomes of the microbial plankton as

a function of the environmental conditions.

1.3 My contributions

All calculations and numerical simulations presented in this work have been performed by me in close

collaboration with Nigel Goldenfeld. All the figures and plots have been generated by me apart from the

following exceptions. The theoretical work in Chapter 4 has been in close collaboration with Hong-Yan Shih.

Work in Chapters 6 and 8 has been in close collaboration and discussion with Patricio Jeraldo and Nicholas

Chia. In particular, Patricio Jeraldo developed the merging script described in Section 6.2.1, and cleanup,

quality filtering and taxonomy steps in the TORNADO pipeline. He also originally aligned, clustered and

analyzed the chicken caecum datasets, and he created the Figure 8.9. Vikyath Deviprasad Rao created the

video tutorials for the TORNADO pipeline. Work in Chapter 7 will be published in collaboration with Carl

Yeoman. Carl Yeoman generated Figures 7.1 and 7.2 and conducted the study in Section 7.3.1.

1.4 List of publications

Three peer-reviewed publications make their appearance in this thesis. The bulk of Chapter 3 has previously

been published in [6]. The chapter is slightly extended here with additional text and figures that could not

fit into a PRE(R) publication. Chapter 6 has been slightly extended from the original publication in [7].

Finally, the bulk of Chapter 8 has been published originally in [8], but extended here with some further

discussion. Further publications are planned for work described in chapters 4, 7 and 9.
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Part I

Transition to Turbulence in Fluids

5



Chapter 2

Introduction to Fluid Dynamics,
Transition to Turbulence and
Directed Percolation
In its simplest classification, a fluid flow can be said to be laminar (smooth, regular) or turbulent (erratic,

irregular). For Poiseuille flow [9, 10] (pipe flow), in the laminar case the fluid velocity along the axis of the

pipe has a parabolic profile: the fluid flows the fastest along the central axis of the pipe and its velocity is

zero along the walls of the pipe. There is virtually no flow along the other components of the velocity field.

Flow is smoothly confined to the concentric circular layers, laminas, and hence it is termed laminar. In the

case of turbulent flow, the flow field has non-zero fluctuating components perpendicular to the pipe axis.

Eddies form in the pipe as result of fluctuations in the pressure. In this Part, we will investigate how the

transition between these two types of flow occurs.

We will not study the precise mechanisms that trigger this transition. Generally, any sufficiently large

fluctuation will initiate a transition from a laminar flow to a turbulent one, at sufficiently high fluid veloc-

ity [11]. Rather, we are interested in what we can say about the generic properties of this transition (those

properties not dependent upon the specifics of the experimental setup). How does the turbulent state, once

developed, expand into the laminar state? How long does the turbulent state persist? What mathematical

analogues can be used to tie in this grossly statistical perspective to the actual fluid dynamics as embodied

in the Navier-Stokes equations?

In this Chapter, we begin this study by recounting a brief history and phenomenology of the subject

in Section 2.1. Section 2.2 introduces the Navier-Stokes equations of fluid flow and the statistical laws of

Turbulence. In Section 2.3 we introduce the relevant statistical theory: the universality class of Directed

Percolation and we described its experimental verification.

2.1 Brief History and Introduction

Pipe flow was first systematically studied by Poiseuille in the mid 19th century [9], who discovered the laminar

parabolic velocity profile and dependence of pressure, pipe length and radius on flow velocity. In parallel,

Hagen studied the same relationships and noted the laminar-turbulent transition and the perturbative effects

6



of the entrance of the pipe [10]. The transition was first studied in detail by Reynolds in the late 19th

century [12]. To characterize the flow state, he introduced the dimensionless parameter bearing his name:

Re ≡ UL/ν. Here U and L are characteristic flow velocity and length scales, and ν is the kinematic viscosity.

Figure 2.1: Sketches of the Reynolds experiment (left) and his dye observations (right) from [12]. Images
scanned from [12] by Emmanuel S. Boss.

Reynolds’ experimental setup was a large glass pipe with a flared entrance that carried water through

it (See Figure 2.1). A thin pipe carrying dye was placed near the entrance of the pipe. Reynolds observed

the dye as it advected down the pipe carrying water. In some cases the dye advected in straightforward jet

fashion, but when fluid velocity was large (or the pipe wide enough), the dye stream would sometimes mix

rapidly at points along the pipe in puff-like motion. Reynolds noted the spontaneousness and the abruptness

of this transition (it could occur anywhere along the pipe) and he termed the resulting motion sinuous. This

was an important first observation of the sensitive laminar-turbulent transition in pipes, as well as the first

observation of the enhanced mixing effect of turbulence. An interesting recollection of Reynolds’ experiments

is given in [13] in context of the period and his peers.

Many studies have attempted to elucidate the transition to turbulence in a pipe since the time of Reynolds.

In the 1970’s, Wygnanski et al. [14] used hot wire anemometers and electronics to systematically describe the

phase diagram of the transition as function of Re. They had a long pipe (500 diameters), carrying air, and

a tunable inlet obstruction (serving as the source of the disturbance). At sufficiently high inlet disturbance

and at Re ∼ 2000 they observed that the turbulent regions in laminar pipe flow appear as metastable “puffs”

that can split and decay [15]. These puffs are localized regions of turbulence that fill the cross-section of the

pipe. They extend along the pipe and have wide, noisy and rough leading and trailing edges. Wygnanski et
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al. also noticed, at higher Re ∼ 2700 and smaller inlet disturbance that turbulence can appear in the form of

stable regions of turbulent flow called “slugs”. Unlike puffs, slugs grow with time and have clearly defined,

sharp turbulent-laminar interfaces.

This interesting phenomenology observed by Wygnanski et al. is in seeming contrast to the fact that

laminar pipe flow is linearly stable to perturbations. Whereas the calculations of linear stability have to

be performed numerically [16], they have been extended to very large Re = 10, 000, 000 [17] and they show

that laminar Poiseuille profile is linearly stable to all perturbations. Since finite disturbances can trigger

a transition to the turbulent state, as Wygnanski et al.’s experiments showed, this indicates a subcritical

pitchfork bifurcation in chaos theory [18]. In fact, it is known that near the transition the dynamics can

be decomposed into the interaction of a small number of nonlinear modes, that have been predicted based

on direct numerical simulations [19, 20, 21], and observed in experiments using high-speed particle image

velocimetry [22, 23].

The phase diagram of the transition from laminar to turbulent flow in a pipe is still an active area of

investigation today [24, 25, 26, 27]. The estimations for the values of Re at transitions between phases have

varied widely. It is known that for sufficiently low Re the fluid flow is always laminar and any turbulent

disturbances decay immediately. Traveling wave solutions are possible at Re < 1650 [19, 20, 21, 22]. When

1650 < Re < 2050, turbulent puffs appear. They are metastable and memoryless–their survival probability

is exponentially distributed:

P (Re, t) = exp

(
− t− t0
τ(Re)

)
, (2.1)

where τ(Re) is the average lifetime which was found to grow superexponentially with Re [2]:

τ(Re) = τ0 exp[exp(c1Re + c2)] (2.2)

where τ0, c1 and c2 were fit from the empirical data. For larger values of Re, the characteristic lifetime of

puffs grows, and they begin to split and show complex spatiotemporal behavior [28, 29]. In this regime, the

puffs interact with a characteristic distance: if puffs come too close to each other, they may spontaneously

annihilate [30]. The average random time between two puff split events reduces in superexponential manner

as Re increases from 2000 to 2400. At Re = 2040, the time between two puff split events is roughly the same

as the lifetime of the puff at Re = 2040, thereby leading some authors to term Re = 2040 as the critical

point for sustained turbulence in pipe flows [27, 31]. The splitting process and spatiotemporal intermittency

continue as Re is increased, and turbulence is easier to induce. It is known that the threshold to induce

turbulence scales as Re−1 [11]. When Re exceeds a critical value Rec ∼ 2500, for a sufficiently large inlet
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disturbance, a slug grows with clearly defined, sharp, turbulent-laminar interface and a growth rate that

scales approximately with
√

Re− Rec [3, 32].

2.2 Fluid Dynamics

In this Part, we will use some concepts from fields of Fluid Dynamics and Turbulence in motivating and

analyzing our models. Hence, in Section 2.2.1 we give some elementary introduction to the key equations of

fluid flow, the Navier-Stokes equations. Then we introduce some relevant background on what is meant by

Turbulence in Section 2.2.2.

2.2.1 Navier-Stokes Equation

When one considers the stresses acting on an element of a fluid, and one writes the Newton’s law of motion

for that element, one obtains the Navier-Stokes equations [33]

∂tu + (u · ∇)u = −1

ρ
∇P + ν∇2u + ξ, (2.3)

where the incompressibility of the flow is expressed via

∇ · u = 0. (2.4)

Here u(x, t) is the fluid velocity at position x and time t, ν is the kinematic viscosity, ξ is the external

driving force, which may include a stochastic component, P is the pressure and ρ is the fluid density. The

pressure is implicitly defined by (2.4). In particular, the term −(1/ρ)∇P has the effect that the evolution

of the u field does not violate (2.4). One can show that P satisfies a Poisson equation at time t explicitly in

terms of u via [34]

∇2P = −ρ∂Ui
∂xj

∂Uj
∂xi

. (2.5)

Setting a length scale L for x, a velocity scale U for u, and a time scale L/U for t, yields

∂tu + (u · ∇)u = −∇P +
1

Re
∇2u + ξ, (2.6)

where Re = UL/ν. Here, we can see that the Re is the ratio of the strength of the non-linear inertial force

(how much the fluid resists motion, UL) and the viscous dissipation (ν). Turbulence occurs when Re is large

and the nonlinear effects are large in comparison to the viscous Laplacian “smoothing” of the velocity field.
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The fluid vorticity,

ω ≡ ∇× u (2.7)

satisfies the equation of motion

∂tω + (u · ∇)ω = ν∇2ω + ω · ∇u +∇× ξ. (2.8)

(2.8) can be obtained by taking the curl of the Navier-Stokes equations. The pressure term dropped out

since the curl of a gradient is always zero. Here, the ω · ∇u is termed the vortex stretching term, and it

only exists in 3-dimensional flows. In 2-dimensional flows, this term is missing, and this is a reason why

2-dimensional turbulence is qualitatively different from 3-dimensional turbulence. One of the consequences

of this difference is that 2D turbulence has two types of cascade, each of which is characterized by a different

energy spectrum in the inertial range (see the following section).

2.2.2 State of Turbulence

In this section we briefly describe the relevant theoretical results on transition to turbulence, and the state

of developed turbulence.

Once the transition occurs, we must ask a question: what does it mean for a fluid to be turbulent? One

aspect of turbulence is the randomness, namely the seemingly random fluctuations in the velocity field. The

slight perturbations in the initial conditions and boundary conditions of the turbulent flow, and the extreme

sensitivity to those perturbations mean that turbulent flows are chaotic in nature. Consider, for example,

the motion x(t) of a particle embedded in a fluctuating velocity field u(x, t). This path x(t) cannot be

predicted for large t in a real laboratory setting because it is impossible to predict the fluctuations of u field

at sufficient precision. In terms of chaos theory, we would characterize the motion x(t) of this particle as

having a positive Lyapunov coefficient [18]. However, one important distinction between fluid turbulence and

low-dimensional chaos is that the dynamics in the former involves an infinite number of degrees of freedom,

due to the spatial extension of the turbulent velocity field u(x, t).

Another aspect of turbulence is the energy cascade, introduced by Richardson in 1922 [35]. The idea is

that we define a turbulent eddy, which is a roughly coherent dynamic structure with length scale l. The

eddy is unstable though, and can break apart into smaller eddies, and through this breakup process kinetic

energy is transferred to smaller length scales without dissipation. This Hamiltonian process continues until

the smallest possible eddies form which are stable, and dissipate energy through molecular viscosity. This

point was illustrated poetically by Richardson:
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Big whorls have little whorls,

Which feed on their velocity;

And little whorls have lesser whorls,

And so on to viscosity.

This idea is illustrated in Figure 2.2. At high Re, the energy transfer rate ε in a dynamical steady state is

given by the energy entering the system which is u0/τ0 where u0 is the characteristic velocity of the large

eddies and τ0 = l0/u0 is their turnover time. Hence, we have that

ε =
u30
l0

(2.9)

is independent of the viscosity ν. The length scale at which the energy dissipates, η, was worked out by

Kolmogorov in 1941 [36] based on dimensional grounds. Since η can only depend upon ν and ε, then the

only length scale possible is given by

η = (ν3/ε)1/4 = Re−3/4l0. (2.10)

The scales η and l0 define the inertial range of the turbulent energy spectrum. We associate the wavenumber

k = 2π/l with length scale l. Again based on dimensional grounds, Kolmogorov found that the energy

spectrum should only depend upon k and ε, thereby deducing that:

E(k) ∼ ε2/3k−5/3 (2.11)

where E(k) is the energy in the turbulent modes of wavelength k. More specifically, E(k) is defined as the

Fourier transform (integrated over all directions k′ with |k′| = k) of the correlation function 〈u′(x)u′(x+r)〉

where u′(x, t) = u−U are the velocity fluctuations around average flow rate U . The law (2.11) was verified

in experiments [37] and has been a success of theory of turbulence. It is important to point out that in two

dimensions, there is no vortex stretching and another cascade, in enstrophy, Ω = |ω|2 is possible, in the

same direction as (2.11). Its energy spectrum is given by [38, 39]:

E(k) ∼ β2/3k−3 (2.12)

where β is the constant enstrophy flux. This spectrum was observed in approximately two-dimensional

turbulence in thin flowing soap-film experiments [40].
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Figure 2.2: Illustration of the energy cascade in turbulence. The turbulence is driven at the length scale l0,
and the energy is transferred to progressively lower length scales (higher wave number). When turbulent
energy reaches the Kolmogorov scale η it dissipates through molecular viscosity.

2.3 Directed Percolation

In this Part, we will argue that the transition to turbulence described above is in the directed percolation

universality class. Hence, it is important that we first outline some of the relevant aspects of the directed

percolation transition, and introduce a few concrete models that undergo this transition.

2.3.1 The model

Directed percolation is a generic non-equilibrium process [41] first introduced by Broadbent and Hammersley

in 1957 [42]. Percolation describes the motion of particles (equally walkers or fluids) in a porous medium.

Specifically, it describes motion that is primarily affected by the (random) properties of the medium. Whereas

ordinary (isotropic) percolation allows particles to spread through the medium in any direction, directed

percolation sets a preferred direction for the spreading. Percolation models (and more specifically directed

percolation) may describe many phenomena ubiquitous in nature as varied as: forest fires [43], spreads

of epidemics in gerbils [44], neural networks [45] and granular systems [46]. For a full review of possible

experimental realizations of Directed Percolation, see [47].

We introduce directed percolation through a specific example of the bond percolation process. Consider

the diagram in Figure 2.3. The diagram illustrates directed bond percolation on a diagonal lattice of nodes.

Each two adjacent nodes in the lattice are connected by a bond that is open with probability p and closed

with probability 1−p. Imagine that a fluid is allowed to flow through the lattice. It is driven by gravity, hence

it can only flow down-left or down-right (indicated by direction of arrows), and only through open bonds

(indicated by solid lines). Then, the size of a percolating cluster is the number of nodes that are reached by

the fluid starting from the nucleation point (labeled with a dark circle). We can take the direction of gravity
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Gravity or
 time 

Figure 2.3: Illustration of a bond percolation process in a diagonal 1+1 dimensional diagonal lattice. The
arrows indicate open bonds (that occur with probability p) through which the active sites can percolate.
Dashed lines indicate bonds (occurring with probability 1 − p) that are impermeable. The active sites are
indicated in dark color and are seeded with one active site at the top.

to be the direction of time to obtain the dynamical interpretation of the DP process. In this interpretation,

each layer of the medium at height h is taken to be a snapshot of the state of the system at time t = h. The

dimensionality of DP process is then commonly written D + 1, where D ≥ 1 is the spatial dimension.

p < p
c

p ≈ p
c

p > p
c

Figure 2.4: Cluster of percolating nodes (black) in diagonal bond percolation shown for 3 different values of
p.

If the percolation probability p, the probability that a bond is open, is large then the percolating cluster

will be large (on the order of the size of the system, i.e. the number of nodes). If p is small, we expect that

the percolating cluster will be small, the percolation process will stop after a while (it will be absorbed),

and it will not scale with the size of the system. Hence, there is some threshold pc above which the fluid

will percolate to any depth from the nucleation point. This is illustrated by the diagram in Figure 2.4.

This transition (along p) is termed the directed percolation transition. The order parameter is the size of

the percolating cluster or the density ρ of active (percolating) sites in the dynamical interpretation. The

transition is continuous and is characterized by a number of universal critical exponents. Relating density

of active sites ρ (the order parameter) in the stationary limit to the percolation probability p, we have

ρ(t→∞) ∼ (p− pc)β . (2.13)

One can define a correlation function for directed percolation, much like one can in equilibrium statistical
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Exponent Description Dimensionality Value
β Density of active sites above pc 1+1 0.276486(8)

2+1 0.584(4)
3+1 0.81(1)

ν‖ Correlation length in direction of time 1+1 1.733847(6)
2+1 1.295(6)
3+1 1.105(5)

ν⊥ Correlation length in direction of space 1+1 1.096854(4)
2+1 0.734(4)
3+1 0.581(5)

ν⊥ − ν‖ Growth rate exponent 1+1 0.63699
2+1 0.561
3+1 0.52400

Table 2.1: Relevant universal Directed Percolation exponents.

mechanics. However, since DP is a dynamical process, there is two different correlation lengths, in time

(along direction of gravity), ξ‖, and in space (perpendicular to direction of gravity), ξ⊥. These lengths also

scale with percolation probability via:

ξ‖ ∼ |p− pc|ν‖ , ξ⊥ ∼ |p− pc|ν⊥ (2.14)

The three exponents, β, ν‖ and ν⊥ are sufficient to define all of the other scaling exponents of DP through

various scaling relations [41]. The difference ν⊥−ν‖ is important as it is the sole exponent that characterizes

the growth of one phase into another. Another useful quantity that can be defined is the mean cluster

lifetime T in subcritical percolation which has the scaling:

T ∼ |p− pc|−τ where τ = ν‖ − β. (2.15)

Table 2.1 gives a summary of the relevant exponents we will use in Chapters 3 and 4.

All of the above power laws hold when p is close to pc. This leads to a practical difficulty in numerically

observing these laws, as one needs to know a very precise value of pc for the lattice in question. The value

of pc is not universal: Table 2.2 gives the values for some relevant systems. There are also other numerical

problems associated with running directed percolation simulations. Since one is interested in measuring

power laws, one needs to make measurements for very long times (to gather sufficient statistics and decades

of scaling) and in large space (to minimize the finite-size effects). In spite of the difficulties, when statistical

and finite-size effects are taken care of, measurements of directed percolation are very important because of

their universality. They are known to be applicable to a wide variety of models, including site and bond
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System Dimensionality pc
Bond diagonal percolation 1 + 1 0.644700185(5) [50]
Site diagonal percolation 1 + 1 0.70548522(4) [50]

Table 2.2: Percolation transition values table for relevant systems.

diagonal percolation and contact processes. Directed percolation’s wide applicability led to a conjecture that

any system with the following rules is in the DP universality class [48, 49]:

1. There is a fluctuating active phase and a unique absorbing phase.

2. There is a positive, one-component order parameter.

3. Only short-range interactions are allowed.

4. There are no other special symmetries or quenched randomness.

2.3.2 Measurements of DP exponents in Liquid Crystal Experiments

Since we will be interested in observing signatures of directed percolation in real-life experiments, it is

important that we describe the world’s first measurement of directed percolation exponents in an experiment.

This was performed for the first time by Takeuchi et al. in 2007 [51, 52]. In this section, we describe

the methods that Takeuchi et al. used to measure the exponents as a point of comparison to our own

measurements in Chapters 3 and 4. The experiment that they considered was a thin quasi-two-dimensional

cell of a nematic liquid crystal subject to an external voltage strong enough to trigger a Carr-Helfrich

instability. At the critical voltage, the tangled lines of the liquid crystal defects have two possible modes

(so-called turbulent modes), labeled DSM (dynamic scattering modes) 1 and 2. The difference between

DSM1 and DSM2 is in the density of the topological defects. In DSM1 these are present, but their density

is low. In DSM2, these are at a high density, and they continuously elongate and split. Above the critical

voltage, the regions of the crystal in DSM2 state can move about in DSM1 background. Since DSM2 regions

have a greater density of topological defects, they are more opaque and can be readily imaged through an

optical setup. The key measurements that Takeuchi et al. took were directly based on observing the time-

dynamics of the field-of-view of their microscope. The steady-state density ρ of DSM2 patches in the DSM1

background was found to fit the DP value for 2+1 dimensions. The time and space correlations of DSM2

patches allowed them to measure the correlation length exponents ξ⊥ and ξ‖ as well, and these were also

found to fit the DP values. Takeuchi et al. even found a way to nucleate DSM2 through laser pulses, and
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this allowed them to measure secondary exponents related to dynamics of the DP clusters nucleated from a

single site.

Why did Takeuchi et al. succeed in measuring the DP exponents, while others failed to gather enough

statistics? They had a large enough system (minimum sizes of regions of DSM2 were small enough that

they had an effective resolution of 1650× 1650), and the liquid crystal dynamics was fast enough to be able

to gather a lot of statistics quickly. Finally, they were able to measure the exponents by directly observing

the correlation lengths and density of states. In this sense, they used the turbulent liquid crystal as a sort

of an analogue computer, simulating a DP process on a 2-dimensional space. Our own system of measuring

the DP exponents in pipe flow given in Chapter 3 is quite direct, much like Takeuchi et al.’s. However, in

Chapter 4, we consider a more subtle measurement of DP that arises as a consequence of the underlying

lattice of the noise field. Not being able to directly observe the DP contact-process behavior is the big

problem for our own data gathering efforts and will be described further in Chapter 4.
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Chapter 3

Directed percolation describes
lifetime and growth of turbulent puffs
and slugs
In this chapter, we demonstrate that the phenomenology and quantitative details of many features of the

laminar-turbulence transition (described in detail in Section 2.1) are consistent with the non-equilibrium

phase transition in the universality class of directed percolation (DP). In Section 3.1 we introduce the

background of the problem. In Section 3.2 we describe how we map DP to turbulence in a pipe. In Section

3.3.1, we compare our results on turbulence lifetime to those observed in puff experiments. In Section 3.3.2,

we compare our results on turbulence growth rates to those observed in slug experiments, and we observe

an interesting crossover from 3+1- to 1+1- dimensional DP. Finally, in Section 3.4, we relate our findings to

known results from extreme value statistics and we overview other models of transition to turbulence.

3.1 Introduction

In this chapter, we argue that the transition to turbulence in a pipe is in the universality class of directed

percolation. This logical argument was originally made by Pomeau [1] and subsequently by many authors

(see, e.g. [53] and references therein). The argument proceeds as follows: The phenomenology of pipe flow

turbulence, described in Section 2.1, demonstrates that an external fluctuation, or a boundary condition is

necessary to nucleate turbulence from laminar flow. In this sense, laminar flow is an absorbing state that

cannot be escaped without an external intervention. Similarly, Section 2.1 describes the conditions under

which turbulence can spontaneously relaminarize. Hence, the active state (turbulence) can transition into

the absorbing state. Finally, it is possible that laminar flow can be disrupted by a nearby turbulent patch.

Eddies can advect from the turbulent patch into the laminar region and “infect” it with turbulence. These

three conditions, Pomeau argued, may indicate that transition to turbulence is in DP universality class.

Our work measures the lifetime of active states in DP in a pipe geometry, finding agreement with the

superexponential functional dependence measured by Hof et al. [2]. We also measure the growth rate of

active DP clusters in the supercritical directed percolation and show that our scaling results are in good

agreement with available experimental data on the growth rate of turbulent slugs [3]. These results show
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that dynamical phase transition phenomena in pipe flow turbulence may indeed be described by directed

percolation.

3.2 Directed percolation model

The analogy between DP and turbulent-to-laminar transition is the following: Active states in a three

dimensional lattice correspond to coarse-grained regions of size ∼ η where the turbulence intensity exceeds

a threshold. Here η is the viscous scale given by (2.10). Inactive states correspond to patches of the fluid

which are laminar. The dimension along the percolating direction is associated with time t in the usual

interpretation of DP as a dynamical process, as described in Section 2.3.1. The percolating probability p is

analogous to Reynolds number Re in the vicinity of the percolation transition, but the mapping need not

be linear. For the metastable puffs, Re < 2050 region is mapped to p < pc whereas for the growing fronts,

Re > 2500 is mapped to p > pc. The critical region maps into the spatiotemporal regime, as summarized in

Fig. 3.1, but this region and pc is not strictly defined except in the limit of infinite system size.

We simulate DP in 3+1 dimensions (3D videos of the simulations performed in this chapter are available

at http://guava.physics.uiuc.edu/projects/Turbulence/dp.html). The simulations are performed in

the reference frame of the traveling puff, which travels slower than the laminar mean flow velocity U . DP

can be simulated through various specific models. Consider a three dimensional Euclidean lattice At(x, y, z).

Here, At(x, y, z) = 1 (or 0) indicates an active (or inactive) site (x, y, z) at time t. The bond DP is simulated

via the algorithm:

At(x, y, z) = 0.

For each nearest-neighbor site of (x, y, z), At−1nn :

If At−1nn = 1, then:

With probability p set At(x, y, z) = 1.

On the other hand, site DP is simulated via:

At(x, y, z) = 0.

If any of nearest-neighbor sites of (x, y, z), At−1nn = 1, then:

With probability p set At(x, y, z) = 1.
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Figure 3.1: Comparison of the phenomenology of transitional turbulence as a function of Re with that of
DP in 3+1 dimensions as a function of p, both in a pipe geometry.

Evidently, site percolation must have a higher percolation threshold pc, since it has lower probability of

being activated by a nearest-neighbor site. That’s precisely the case, for site percolation pc ∼ 0.705, whereas

for bond percolation pc ∼ 0.645. Here we use the bond percolation process but our results are not different

if site percolation or contact process is used (except for moving everything to a new value of pc). All of

these models are in the universality class of DP. The inlet disturbance in pipe flow experiments is modeled

as the initial region of active (turbulent) sites. Because the percolation process occurs on a diagonal lattice,

the adjacent sites are chosen differently for odd and even time steps. For even time steps, adjacent sites are

(x+ 1, y, z), (x, y+ 1, z) and (x, y, z+ 1). For odd time steps, adjacent sites are (x− 1, y, z), (x, y− 1, z) and

(x, y, z − 1). All updates are performed sequentially.

3.3 Comparison to experimental data

In this section we match our results in DP to relevant experiments in transition to turbulence in a pipe.

First, we will compare the lifetime of active sites in DP to lifetime of turbulent puffs. Then we compare the

expansion rate of active sites in DP to the growth rate of turbulent slugs.

3.3.1 Lifetime of turbulent puffs

The survival probability of turbulent puffs in pipe flow is known to be memoryless [54, 55],

P (Re, t) = exp

(
− t− t0
τ(Re)

)
, (3.1)

where t > t0. Here, the survival probability P (Re, t) refers to the probability that the turbulent puff still

exists after flowing for time t, t0 is the formation time of the puff and τ(Re) is the characteristic lifetime. In
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Figure 3.2: (a) Illustration of the decay of an active cluster in subcritical directed percolation in 3+1
dimensions in pipe geometry. In this figure the length of the pipe extends horizontally, and the active sites
in percolation are displayed with green cubes. Inactive sites are not shown. (b) Different front shapes in the
growing front bond DP model. Rough fronts occur for small p− pc whereas smoother fronts occur for large
p − pc. (c) Time evolution of an initially active 180 contiguous sites percolating downwards simulated via
bond percolation for p = 0.61 < pc. The active state (in black) fully decays into the absorbing state (white)
after about 250 steps.
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Hof et al.’s work t0 was a constant (70 D/U where U is the mean flow velocity and D is the pipe diameter) [2].

By measuring P (Re, t) for specific times t and Reynolds numbers Re, Hof et al. calculated τ(Re) from (3.1).

They discovered that τ scales superexponentially with Reynolds number [2], fitting well a parameterization

of the form:

τ(Re) = τ0 exp[exp(c1Re + c2)], (3.2)

where τ0 ∼ D/U .

The survival probability P (p, t) in our DP measurements is the probability that there will be active sites

left in the lattice after t DP steps. From P (p, t), the lifetime of the disturbance τ can be measured just as

in Hof et al.. This idea is illustrated in the snapshots of the simulation in Fig. 3.2(a). Here, DP is simulated

in 3+1 dimensions in a pipe of radius of 5 lattice sites. In this simulation p is less than pc, and so the

puff eventually decays. One can measure the lifetime with a 3-dimensional lattice where two of the spatial

dimensions span a disk of radius of R lattice points (corresponding to the pipe radius), with fixed boundary

conditions. However, the measurement of lifetime in this way over many orders of magnitude is made difficult

because of the system size. The lifetime measurements must be repeated many times to be able to obtain

sufficient statistics. However, when p is close to the critical percolation threshold pc, the correlation length

ξ⊥ ∼ (p− pc)ν⊥ along a space dimension becomes larger than R, and the nominally 3+1 dimensional DP is

effectively 1+1 dimensional. Thus, to get sufficient statistics we simulate DP in a 1-dimensional lattice of

length N that is initially made to be active in a subregion of length N0. Below the DP critical point the

active states will eventually decay into the absorbing state. In a finite-sized system, the decay can always

occur, but we find that the characteristic lifetime τ of the decay grows super-exponentially with percolation

threshold p, and beyond a certain percolation probability, the average lifetime of the active state is too large

to be measurable on a computer.

Hof et al. were able to calculate τ via (3.1) by measuring P (Re, t). Even though they could only extend t

to 3450D/U , they were able to resolve P to 100 ppm, giving them effective measurements of τ over 8 orders

of magnitude. In the case of directed percolation, one cannot use this procedure, since t0 is not constant,

but instead depends on the percolation probability p. In directed percolation, t0 is the time over which the

initial state is remembered by the system. Hence, for each value p we must measure the survival lifetimes of

many instantiations of directed percolation. The cumulative distribution function (CDF) of these survival

lifetimes then approximates the survival probability P (p, t), as long as sufficiently many instantiations have

been performed. From the fit of the form (3.1) to the CDF data, one can read off τ(p) and t0(p). Our

measurements of τ(p) for a lattice of size N = 100 and N0 = 20 are given in Fig. 3.3(a). The line in the

Figure is obtained by fitting τ to (3.2). The inset shows the linear fit to log10 log10 τ(p)/τ0. Sufficiently far
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away from the critical point pc, we find that the linear fit deviates, indicating that the superexponential

behavior may somehow be related to the diverging correlation lengths at the critical point. Interestingly,

the power-law scaling for average lifetime of a cluster seeded from a single active site (Equation 2.15) does

not fit the data in Fig. 3.3(a) (it would appear as a horizontal line on the clearly upward sloping curve).

This indicates that the super-exponential behavior of the lifetime is due to the system being with multiple

degrees of freedom. This point is further motivated in Section 3.4.

From the CDF data, we can evaluate the survival probability functions analogously to Figure 2 of

[2]. Figure 3.3(b) shows our numerical data P (p, t) for 4 different times (S curves), along with the model

P (p, t) = exp(−(t− t0)/τ(p)). To evaluate the model fit, we use the value of t0(p0.2) where p0.2 is found by

finding where P (p0.2, t) = 0.2. Note that the fact that the S curves become steeper with p is a characteristic

of the superexponential scaling of τ(p).

The numerical data presented so far in this chapter has been measured in a finite volume of size N = 100.

Finite size effects in DP have been investigated thoroughly in the literature [56]. We ran our simulations in

a volume bound only by the range of the integers on our computer (0 to 263 − 1), and we didn’t find any

qualitative differences regarding the superexponential scaling of τ(p).

3.3.2 Growth rate of turbulent slugs

When p > pc active DP clusters grow in the pipe. We measured their growth rate and related it to the

growth rate of turbulent slugs. The speed at which the front of the percolating clusters propagates into

the neighboring inactive region is given by G ∼ ξ⊥/ξ‖ ∼ (p − pc)
ν‖−ν⊥ , where ξ ∼ (p − pc)

−ν is the

correlation length in direction of space (denoted by ⊥) or in direction of time (denoted by ‖). Using the

above prescription and numerical values of DP critical exponents [56] one should expect that G ∼ (p− pc)γ

where γ = 0.524 in 3+1 dimensional DP, whereas γ = 0.637 in 1+1 dimensions. These power laws are close

to the exponent 0.5 first proposed in 1986 [3], as well as in modern experiments [32]. However, the data is

not sufficient yet to differentiate between two such close power law exponents.

Measurements of the growth rate G of an initially active region in 3+1 DP in a pipe geometry are shown

in Fig. 3.4. The measurements were made by simulating bond DP with p > pc and measuring the positions

of the two fronts as functions of time. During the numerical simulation we also measure the correlation

length ξ⊥ by calculating the root-mean-square height (i.e. roughness) of the turbulent-laminar interface.

The agreement with theoretical expectation is good, and we see numerical evidence for the crossover from

3+1 to 1+1 dimensions that arises as result of interplay of pipe geometry and correlation lengths. When

(p− pc)/pc � 1, then ξ⊥ > D, where D is the pipe diameter, and the system is effectively 1+1 dimensional.
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Figure 3.3: (a) Superexponential scaling of the characteristic lifetime τ . The line indicates the fit to (3.2).
Error bars indicate 95% confidence intervals from Kolmogorov-Smirnov test (for p > 0.62) and 90% con-
fidence intervals from χ2 test (for p ≤ 0.62). In the inset, τ0 = 0.017. (b) Numerical data for survival
probabilities P (p, t) (points) and a fit to (3.1) with τ given by (3.2) (solid lines). Data shown for t = 300
(red crosses), t = 1000 (green dots), t = 6000 (blue pluses) and t = 80000 (cyan triangles). The value of pc
observed corresponds to that of 1+1 dimensional bond percolation. (c) Measured survival probabilities as
functions of t for 4 different values of percolation probability p. Blue line indicates measured data, whereas
red line indicates a fit to the exponential distribution. Deviations from exponential distribution for small t
are due to nonzero t0.
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Figure 3.4: Measured values of front propagation velocity G (red crosses) compared to theoretical prediction
for 3+1 dimensional and 1+1 dimensional DP. Green vertical line indicates the value of p for which ξ⊥
exceeds 1.2R. We call this value pR. (a) Plot indicating the power law crossover of G(p). Inset shows that
G/(p − pc)0.637 is roughly constant for p < pR and similarly G/(p − pc)0.524 for p > pR. (b) Both regimes
of DP have the same critical point pc (within the error of our measurements). The linear fits to G1/γ are
shown in solid lines. Extrapolations are indicated with dashed lines, and they cross at the same pc. This
value of pc is corresponds to that of 3+1 dimensional bond percolation.

Otherwise ξ⊥ < D, and the system is 3+1 dimensional. This argument is illustrated in a diagram in Figure

3.5.

In Fig. 3.4(b), we have plotted G1/γ versus p for different choices of γ corresponding to 1+1 and 3+1

dimensional DP. We see clearly the crossover between the expected regimes. Note that in this plot we did

not need to guess pc: both scaling regimes yield the same pc. It is difficult however to extend the data for

G(p) close to pc. Due to the finite size of the system, when p− pc is small, the active regions split and may

decay into the absorbing state. This makes it difficult to clearly measure front propagation velocity. On the

other hand, when p− pc is large, the scaling breaks down. Thus we expect the power law exponent of 0.524

to be observable only in an intermediate regime of p− pc, sufficiently close to pc but still such that ξ < R.

One may be motivated to believe that the interesting crossover phenomenon described above is the reason

for the transition from puffs to slugs. In Figure 3.6, we plot the crossover of the density of active sites in

the subset of the pipe bounded by active sites in 3+1-dimensional DP. We find numerical evidence for the

crossover like for the case of G(p). However, we also notice that the density is continuous at the point of the

crossover. Hence, the crossover does not indicate a transition point for puffs (intermittent turbulence) and

slugs (continuous, saturated turbulence density).

One other aspect of the phenomenology of pipe flow is captured by the DP model, namely that the

fronts of active regions with p − pc � 1 are much rougher than when p − pc is large. This is because the

density of active states within the region is an increasing function of p. Furthermore, the width of the front

is related to the spatial correlation length ξ⊥ which becomes small when p − pc is large. Finally, the front
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Figure 3.5: Dimensional crossover that arises as a result of pipe geometry and correlation lengths. Left:
When correlation lengths are small and p − pc is large, then the system is effectively 3 + 1 dimensional.
Right: When p− pc is small, the correlation lengths become as large as the diameter of the pipe D. In that
case, the cross-section of the pipe is effectively fully correlated and the DP process can proceed only along
the axis of the pipe. Hence, the system becomes effectively 1 + 1 dimensional.
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Figure 3.6: The density of sites ρ within an expanding cluster, shown as function of percolation probability
p. Green vertical separator indicates the point at which the correlation length becomes on the order of the
size of the pipe diameter. Notice that there is no discernible discontinuity in density ρ and hence there is
no clear change from the regime of splitting puffs and that of growing slugs.
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propagation velocity has an upper bound of 1 lattice space per unit time, which happens when p = 1, and

this bound leads to a smoother interface. The difference between the rough and smooth front regimes is

shown in Fig. 3.2(b). This is analogous to the results in pipe flow experiments hot wire measurements, where

puff structures were found to have rough edges whereas slugs have clearly defined fronts [14, 57].

3.4 Conclusion

The DP simulations of characteristic lifetime presented in this chapter have been performed via the bond

percolation algorithm. However, we found superexponential scaling of τ(p) for site percolation too. In

fact, bond and site percolation are both special cases of the more general Domany-Kinzel (DK) model [58].

Compact directed percolation is also a special case of the DK model, but we find that τ(p) for compact DP

scales as power law instead. A cluster at time t in 1+1 dimensional compact DP can be characterized by

only a single degree of freedom (cluster width). Our interpretation is that the superexponential behavior

doesn’t occur because one needs many degrees of freedom for extremal value statistics to apply (see below).

The superexponential scaling of the lifetime is likely a universal characteristic of the directed percolation

process. Goldenfeld et al. proposed that this superexponential character of the turbulent puff lifetime

can be described by extreme value statistics [59], because puff decay occurs when turbulent energy fails

to attain the required threshold at all points in the puff [60]. In the usual central limit theorem, under

appropriate conditions [61] the distribution of a sum of random variables X̄ =
∑N
i=1Xi tends to a Gaussian

distribution for large N . However, a maximum (or minimum) of N random variables max(x1, . . . , xN ) is

instead superexponentially distributed with 3 universality classes [59], selected by the underlying probability

distribution of {xi}. In Fig. 3.2(c) we show a time evolution of an initially active cluster percolating with

p < pc. The lifetime of the entire cluster is the lifetime of the longest active “strand” percolating downwards.

Assuming that strand lifetimes are independent and identically (exponentially) distributed, then the lifetime

of the longest strand is given by the type I Fisher-Tippett distribution exp(− exp(−p)). This argument has

also been used to explain the superexponential distribution of size of largest connected cluster in ordinary

(isotropic) percolation [62], and it was found there that correlations between cluster sizes (analogous to

strand lifetimes) do not influence the superexponential scaling. The relationship between the percolation

problem and extreme statistics was also investigated in [63]. It seems that a large number of degrees of

freedom is important for obtaining the superexponential scaling of lifetime, which is why we do not see it in

compact DP.

The DP model we proposed in this paper can account for the superexponential lifetime of the turbulent
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puffs, as well as the uniform growth rate of turbulent slugs. As shown in Fig. 3.1, the transition between

these two regimes (2050 < Re < 2500) occurs through the splitting and interactions of puffs. The spatio-

temporal patterns of coarse-grained turbulent intensity obtained from a direct numerical simulation [29] bear

similarities to those of directed percolation, but the data are not adequate to make a quantitative analysis.

3.4.1 Other Models for Transition to Turbulence in a Pipe

Following our publication, Allhof and Eckhardt [64] also studied DP in the context of the transition to

turbulence. They studied a slightly different model of DP on an Euclidean lattice with different probabilities

for sustaining an active site, and infecting nearby sites. However, their results show no marked difference

from regular DP, thereby enforcing the universality of DP. In particular, their measured growth rate matches

our results G ∼
√
Re−Rec well.

At about the same time that we performed our analysis described in this chapter, a more complicated,

dynamical system model was proposed by Barkley [65]. In this section we briefly compare and contrast our

model to Barkley’s model. Barkley’s motivation was to write down a model for turbulence in terms of two

fields, turbulence intensity q and local flow rate u. Here, fni indicates value of the field f at lattice point i

and time step n. Barkley’s equations of motion are:

qn+1
i = F [qni + d(qni−1 − 2qni + qni+1),Re, uni ], (3.3)

un+1
i = uni + ε1(1− uni )− ε2uni qni − c(uni − uni−1). (3.4)

where F indicates a function given by two iterates of the chaotic tent map (not shown here) parametrized

by further 3 parameters α, β, γ as well as Re. d indicates the rate of turbulence relaminarization, ε1 the rate

by which fluid velocity restores to mean flow velocity U = 1, ε2 controls the reduction of flow velocity due to

turbulence and c breaks left-right symmetry and controls advection of the flow field u. Evidently, Barkley’s

model is much more detailed, having 7 additional parameters, but it is able to model phenomena that our

DP model is not able to. In our model, it is difficult (due to coarse-graining) to define puff boundaries and

puff splitting events since, in general, any active cluster in directed percolation will be scattered with inactive

sites inside it. Barkley’s u field allows one to define a turbulent puff via the velocity profile. Puffs and slugs

in Barkley’s work have velocity profiles in character with hot wire measurements [57], and Barkley finds

that puffs can annihilate if they are too close to each other [30]. He also finds the superexponential behavior

of turbulence lifetime but also puff splitting rates (which we cannot measure). However, it is encouraging

to note that his model seems also to be in the DP universality class. In fact, the turbulence fraction f
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above Re = 2040 (proportion of q field that in the chaotic portion of the tent map) has the functional form

f ∼ (Re− Rec)
β where β is the standard DP exponent for density of active sites. Therefore, this serves as

another confirmation that the transition to turbulence in shear flows is in the universality class of DP.
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Chapter 4

Directed Percolation Transition in
Burgers Equation

4.1 Introduction

In Chapter 3, we considered a phenomenological model for the transition to turbulence. We motivated the

idea that laminar-turbulent transitions are in the directed percolation universality class by taking a coarse-

grained statistical mechanics perspective of the fluid velocity field. Statistical mechanics, and associated

notions of phase transition universality, is of course well-understood in equilibrium. However, the transi-

tion to turbulence is a transition between two non-equilibrium steady states. Turbulent flows are usually

considered from the dynamical systems perspective of partial differential equations (i.e. the Navier-Stokes

equations), and it is something of an open question how stochastic flow phenomena arise from this type of

description. The literature on the transition to turbulence has also been focused primarily on the idea that

the transition to turbulence can be understood from the interaction of a small number of spatially-localized

modes, leading to low-dimensional chaotic dynamics (see [66] and [25] and references therein). Such a de-

scription does not fully account for the detailed space-time phenomenology of turbulent pipe flow in the

range 1500 < Re < 2500, in particular, leaving out the details of how turbulence spreads, puffs split, and

even a quantitative account of the lifetime statistics has not been given.

In order to make closer contact between a fluid description in terms of partial differential equations for a

continuum flow field and Pomeau’s proposal that the transition to turbulence can be in the universality class

of a non-equilibrium statistical mechanical model, this chapter addresses explicitly the way in which a fluid

velocity field equation can be mapped into statistical mechanics. We begin by considering the Navier-Stokes

equation in Section 4.2, and its scaling of pressure under the directed percolation transition. We then spend

the next three sections showing how one can map Burgers equation to a problem of directed polymers on a

lattice. In this model, one can observe a directed-percolation transition as function of the structure of the

noise field (this will be made specific later in the chapter). We then show in Section 4.6 how one can map

the results on this transition back to the language of Burgers equation.

Burgers equation was originally proposed as a simplified model for the Navier-Stokes equation [67], and
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it arose in attempts to write down a statistical theory of turbulence. The essential feature of the turbulent

spectrum arises from the interplay between external forcing, inertia and dissipation due to molecular viscosity.

In order to distill the problem to its core, Burgers considered a simplest possible one-dimensional equation

with diffusion and self-advection. The equation has no way to generate shear or vortex motion, and no way to

generate new randomness from initial data – it can be integrated directly [68]. As such, Burgers abandoned

considering the equation as a model for Turbulence. He writes that “the investigations must therefore be

taken on their own merit, as a study of peculiar solutions of a primitive nonlinear problem” [69]. Despite

Burgers’ modesty, his equation has been widely used as a paradigm for how the generation of multi-scale

cascades and the existence of turbulent phenomena of some sort can arise in physics [68, 70, 71, 72, 73].

In this chapter we will show how Burgers equation provides an explicit construction of the way in which a

continuum field theory for a dynamical velocity field can be mapped into a non-equilibrium statistical model,

and that the dynamical transition in the flow field is described by a non-equilibrium phase transition in the

statistical model, which we show to be directed percolation.

4.1.1 Role of pressure

The pressure term ∇P in the incompressible Navier-Stokes equation enforces the incompressibility condition

∇·u = 0, leading to creation of vorticity. The process happens in the following way: The advection and the

viscosity terms lead to the production of divergence, which is negated, through the pressure term, producing

non-zero curl of velocity (vorticity). Hence, pressure is important as it produces the vortices characteristic of

turbulence and significant for the turbulent energy cascade. However, the implicit definition of the pressure

field also makes the mathematical analysis difficult. The Burgers equation simply dispenses with the pressure

term and hence the incompressibility condition, yielding:

∂tu = −(u · ∇)u + ν∇2u + ξ, (4.1)

where u is the fluid velocity, (u · ∇)u is the fluid self-advection, ν∇2u is the fluid diffusion due to viscosity

ν and ξ is the external (usually random) force.

Recall from Section 2.2.1 that the fluid vorticity ω = ∇× u in Navier-Stokes equation satisfies

∂tω + (u · ∇)ω = ν∇2ω + ω · ∇u +∇× ξ. (4.2)
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Notice that (2.8) is missing the pressure term. However, it is an important point that the condition

∇ · u = 0. (4.3)

still holds. If one attempts to solve Navier-Stokes equation via (4.2), one evolves ω, which in turn defines the

u field, which must satisfy (4.3). This is in contrast to the Burgers equation which lacks the pressure term

but looks exactly like (4.2) in vorticity formulation. Yet, Burgers equation doesn’t have a way of generating

ω outside of the ∇× ξ term. Vorticity advects and diffuses like a passive scalar in Burgers turbulence.

One should note that the lack of pressure in Burgers equation is not the same as the compressible Navier-

Stokes equation. Instead, it is the Navier-Stokes equation with no condition whatsoever on the divergence

of u. The pressure is simply removed from the equation. Fast-moving elements of the fluid can advect to

“overtake” the slow-moving elements. There is no equation of state for fluid density and pressure to stop this

from happening. In this way, the fast-moving fluid elements lead to shock fronts, a well known characteristic

of the Burger equation. For this reason, Burgers equation is a useful toy model for shocks in sets of equations

describing hyperbolic conservation laws, e.g. in gas dynamics. When the u field is plotted as function of

position, in 1 dimension, these shocks look like trains of sawteeth (see Figure 4.1). Burgers equation and

the shock front solution have since been used in a wide variety of problems, from statistical physics (through

Burgers’ equation’s similarity to KPZ [73] and directed polymers [74]), and cosmology [68] (modeling the

formation of large-scale structures in the Universe from primordial fluctuations), and even traffic flow [75].

It has also found its place in fluid dynamics mainly as a testbed of numerical methods, closure formulations

and other mathematical methods [68].

Since the Fourier transform of a sawtooth function is 1/k, the energy spectrum E(k) = |v(k)|2 scales

as k−2. This range of scale-free energy spectrum [76] is a well known property of Burgers’ equation, and

it is similar to the scale-free energy spectrum of Navier-Stokes turbulence. One can even get the k−5/3

Kolmogorov spectrum in randomly driven Burgers turbulence with a specific choice for the correlations of

the random driving force [77]. Because of this, the solutions to the randomly forced Burgers equation, or

Burgers equation with random initial conditions have been termed Burgers’ turbulence, or Burgulence [68].

4.2 The relevance of pressure

In this section, we consider the relevance of pressure in the Navier-Stokes equations at the critical point of

transition from laminar to turbulent flow. Here, we are interested in the scaling of the pressure term at the

directed percolation critical point. If we can find evidence that the pressure is irrelevant then our results
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Figure 4.1: Train of sawteeth shocks in one-dimensional Burgers equation. The simulation was performed
using a first-order finite-difference scheme for (4.1) with the added condition for upwind advection. The
initial condition was a superposition of two sine waves with random Gaussian noise.

can be more directly mapped on the Navier-Stokes equations, and hence to real transition to turbulence.

Renormalization group techniques have been applied to Navier-Stokes equations and turbulence. Well

known work is that by Forster et al. [71] and Yakhot and Orszag [78]. For the case of relevance of pressure

the actual calculation is very difficult to do, so here we only give a scaling argument. However, we will see

below that the scaling argument has some flaws. Therefore, this section should be taken as a short summary

of some of the approaches and problems we have encountered. We are working on resolving these issues

through a full-blown renormalization group calculation.

A scaling analysis such as the one shown here was performed by Medina et al. [72] for the case of the

scaling of nonlinear term in the Kardar-Parisi-Zhang (KPZ) equation [73]

∂th =
λ

2
(∇h)2 + ν∇2h+ η, (4.4)

where η has the correlation

〈η(x, t)η(x′, t′)〉 = |x− x′|2ρ−d−1|t− t′|2θ−1. (4.5)
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Medina et al. applied a change of scale x→ bx, t→ bzt and h→ bχh to (4.4) with λ = 0. The result is

bχ−z∂th = νbχ−2∇2h+ b(ρ−d/2+1/2)+(θ−1/2)zη. (4.6)

Requiring that (4.6) should be scale-invariant, leads to

z = 2 ≡ z0 (4.7)

and

χ = ρ+ 2θ + (3− d)/2 ≡ χ0. (4.8)

If the nonlinear term is turned back on (λ 6= 0), then its scaling becomes bz+χ−2. Letting z+χ− 2 > 0 and

setting z = z0 and χ = χ0, gives the critical dimension dc = 3 + 2ρ + 4θ. If d < dc, then the nonlinearity

is relevant. When d > dc the nonlinearity in (4.4) is weak, and at large x and t the solution has Gaussian

statistics.

Can one adapt the procedure used by Medina et al. to consider the scaling of the pressure term in

Navier-Stokes equations? Consider a naive dimensional scaling of the form

x→ bx t→ bzt u→ bχu (4.9)

in the Navier-Stokes equation

∂tu + (u · ∇)u = ν∇2u− 1

ρ
∇P (4.10)

where χ is an unknown to be determined. Since we are interested in relevance of parameter 1/ρ, we first set

it to zero, and then rescale the equation yielding:

b−z+χ∂tu + b2χ−1(u · ∇)u = b−2+χν∇2u. (4.11)

Here, two problems arise. One has to do with Galilean invariance. If we require the total derivative term to

be scale invariant, we get

χ = 1− z. (4.12)

But this yields just a result of dimensional analysis: velocity scales as length over time. Furthermore, if we
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require scale invariance for the diffusion term ν∇2u, we get

z = 2 (4.13)

just like Medina et al. did. However, the problem with this result is that (4.13) is inconsistent with directed

percolation where we expect z = 0.524 to 0.637 (See Table 2.1). Equation 4.13 instead implies a Gaussian

fixed point, which is the appropriate description of the non-equilibrium steady state of this model but is not

a description of the phase transition we are interested in.

If we ignore the requirement that the critical point should correspond to the DP scaling, then we can

use a result worked out by Kardar, Parisi and Zhang [73]. They find that in the case of the KPZ equation,

the nonlinearity is irrelevant in 3 and higher dimensions. The 1/ρ∇2P term has the same dimensions as the

nonlinearity, and if we require that it should scale in the same way, then it is also irrelevant in 3 and higher

dimensions.

Neither of the arguments presented in this section is without flaw. To further complicate matters, in this

chapter we will solve the Burgers equation in 1 dimension where pressure and Navier-Stokes equations have

no physical meaning. As such, the definite conclusion on the relevance of the pressure term and the aptness

of Burgers equation model for the transition to turbulence is left to further study.

4.3 From Burgers equation to Directed Polymers

Through a sequence of transformations, the Burgers equation can be mapped to the directed polymers

model [70]. We will consider the case of a 1-dimensional Burgers equation here. One can use a change of

variables

u = −∇h, (4.14)

to map the equation (4.1) to the KPZ equation

∂th =
1

2
(∇h)2 + ν∇2h+ φ, (4.15)

where ξ = −∇φ. The transformation can be most easily seen by taking the derivative of (4.15) and using

the product rule on the 1/2(∇h)2 term, thus obtaining (4.1). The KPZ equation is an embodiment of an

important front-propagation universality class . The KPZ equation can further be transformed into a linear
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differential equation by using the Hopf-Cole transformation [79, 80]:

h = 2ν lnZ (4.16)

When one substitutes (4.16) into (4.15), one finds that Z satisfies the equation

∂tZ = ν∇2Z − 1

2ν
φZ. (4.17)

The equation (4.17) is an imaginary-time Schrödinger equation, i.e. a diffusion equation with a linear

coupling to the disorder. It is the equation for a partition function of a directed polymer, embedded in a

disordered potential 1
2νφ.

Z(x, t) can be seen as the sum of all paths of the directed polymer that terminate at point x at time t.

We let the probability distribution function of the position of the polymer at time t = 0 be ρ(x). Then the

probability that a polymer is in the region (x, x+ dx) is ρ(x)dx. The solution to (4.17) can be written as a

sum of all paths weighted by the Boltzmann weight for each path (a path integral):

Z(x, t) =

∫
ρ(x0)dx0

∫ x′(t)=x

x′(t=0)=x0

Dx′ exp(−H[x′]). (4.18)

Here, H is the Hamiltonian for the directed polymer which consists of 2 parts, an entropic contribution and

a contribution from the cost of the disorder along the path of the polymer:

H(x) =

∫ t

0

dτ

[
T

4ν

(
dx(τ)

dτ

)2

+ φ(x(τ), τ)

]
(4.19)

where T is the temperature and x(t) is the path of the polymer.

4.4 Directed Polymers

What is the object described by the Hamiltonian in (4.19)? It is a directed polymer, a polymer that is

always extended along the time direction. Along the time direction, it is not allowed to loop back on itself:

x(t) in (4.19) is a single-valued function.

The properties of directed polymers were first studied in detail in 1985 [74] and especially after their

relation to the KPZ and Burgers equations became evident [81]. An important measure is the wandering
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exponent, namely the scaling of the position of the polymer as function of time,

〈[x(t+ τ)− x(t)]
2〉 ∼ τ2ζ (4.20)

where ζ = 2/3, a clearly non-diffusive result. This result was first derived for uncorrelated noise field φ at

T = 0 [74] in the context of domain walls (with no “overhangs”) in the Ising model. However, the result was

proven to hold for T > 0 for the case of uncorrelated noise [82, 81]. This is an important point since later

in this chapter we will conjecture that a certain related result known for T = 0 also holds at T > 0.

It is known that the result in (4.20) also depends on dimensionality [83]. The disorder term in the polymer

Hamiltonian (4.19) is known to be relevant for directed polymers in 1 + 1 dimensions. The disorder term

was found marginal in 2 + 1 dimension and irrelevant in 3 + 1 and higher dimensions. These perturbative

results imply that in 1 + 1 and 2 + 1 dimensions, the system is always in the pinned phase characterized by

the value of ζ = 2/3 in (4.20) (in the limit t→∞), regardless of the value of T . However, as the number of

dimensions increases, there are more available regions with weak noise for the polymer to expand to at high

temperatures. The polymer can expand randomly to any of these regions and hence ζ becomes the diffusive

1/2. This is termed the free phase. But, at sufficiently small T or strong noise φ in 3+1 dimensions or more,

the polymer can still be in the pinned phase. To summarize, in 1 + 1 and 2 + 1 dimensions the polymer is

always in the pinned phase, whereas in more dimensions, there is a transition at a non-zero T .

We started studying directed polymers since the pinning-depinning transition is reminiscent of the

laminar-to-turbulent transition in fluid dynamics. Here temperatures (or viscosity ν) take the place of

Re in the laminar-to-turbulent transition. A notable difference with turbulence is in 2 + 1 dimensions,

where there is no pinning-depinning transition. However, in fluid dynamics it is known that 2-dimensional

turbulence is very-well possible and it is characterized by the unique direct enstrophy cascade.

There is another important difference between fluid dynamics and directed polymer transition. The

transition in fluid dynamics is spatially extended and subcritical. Even at high Re, there can be regions

that are laminar, and the turbulent-laminar fronts can move as function of Re−Rec. This was the basis of

our argument in Chapter 3 where we associated the turbulent-laminar fronts and lifetimes of the metastable

turbulent regions to the Directed Percolation transition. The pinning-depinning transition in directed poly-

mers is different, since it occurs as function of T , and manifests itself in the wandering exponent for a single

non-interacting polymer. In other words, in the example of 1 + 1 dimensions, the evolution of the directed

percolation system is given by 2-variable function D(x, t), where D(x, t) can take value of 1 (active) or 0

(inactive). In directed polymers the evolution of a directed polymer is a single-variable path in time x(t).
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The above argument shows that the pinning-depinning transition cannot possibly be in the Directed

Percolation universality class in 1+1 dimensions. However, it does not necessarily rule out 2+1 dimensional

transition. The pinning-depinning transition does not exist for uncorrelated noise, but it may exist for

correlated noise since correlations in the noise increase the fluctuations and the effect of the disorder. We

will postulate in Section 4.7.1 one way in which this transition can be observed in 2 + 1 dimensions directly

through the Burgers equation. Now, we turn our attention to the 1 + 1 dimensional case. Is there any

possible way to observe the Directed Percolation transition in the Directed Polymers model but not through

the pinning-depinning transition? In this Chapter, we will show that there is. It relies on the fact that in

Directed Percolation one can define a unique percolating path in the thermodynamic limit at the percolation

threshold. This percolating path is 1-dimensional function of time, just like the path that the polymer takes.

The wandering exponents of the two paths can thus be directly compared. This is the subject of the following

Section.

4.5 Transition in Directed Polymers for T = 0

So far, we have used a continuous description of the Directed Polymers. In this Section we will introduce

a discrete model of Directed Polymers on a diagonal square lattice, in order to be able to run numerical

simulations, as well as compare our results with directed percolation on equivalent lattices. We choose a

bimodal form of the noise function φ(x, t). In particular, φ will be allowed to take values of 0 or 1. The

bimodal form of the noise function φ is chosen for a reason, the points where φ is 1 are analogous to the

missing nodes/bonds in the problem of percolation on a lattice.

Examples of polymers on a site-disorder and a bond-disorder lattice are shown in Figure 4.2. The paths

shown in the figure are the optimal ones, which minimize the total energy cost along the path of the polymer∑
τ φ(x(τ), τ). Because φ are drawn from a discrete distribution, degeneracies of the paths are possible. We

now turn our attention to how to find the optimum polymer path numerically.

4.5.1 Numerically finding the T = 0 path of the polymer

A directed polymer in the lattice described in Section 4.5 has 2t possible conformations for a lattice of size

t. It would seem that finding the path that optimizes the energy cost of the conformation is a problem that

requires O(exp t) computations. However, the energy cost of a path can be expressed as a recursive function

of the energy costs of shorter paths. Whenever an optimization problem has such a recursive formulation, one

can create a polynomial time algorithm to perform the optimization. This procedure was termed “dynamic
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Figure 4.2: A representation of a directed polymer on a diagonal lattice with (a) site disorder, (b) bond
disorder. The arrows indicates the direction of time and space. The solid lines indicate the conformation
of the optimum (minimum energy) polymer path. Note the degeneracy of the optimum paths. (a) The
numbers at the sites are displayed in the form (φ,Emin), where φ = φ(x, t) is the value of the disorder at
that site and Emin is the minimum energy of a polymer that ends at that site and starts at the origin. (b)
The numbers displayed at the sites are Emin, whereas the numbers displayed at the edges are φl and φr,
bond disorders along left- and right-moving bonds.

programming” and first developed by Bellman in the 1940’s [84].

Huse and Henley [74] were interested in calculating domain wall (boundary) statistics in an Ising model

with quenched disorder. The domain boundary in an Ising model with a rectilinear grid consists of horizontal

and vertical bonds. Huse and Henley considered a system where one infinite domain is separated from another

by a horizontal boundary (along x). The horizontal bonds incur a cost of disorder Jx (randomly distributed).

To reduce this cost, the interface roughens but this incurs the additional constant cost per bond Jz of adding

the vertical bonds (along z axis). The Hamiltonian for this system is:

H =
∑
x

[Jz|z(x)− z(x+ 1)|+ Jx(x, z(x))] . (4.21)

Optimally, the energy of a domain wall that begins at (x1, z1) and ends at (x2, z2) then satisfies the recursive

relation

E(x1, z1;x2, z2) = min
z′

[E(x1, z1;x′, z′) + E(x′, z′;x2, z2)] , (4.22)

for any x′ ∈ (x1, x2). Equation (4.22) is the basis for the dynamic programming technique, also referred to

as transfer matrix approach by Derrida and Vannimenus [85]. The approach is to use (4.22) to build up the

function E(x1, z1;x2, z2) step-wise starting from E(x1, z1;x1, z1) = Jx(x1, z1), then using

E(x1, z1;x2, z2) = min
z′

[E(x1, z1;x2 − 1, z′) + E(x2 − 1, z′;x2, z2)] , (4.23)
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where, because of (4.21)

E(x2 − 1, z′;x2, z2) = Jz|z2 − z′|+ Jx(x2, z2). (4.24)

and E(x1, z1;x2 − 1, z′) is stored from the previous step. Therefore to calculate the optimal position of

the domain z(x), we have to keep the computed E(x − 1, z) for all the possible z [86]. Typically these

simulations are ran in a long strip geometry with z ranging from 0 to zmax and the strip is extended along

the x direction, i.e. xmax � zmax. Thanks to the dynamic programming technique, the time-complexity of

this calculation is O(zmaxxmax), instead of O(expxmax).

Huse and Henley found the optimum domain walls, which minimized the combination of roughening costs

and disorder. In the case of Directed polymers at T = 0, there is no roughening cost since a polymer is only

allowed to go left-down and right-down in the lattice shown in Figure 4.2. Therefore, the recursion relation

is (using notation from the Figure)

Emin(x, t) = min

[
Emin(x− 1

2
, t− 1), Emin(x+

1

2
, t− 1)

]
+ φ(x, t) (4.25)

for site-disorder case (Figure 4.2a) and

Emin(x, t) = min

[
Emin(x− 1

2
, t− 1) + φr(x−

1

2
, t− 1), Emin(x+

1

2
, t− 1) + φl(x+

1

2
, t− 1)

]
(4.26)

for the bond-disorder case (Figure 4.2b). With these recursion relations it is sufficient to store Emin(x, t−1)

in order to compute Emin(x, t). The dynamic programming technique illustrated in this section is powerful

and has been adapted to many systems, including percolation (and directed percolation) in lattices [63].

4.5.2 Directed Percolation transition

Armed with the numerical method of Section 4.5.1, we can measure the distance of the average position

of the polymer as function of time at T = 0. In this specific case we will consider a bimodal distribution

for the φ(x, t). We allow φ(x, t) to take values 0 or 1. The motivation for this distribution stems from the

work of Balents and Kardar [87]. They considered the problem of a directed polymer on a diagonal lattice

with bonds missing (with probability 1 − p). For p < pc, where pc is the directed percolation threshold for

the lattice, there is no percolation cluster and the polymers cannot extend. It is interesting however, to see

what happens at pc. At the percolation threshold, the polymers are constrained to extend only along the
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percolation cluster wedge whose boundaries are defined by

x(t) ∼ ξ⊥/ξ‖ ∼ tν⊥/tν‖ . (4.27)

(This is via the same argument as that in Chapter 3.) Thus, the polymer’s wandering exponent ζ will be

constrained by the smaller of ν⊥ − ν‖ and 2/3 (the usual polymer wandering exponent). Since in 1 + 1

dimensions νperp − ν‖ ≈ 0.63, ζ will take that value when p = pc. Above the percolation threshold ζ will

restore to the usual value of 2/3.

The idea that Balents and Kardar considered was generalized by Lebedev and Zhang [5]. Instead of remov-

ing bonds from the lattice, they considered a full lattice but with a bimodal distribution for φ parametrized

by p

φ(x, t) =

 1 with probability 1− p,

0 otherwise.
(4.28)

In this case the bonds with φ(x, t) = 1 are energetically unfavorable, and are analogous to the missing

bonds in Balents’ and Kardar’s model. However, in this case the model can be readily extended to the

p < pc regime, since there is nothing to prevent the directed polymer from acquiring a conformation in the

lattice. In this model, below pc, the polymers acquire a conformation with E ∼ t, whereas at and above pc,

they acquire a conformation with E = 0 since a percolating path consisting only of φ = 0 links is available.

Lebedev and Zhang found a surprising result that for p < pc, the exponent ζ = 0.63, the Directed Percolation

value.

Perlsman and Havlin in 1999[88] challenged the results of Lebedev and Zhang by showing, in fact, that

for p < pc, ζ = 2/3, the directed polymer value, but at the p = pc, there is a transition to the 0.63 value.

In particular they ran numerical simulations in geometry of Figure 4.2b, and identified xl(t) and xr(t), the

positions of the left-most and right-most energy minima. The xl(t) and xr(t) may be the same for some t,

but in general the optimum paths will be degenerate. They then defined the quantity

D(t) =
xl(t) + xr(t)

2
, (4.29)

where D(t) is the distance of the optimum end-point from the origin at time t. Evidently, D(t) can be used

as a proxy for computing the scaling of the wandering exponent (4.20). For the case of the bond percolation

model (4.26) the transition in the wandering exponent is illustrated in Figure 4.3. It was originally computed

by Perlsman and Havlin. I recomputed it, given the delicacy of the numerical issues, and was able to confirm

their findings for myself.
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Figure 4.3: Calculations of the wandering exponent of a directed polymer with bond disorder, for p < pc,
p ∼ pc and p > pc. Solid lines are guides for the eye with powers 2/3 (for p < pc), 0.63 (for p ∼ pc) and 1
for p > pc.

Perlsman and Havlin also studied the scaling of the “cloud” of nearly optimal end-points of the polymer

as function of time. They define the width of this cloud via

W (t) = xr(t)− xl(t). (4.30)

It has been known that below the percolation threshold there is a region of points of width ∼ t1/3 around

the global optimum, whose energies as calculated via (4.25) and (4.26) asymptotically approach the global

energy minimum [89, 90]. Therefore at large t, and when p < pc, we expect that W (t) ∼ t1/3. However,

at the percolation threshold the percolating cluster width scales with the time as tν⊥−ν‖ and this scaling is

observed for W (t) too. Hence, at p = pc, we have W (t) ∼ t0.63 for 1 + 1 dimensions.

4.5.3 Transition in site polymer model

Results of Section 4.5.2 were worked out by various authors in 1990’s for the case of bond percolation

and equation (4.26). Would the same results hold for site percolation and (4.25)? On the one hand, the

equations, the lattice, the structure of the noise field φ and the percolation thresholds given in Table 2.2

are all different. On the other hand, as described in Section 2.3.1, Directed Percolation is conjectured to
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be universal for a wide range of models, as long as basic conditions are met, and those don’t seem to be

different in this case. Here, we show, in fact, that the directed polymer to directed percolation transition

happens for the case of site percolation too.

To observe the transition clearly, we plot the local exponent of the power law. Consider a function of

one variable f(t). The idea is to compute the local power-law exponent via

f ′(t) =
log(f(t+ τ))− log(f(t))

log(t+ τ)− log(t)
, (4.31)

where τ is the step size for the calculation of slope. In practice, with the directed polymer datasets, this is

tricky to do. It is convenient to choose step size τ = t so that

f ′(t) =
log(f(2t))− log(f(t))

log(2)
, (4.32)

and one only needs to compute f(t) at times t = 2n, n = 0, . . . . However, one needs many measurements of

f(t) to have sufficient statistics to resolve small differences in the power law exponent. It would be useful to

use values of f(t) for t 6= 2n to have the computation converge faster – it is quite slowly converging otherwise.

One approach would be to bin the values of t 6= 2n into the nearest t = 2n bin. This works well to reduce

the noise in measurements of f(t). However this sort of uncontrolled binning can subtly change the power

law exponents if performed without any weighing. Another approach is to construct a cubic interpolation

function over the f(t) versus t data, so that the exponent can be calculated directly via (4.32). However,

cubic interpolation uses too little of the f(t) measurements for large t. In this chapter we take a hybrid

approach, we perform a prebinning with logarithmic bins to reduce the number of points that define f(t).

Then we construct a cubic interpolation which is used to compute the exponent via (4.32).

Results of running the site polymer model, the local exponents of D(t) and W (t) are shown in Figure 4.4.

In the figure, note the difference in the y-scales: the proxy for the wandering exponent, D(t), undergoes a

more subtle transition between exponents of 0.63 and 2/3, whereas W (t) undergoes a much clearer transition

between 1/3 and 2/3. In this case simulations have been run for t up to 1024 but the t ∼ 590 data points

indicate the average slope of the power law up to 1024 in accordance with the method outlined above.

We have just shown that site percolation on diagonal lattices also undergoes the directed-polymer,

directed-percolation transition, at least in the T = 0 case. This is important since in Section 4.6.2 we

will take the next logical step and go from this lattice to a continuum equation. Sites on a lattice can be

directly interpreted as continuous, smooth regions of the noise field φ(x, t). This interpretation would be

harder to motivate for a bond-percolating lattice. However, before we take the continuum limit, we first
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Figure 4.4: The local exponents of (a) D(t) and (b) W (t) for the case of a site polymer model.
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consider the T 6= 0 case.

4.6 Transition for T 6= 0

In the directed polymers field of study, researchers first considered the T = 0 paths numerically, due to

the simplicity of generating the optimum paths (as shown in Section 4.5.1). For non-zero temperatures,

numerically generating the polymers through a classical algorithm such as Metropolis-Hastings is difficult

since the polymer can make large jumps in phase space. For instance, the polymer can change its conforma-

tion for small t thereby making the conformation for large t impossible. The research has hence focused on

theoretical study of Directed Polymers at T > 0, most notably the pinning-depinning transition described

in Section 4.4.

Directed polymers in random media described in Section 4.5 have a rugged phase space. In the same

instantiation of noise field φ(x, t) it is possible for an optimal T = 0 polymer path with an endpoint at

t = t2 to have an entirely different conformation from that of a polymer with an endpoint at t = t1. Hence,

at each time step there are multiple competing local optimum paths that compete for the global optimum.

This raises an interesting question: what are the statistical properties of these local optimum paths? Do the

wandering exponent results (valid for global optimum paths) also hold for the local optimum neighborhood?

To answer this question fully, we now turn our attention to the non-optimal polymer trajectories.

4.6.1 Non-optimal paths

Recall that one can use the dynamic programming technique from Section 4.5.1 to compute the minimum

energy Emin of a directed polymer starting at (x = 0, t = 0) and ending at (x = xf , t = tf ). For a particular

tf , there may be a few xf for which Emin is smallest possible, but in general, for most xf the polymer

energy will be non-optimal. In this section we study these non-optimal polymer trajectories. To clarify, the

trajectories we consider are still generated via the techniques of Section 4.5.1 but they are not necessarily

globally optimal.

What do these trajectories look like? This question was first studied by Kardar and Zhang in 1987 [91],

and they found that these paths have a tree-like structure, lending support to the universality of the wan-

dering exponent scalings. Kardar and Zhang considered the case of Gaussian distribution of the φ(x, t). We

find that in the case of bimodal DPRM, the paths are still tree-like, and do not depend much on pc – apart

from the in-filling when p � pc. This is so, because when p � pc, the percolating cluster itself fills space

and there are many degenerate paths that merge. The examples of trajectories are shown in Figure 4.5.
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Figure 4.5: The trajectories of the optimum paths (red) to (xf , tf ), starting from (0, 0) shown here for each
xf . Gray areas indicate the locations of the disorder φ(x, t) = 1. For t < 5, φ(x, t) = 0 in order to reduce
the (sizable) random effects of initial conditions.

We now make a few comments on the numerical methods of tracing the trajectory of the paths shown

in Figure 4.5. Unlike in Section 4.5.1, one needs to keep Emin(x, t) for all x, t in the wedge geometry. Once

Emin(x, t) is computed for all t < tf , one starts from t = tf and “traces back” the trajectory. Each node

in the t − 1 slice with Emin(x, t − 1) is a part of a trajectory if one of the nodes directly below it with

Emin(x± 1/2, t) is a part of the trajectory and satisfies

Emin(x, t− 1) = Emin(x± 1

2
, t)− φ(x± 1

2
, t). (4.33)

The paths shown in Figure 4.5 are shown without consideration for the energy of the polymer. We

now introduce temperature T in the following way. We weight the probability of each polymer that ends

(optimally) at xf , tf with a Boltzmann factor

exp

(
− 1

T
Emin(xf , tf )

)
(4.34)

The dependence of the probability distributions for the polymer conformations can then be given a depen-

dence upon T . This dependence is illustrated in Figure 4.6 where the density of the filling indicates the

probability density of the polymer being at that point in space and time. We make a few observations about

the Figure. First, as expected, for very large T , all end-points of the polymers are possible. Second, notice
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Figure 4.6: The probability distributions of the optimum paths (blue) of polymers starting from (0, 0) with
no constraint upon the endpoint of the polymer. The results shown here are for 3 temperatures for the same
lattice disorder φ(x, t) with p = pc = 0.7055 and amplitude of disorder Φ. Gray areas indicate the locations
of the disorder φ(x, t) = Φ.

that the degeneracy of the optimal and nearly-optimal paths is high even for very small T . Third, increasing

T slightly tends to blur the distribution towards the ends of the polymer (large t), leaving the probability

distributions at small t largely unchanged.

These observations serve as evidence that, even when T 6= 0, there exists a directed-polymer directed

percolation transition in p, as function of T/Φ where Φ is the magnitude of the disorder. The transition

would be observable for small-time wandering exponent, but it would need a large running-time of the

simulation in order to escape the effects of the shallow profile of Emin at p = pc [92]. This transition is

important, since in the language of the Burgers equation it may exist at a finite Re. We now proceed to

describe what this transition looks like in the context of the Burgers equation, first discussing it in context

of the directed polymer partition function Z.

4.6.2 Directed percolation transition in the partition function

In Section 4.5, the Directed Percolation transition occurs in a discrete lattice. However, the Burgers equation

is a partial differential equation that is defined on a continuous space. Can we generalize the results of Section

4.5 to the Burgers PDE? In this section, we will first consider how the transition occurs in the partition

function for the polymers, Z(x, t) undergoing a dynamics given by a partial differential equation. In the

subsequent section, we will map these results further to the Burgers equation.
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One can consider a mechanistic way of looking at the dynamics of Equation (4.17). Consider Z(x, t)

as the probability distribution of the polymer position at time t. The term ∇2Z(x, t) lets the probability

density explore the lattice through a diffusive process. When the probability density enters regions with

positive disorder, i.e. coarse-grained sites of the lattice where φ(x, t) > 0, it is exponentially supressed

through the φ(x, t)Z(x, t) term. In this way, the probability density Z(x, t) undergoes an expansion through

space, naturally “choosing” the paths where φ(x, t) = 0.

How does the mechanistic dynamics of Z(x, t) map to the optimum path of the polymer in a lattice

described previously? At zero temperature, the dynamics are not exactly the same. For the optimum path,

we have the position of the path as given by the x(t) for which Emin(x, t) is at the minimum (for a given

time slice t). Recall the recurrence relation for Emin:

Emin(x, t) = min

[
Emin(x− 1

2
, t− 1), Emin(x+

1

2
, t− 1)

]
+ φ(x, t), (4.35)

where the true endpoint of the polymer is given by x for which Emin(x, t) is minimum. Recall that the

dynamics of Z(x, t) is given by the PDE (4.17). The effective recurrence relation for Z(x, t), based on the

dynamical perspective described above (and straightforward finite difference Euler scheme) is given by

Z(x, t) = (1− Φφ(x, t))Z(x, t− 1) +D

[
Z(x− 1

2
, t− 1)− 2Z(x, t− 1) + Z(x+

1

2
, t− 1)

]
(4.36)

where Φ is the strength of the disorder and D is the effective diffusion coefficient. The “true” endpoint of

the polymer in this case is the mode of Z which we will define in two ways. First is the simple maximum of

Z(x, t),

xmax(t) = x′ | Z(x′, t) = max
x′

Z(x, t). (4.37)

The second is the first moment of Z(x, t)n:

xn(t) =

∫
Z(x′, t)nx′ dx′. (4.38)

Here we will take n = 1, but n > 1 would define a “sharper mode” of Z(x, t). In the remainder of this

section, we will conjecture and attempt to motivate the above two metrics as proxies for Perlsman and

Havlin’s D(t) given in (4.29). We propose that the above measures will also undergo the directed-polymer

directed percolation transition in the wandering exponent just as D(t) does. As a proxy for W (Equation
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Figure 4.7: The lattice used for the simultaneous simulations of Z(x, t) and optimum paths on diagonal
lattice. The lines indicate boundaries between sites where the disorder φ(x, t) is specified. The disorder
sites are labeled by j. The numerical evaluation of Z(x, t) is performed using finite differences on the grid
specified by indices labeled by i.

4.30), we propose the standard deviation of Z(x, t)n,

σ2
Z,n = 〈x2〉Z − 〈x〉2Z =

∫
Z(x′, t)nx′2 dx′ −

(∫
Z(x′, t)nx′ dx′

)2

. (4.39)

We expect that (4.39) will transition from the exponent of 1/3 to ν⊥ − ν‖ at pc.

In order to evaluate (4.36), and preserve the diagonal lattice structure, we construct a rectilinear grid in

the way illustrated in Figure 4.7. Sites with the disorder φ(x, t) are straddled in the same fashion like in a

diagonal lattice in Figure 4.2. Each of these sites is composed of two sub-sites (or a multiple of 2) on which

the Z(x, t) dynamics occurs. This sort of a straddled lattice is easily generalized to higher dimensions.

The numerical construction in Figure 4.7 allows us to simultaneously run numerical simulations for both

the optimum path in a lattice and Z(x, t) on a rectilinear grid. In this chapter, we use (4.36), a first-order

finite difference scheme for the evaluation of Z. Optimum paths are computed via (4.35). The comparison

of the optimum paths and Z(x, t) is shown in Figure 4.8. In the Figure, blue sites indicate sites along the

optimum path, whereas the density of the green color indicates the magnitude of Z(x, t). In Figure 4.8a,

we verify that the numerical computation works as expected by turning off the strength of the noise and

observing a diffusive process. In Figure 4.8b, we see that for p < pc, a small diffusion ν = 0.2 is sufficient for

the mode of Z to track the optimum path. In Figure 4.8c, we see the scaling of the noise field at critical p.

At critical percolation threshold the optimal path is highly degenerate. The mode of Z(x, t) has problems

keeping up. In Figure 4.8d we also see the behavior at critical p, but now with smaller viscosity. The mode

of Z(x, t) follows an optimum path near the origin, but it is unable to reach optimum paths far away from
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the origin.

(a) (b) (c) (d)

t

Figure 4.8: Four simultaneous numerical simulations of (4.35) and (4.36). Red indicates regions of φ(x, t) = 1.
Blue indicates the sites along the optimum path. The magnitude of green overlay indicates the strength
of Z(x, t) at that point. Z(x, t) is renormalized at each time step to have unity mass. (a) With Φ = 0,
the dynamics for Z(x, t) is simply diffusive. (b) p = 0.5 < pc, ν = 0.2,Φ = 0.2. (c) p = 0.7055 = pc, ν =
0.36,Φ = 0.2, (d) Same as (c) but with ν = 0.2, diffusion is too slow to reach all parts of the optimum path.

Figure 4.8 gives an insight into how Z(x, t) qualitatively behaves. Overall, choosing the appropriate

values for ν and the noise strength Φ is key to having Z(x, t) follow the optimum path. We ran more than

60,000 runs of simulations with 500,000 time steps, t ranging up to 250,000 and in a space of 16,000 grid

points for cases of p = 0.45 and p = 0.7055, with finite-difference scheme of (4.17) in lattice given in Figure

49



4.7. We measured D(t) ≡ x1(t) and W (t) ≡ σZ,1 and calculated the local exponents using the same method

as in Section 4.5.3. We plot the results in Figure 4.9 and the local exponents in Figure 4.10. We see that

the local exponents for D(t) and W (t) are approaching 2/3 but we are unable to differentiate between the

two phases of the transition.

The problem in observing the transition in Z(x, t) may be because of the following reason: a careful

tuning of the parameters is necessary. Consider our conjectured phase diagram in Figure 4.11a. From the

directed polymer literature and the calculation in Section 4.6.1, we know that the transition has to occur

at the critical probability p (for the lattice) and up to some (unknown) maximum viscosity ν (temperature,

in polymer language). However, we see from Figure 4.8 that a careful tuning of parameters ν and Φ is

necessary in order to have Z(x, t) behave suitably enough to observe the slight change in local exponents.

We find that one should keep the ratio of ν/Φ = 1 roughly, but with ν depending upon p and neither too

small, nor too large. We hence propose that one needs to be in the suitable region of parameter space,

qualitatively illustrated in Figure 4.11b, in order to observe the transition. However, we do not know if

this region of parameter space overlaps with the Directed Percolation line in Figure 4.11a. That the phase

diagram depends on Φ and p, properties of the noise field defined on the lattice, may be in contradiction to

the statement of universality of Directed Percolation. In any case, the resolution of this seeming paradox

and the observation of the transition in Z(x, t) and the full understanding of the phase diagram will take a

number of other numerical simulations and is left for future work.

4.6.3 Back to Burgers equation

In this section we use the reverse of the process of Section 4.3 to map the meaning of our results for Z(x, t)

to the velocity field u(x, t). In Section 4.6.2 we conjectured that

xn ≡
∫

Z(x′, t)nx′ dx′ ∼ tζ . (4.40)

What is the meaning of this statement in the language of the Burgers PDE? For the case of n = 1 in a

system of size C, we have, after applying the Cole-Hopf map (4.16)

∫ C

0

exp
h(x)

2ν
dx ∼ tζ . (4.41)

Transforming h into u via (4.14) yields

∫ C

0

exp− 1

2ν

(∫ x

K

u(x′, t) dx′
)
dx ∼ tζ . (4.42)
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Figure 4.9: (a) D(t) and (b) W (t) for the case of an evolution of Z(x, t) in a lattice given in Figure 4.7 with
parameters Φ = 0.3 and ν = 0.3.
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Figure 4.10: The local exponents of (a) D(t) and (b) W (t) for the case of an evolution of Z(x, t) in a lattice
given in Figure 4.7 with parameters Φ = 0.3 and ν = 0.3.
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Figure 4.11: (a) Phase diagram of the directed polymer-directed percolation transition. (b) Conjectured
observable region for the directed polymer-directed percolation transition in the partition function Z(x, t).

The lower limit in the inner integral is arbitrary (as long as it is in the range {0, C}, since it will at most

affect the constant multiplying the power law on the right. The outer integral in (4.42) is of course not

surprising since we need to integrate out x, in order to observe the transition in the exponent of the power

law in t. However, the inner integral is interesting since it gives a global character to the transition which

stems from the global optimization process of the directed polymer in the random medium.

4.7 Conclusion

In this chapter we have given further evidence that the transition to turbulence is in the Directed Percolation

universality class. Our goal was to go directly from a phase transition in a stochastic PDE to a DP statistical

mechanical model, thus showing that it is in principle possible for a coarse-grained description such as DP

to be an appropriate description of a fluid turbulence transition. In this we were partially successful.

In Section 4.2 we motivated our consideration of Burgers equation as the model system. In Section 4.3,

we showed how one can map Burgers equation to a problem of Directed Polymers and in Section 4.4, we

reviewed some relevant results for the Directed Polymer universality class. In Section 4.5, we reviewed a

particular model of Directed Polymers that has a Directed Polymer-Directed Percolation transition at T = 0.

In particular, in Section 4.5.3 we presented a novel extension of these results to the site polymer model.

Then, in Section 4.6 we gave evidence for the existence of the transition at T 6= 0 (i.e. finite Re), in the

53



polymers on a lattice (Section 4.6.1), the polymer partition function (Section 4.6.2) and we mapped these

results to the Burgers equation (Section 4.6.3).

Our final result, (4.42) can be taken as a metric that a numerical or experimental fluid dynamicist can

apply in order to try to understand the transition to turbulence. However, it is unlikely that this metric is

of utility with present technology, because of the difficulty in observing the subtle transition in exponents

(even in simulated systems).

In Part 1 of this thesis, we have provided evidence that the transition to turbulence is in directed

percolation universality class. However, the evidence is far from conclusive, and more direct measures of the

transition are needed. In this section we outline a few possible paths a future student or researcher may

take in theoretically studying the transition to turbulence in hardened Burgers equation (Section 4.7.1) or

in experimental/numerical two dimensional turbulence (Section 4.7.2). We also raise an interesting question

in Section 4.7.3 about the relationship of extreme value statistics and spatially extended systems with a

subcritical transition.

4.7.1 Direct observation of directed percolation in hardened Burgers equation

In section 4.4, we hinted at the possibility of directly measuring the directed percolation exponents through

simulations of Burgers equation. We propose that one can coarse grain the solution of the Burgers equation,

by “hardening”, i.e. by setting a threshold for velocity |u(x, t)|. Regions where the velocity field crosses the

threshold are analogous to active regions in DP. In that case, one can verify the DP exponents in the same

way that Takeuchi et al. did in turbulent liquid crystal experiments (see Section 2.3.2), by measuring the

active site density and correlation lengths. One can even directly track the shock fronts and measure the

analogue to turbulence growth rate G.

However, this calculation is not trivial. We attempted to do this measurement in 1-dimensional Burgers

equation with no success. The challenge is that in 1-dimensional Burgers equation driven by noise, left-

moving and right-moving shocks can become “pinned” producing artifacts in the measurement. However, it

is possible that in a 2-dimensional simulation, pinning is not an important effect. In any case, one needs to

drive the Burgers equation with correlated noise, a task that is not numerically trivial, especially in more

than 1 dimension.

4.7.2 Direct observation of directed percolation in turbulent fluids

The details of the phase diagram of the flow in 3D pipes described in Chapter 3 are still not completely

understood around the puff-slug transition point. However, most of the phenomenology is understood
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through a number of experiments and direct numerical simulations. On the other hand, the laminar-to-

turbulent transition is much less understood in 2D flows, such as those in gravity driven soap films. Unlike

3D turbulence, 2D turbulence is characterized by having two possible spectral exponents, the energy and the

enstrophy cascades. A further study of the turbulence-laminar transition in 2D flows would be interesting

for a couple of reasons.

Inactive Inactive

Active Active

Figure 4.12: A sketch of how one can perform a coarse-graining procedure of a velocity field. For each
coarse-grained site (indicated with dashed lines), average the turbulence intensity in that site. If it is above
a certain threshold, then label the site as active, otherwise as inactive.

Direct numerical simulations are much easier and computationally cheaper to perform in 2 dimensions.

This allows relaminarization simulations for long times and measurements of the scaling of turbulent lifetime.

Furthermore, the comparison to experiments is easier. Namely, unlike in 3D flows, turbulence in a soap film

flow can be readily visualized by filming the interference patterns formed by the differences in thickness [93].

These can be readily mapped into the vorticity field of the fluid [40]. From vorticities, one can solve for the

velocity by solving a Poisson equation. One can also coarse-grain such measurements of the velocity field,

by overlaying a larger lattice on top of the velocity field (see illustration in Figure 4.12). Those lattice sites

that have a turbulence intensity larger than a certain threshold can be labeled as active. Otherwise sites are

labeled as inactive. One can then consider the coarse-grained dynamics of the active and inactive sites and

see if it corresponds to what one would expect in directed percolation (by calculating the density of active

sites and correlation lengths as function of Re for instance).

Based on linear stability arguments, it is known that laminar-to-turbulent transition in 2D Poiseuille

flow is subcritical [94]. Hence, there is hope to be able to measure puff lifetimes and slug front growth rates

much like in pipe flow. The slug fronts should expand at a different rate than in 3D Poiseuille as shown in

Chapter 3. We expect to see G ∼ (Re − Rec)0.561 with a crossover to G ∼ (Re − Rec)0.637 for (Re − Rec)

small.
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4.7.3 Superexponential scaling of systems with subcritical transition

t = 5

t = 50

t = 100

Figure 4.13: Decay of an active region in a coupled map lattice system [95] with parameter ε = 0.3. Black
sites indicate active regions, sites in the lattice where the dynamics is in the chaotic region. White sites
indicate inactive (absorbing) regions, sites in the lattice where the dynamics is in the neighborhood of a
stable, attracting fixed point. Systems such as this also seem to have superexponentially scaling lifetimes of
active state.

Another interesting question relates the association of turbulence lifetimes and extremal statistics shown

in Chapter 3. This seems to be a property of subcritical bifurcations. Subcritical bifurcations differ from

supercritical bifurcations in that when a bifurcation threshold is attained, a previously stable state becomes

metastable and the fixed point of the system discontinuously changes [18]. It is thought that turbulence

is always in a metastable state, it is simply that when Re is sufficiently large, its lifetime becomes much

longer than that of the age of the Universe [2]. This phenomenon also happens in many spatially extended

systems [96]. In particular, subcritical transitions appear in Kuramoto-Sivashinsky PDE [97], as well as in

at least one type of a reaction-diffusion system [98]. We’ve measured such dynamics in the case of Chate’s

coupled map lattice [95], graphically shown in Figure 4.13. It would be interesting to see if systems other

than turbulence also show superexponential lifetime as a function of the bifurcation parameter, as we would

expect from the extremal statistics arguments, and when and under what conditions does extremal statistics

argument not apply.
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Community Dynamics in Microbial
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Chapter 5

Introduction to Metagenomics and
Ecology

Scientific research in quantitative microbiology can be roughly divided according to scale:

1. single molecule experiments, such as measurements of physical properties of biological molecules;

2. cultured single cell experiments, such as measurements of genomics, transcriptomics or cell processes

such as motility and division;

3. bulk experiments using cultured cells, such as measurements of biofilm formation, quorum sensing and

chemotaxis in controlled experiments;

4. bulk experiments using uncultured cells, such as measurements of metagenomics and metatranscrip-

tomics.

In this thesis we will consider some problems that are squarely in the last category. In particular, our

approach will be a physical one rather than a traditionally biological one: we will not mention any specific

taxa by name. Instead, we will focus on what we can state about biological systems in a generic and

statistical way by focusing on the collective phenomena of the microbial communities.

Why study microbial communities? They are estimated to form as much biomass as all the plants on

the planet [99], they oxygenated the atmosphere of the earth 2 billion years ago [100], and they may remain

a key component of the global climate and carbon cycle [101]. A diverse community of microbes are a

necessary part of a human body–there are 10 times as many microbial cells as there are human cells in a

human body [102]. The importance of microbiomes in biomedicine is evident and it is exemplified by the

Human Microbiome Project [102, 103].

It is believed that more than 99% of microbes in nature are not culturable in a lab setting. While they

are usually viable, they do not form colonies on plates [104]. This necessitates in situ measurements such as

metagenomics. Metagenomics [105] is the study of genes present in the organisms living in an environment.

We briefly review methods of metagenomics in Section 5.1. On the modeling side, we use methods from

theoretical ecology to characterize communities of microbes. A short review of the relevant theory of ecology

is given in Section 5.2.
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Figure 5.1: High-level overview of the metagenomics process. Depending on the study, one can perform
a metagenomics of amplicons of a specific gene (such as, say, 16S), or a de novo assembly of contiguous
sequences and even entire genomes.

5.1 Sampling a microbial environment

In Figure 5.1 we give a general overview of a metagenomic study. The DNA content of a sample from the

environment is amplified and fed into a high-throughput sequencer. Depending on the study, a specific gene

can be amplified, or an assembly of contiguous sequences can be made into entire genomes [106]. A typical

choice for a specific gene study is the 16S gene, a necessary part of each bacterial ribosome’s smaller subunit.

Because 16S is necessary for the operation of the ribosome, it is strongly conserved and hence serves as a

good “evolutionary clock”. The phylogeny (tree of the historical evolution of the molecule) has enabled

Woese to trace descent of life on Earth into three domains [107].

Once reads are produced by the sequencer, they are processed for quality. Each sequencing platform has

different types of read errors that can occur including chimeric reads–errors where one read is actually a

concatenation of two different reads [108]. In the case of de novo assemblies, short reads are algorithmically

matched and assembled into contiguous regions [109]. In the case of 16S, the reads are typically aligned as

the next step in the study. We now turn our attention to sequence alignment.
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Sequence A: 

Sequence B: 
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TGATAGTC
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Figure 5.2: Overview of the Needleman-Wunsch algorithm. On the left, two sequences are given, and one
of their possible alignments. On the right, a path through the lattice that corresponds to the alignment is
shown in red.

5.1.1 Sequence alignment

In order to facilitate comparisons between the metagenomic sequences, an alignment of sequences to each

other is necessary. This is called a multiple alignment, and the canonical algorithm for performing a multi-

ple alignment was developed by Needleman and Wunsch [110]. Since the algorithm uses the same principle,

dynamic programming, that we used in Chapter 4 to solve for directed polymer paths, a number of rela-

tionships have been discovered between the statistics of alignment scores for related sequences and that of

scaling of directed polymers [111].

The Needleman-Wunsch algorithm operates on the basis of minimizing the cost of the alignment (or

similarly, maximizing the similarity of aligned sequences). Consider the example of aligning two sequences:

A and B. The alignment score S00,xy for aligning the first x letters of A to first y letters of B is simply

computed via:

S00,xy = Gxyg +Mxym, (5.1)

g and m are the costs for gaps and mismatches and Gxy and Mxy are numbers of gaps and mismatches,

respectively. If necessary, one can also readily generalize the algorithm to use different costs for transition

(A↔ G, C↔ T) and transversion (A↔ T, A↔ C, G↔ C, G↔ T) mutations. The algorithm operates

by progressively filling in the lattice illustrated in Figure 5.2. In the Figure, the alignment at the left is

represented by the path in the lattice shown on the right. Horizontal and vertical steps in the lattice indicate

gaps. The alignment score can be expressed in terms of a recursion relation, involving a minimum of the
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score of the sub-sequences:

S00,xy = min
x′y′

(S00,x′y′ + Sx′y′,xy) (5.2)

One can implement a dynamic programming algorithm to solve (5.2) much like the one we described in

Chapter 4.

For aligning two sequences, the Needleman-Wunsch algorithm’s operating time scales as O(N2) where N

is the length of the sequences. The algorithm can be easily extended to multiple alignment, by changing the

lattice in Figure 5.2 into a hypercube. However, in that case the operating time of the algorithm scales as

O(Nn) where n is the number of sequences. This exponential scaling of time is what makes this algorithm

prohibitive for multiple alignments of large datasets. To go around this problem, we will introduce two

alternative alignment methods and investigate their performance in Chapter 6.

5.1.2 Analyzing metagenomic reads

With alignment complete, an analysis of metagenomic reads can reveal a plethora of information about

the underlying community. Whole genome assemblies can be used to detect presence of particular genes or

instances of horizontal gene transfer. The genome can be used to construct a metabolic network, which can

be studied through flux balance analysis to understand the metabolic pathways and functions of organisms

in the community [112].

Amplicon reads such as 16S rDNA are typically clustered following the alignment into OTUs (operational

taxonomic units). The OTUs are groups of reads that are very similar to each other. Typically 3% identity

between sequences is used to define OTUs. This radius is a matter of convention, and may give different

results for different subregions of 16S rDNA, or may correspond to different phylogenetic distance for different

lineages. After clustering, the OTUs can be used for taxonomic identification (by looking up reads in a

taxonomic database), and the number of reads in an OTU is used as a proxy for the relative abundance of

the taxon in the community. The OTU assignments can be used to estimate the species richness (number of

species in a community), to compare communities through Bray-Curtis ordination [113], create phylogenetic

trees and generate OTU coexistence networks [114]. Importantly, the distribution of OTU abundances can

be used as a proxy for a distribution of species abundances, an important ecological metric. We now turn

our attention to how species abundance distributions are used in ecology.
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5.2 Ecology

Ecology aims to explain the relationship between living organisms and the environment they live in. In

particular, ecologists are interested in living organisms’ abundance, diversity, spatial distribution and energy

use. Of course, these questions are important in order to understand humans’ impact on the environment

and biodiversity. However, the factors governing how living organisms are distributed on large scales are

still not fully understood, with conceptual gaps between our understanding of population dynamics, gene

flow and energy flow.

An important question in ecology is the distribution of abundances of species in an ecosystem, and

the total number of species, the species richness. What decides how abundant a species will be? Are

the modal (highly abundant) species more abundant because of their better adaptation, or because of

chance? What is the role in the ecosystem of the low abundance organisms? Ecologists have been trying to

answer these questions since the 1940’s [115]. Functional forms for species abundance, based on statistical

assumptions rather than time-dependent mechanisms of community development, have been proposed. These

include Fisher’s log series and Preston’s log normal, niche apportionment [116] or self-organized criticality

models [117] have been used to fit the data. Alternative models for abundance distributions are mechanistic,

ones that conjecture some sort of a meaningful process for evolution and assembly of species. The simplest

of all models in the latter category is the ecosystem counterpart to the ideal gas, due to Hubbell, and we

begin by describing this model.

5.2.1 Neutral theory

In recent years, Hubbell’s Neutral model [118] has become popular as a null hypothesis for testing observed

abundance and diversity patterns. The key assumption (and source of controversy) behind Hubbell’s theory

is the idea of functional equivalence [119]. Namely, all species are assumed to be the same for all purposes

(i.e. in fitness, per capita death, growth and speciation rates). Heuristically, this is motivated by the notion

that living species are all near optimally fit, within the range of fluctuations compatible with the selection

pressure.

Hubbell’s theory has two parts. The first part models the metacommunity dynamics. A metacommunity

is a large ecosystem, considered over a timescale in which speciations can occur. The second part of Hubbell’s

theory models the smaller local community (e.g. an island) which is in contact with the metacommunity (e.g.

a continent). The local community is modeled over a short enough timescale that speciation cannot occur,

but migration from the metacommunity can take place. Notice that in its original form, Hubbell’s local

community model is not spatially extended (it only involves interaction between mean-field local community
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and mean-field metacommunity).

The metacommunity undergoes a dynamics that is a competition between the introduction of new se-

quences, and the zero-sum expansion of already abundant organisms. The expansion is zero-sum since that’s

the simplest way to limit the amount of available resources in the model. However, this assumption is not

necessary [120]; what is important are the fluctuations in relative abundance of organisms. More abundant

organisms in the neutral model tend to become more abundant. With pure speciation (essentially diffusion

in genome space), the abundance patterns would tend to be roughly uniform with Gaussian fluctuations.

Instead, the rank abundance patterns in Neutral Theory show an exponential tail for rare organisms, and

significantly higher abundances for some modal organisms.

The dynamical rules in the metacommunity are simple. Consider a population of J organisms. Each

organism i ∈ 1, . . . , J belongs to a species Si, where Si is a label for a certain species (e.g. an integer). At

each time step with probability 1 − ν, we pick one organism i at random, and replace it with an organism

of species Sj from the population, effectively setting Si = Sj . Alternatively with probability ν, we pick

one organism i at random and replace it with an organism of an entirely new species by setting Si equal

to a new label (e.g. an integer we haven’t used before). Here ν is the speciation rate per generation. The

metacommunity model, as defined here is a statistical process with detailed balance. The number of species

with n organisms remains constant in the equilibrium since the probability of a reaction occuring that creates

a new species of n organisms is the same as the probability of a reaction occuring that removes one species

of n organisms.

The relative abundance Ps of species s is then simply the proportion of organisms that belong to it,

Ps = 1
J

∑J
i=1 δ(Si−s), where δ is the Kronecker delta. The question is, what is the steady-state distribution

of Ps? Traditionally, Ps is plotted as a function of the rank R of species s. Here R = 1 for the most

abundant species, R = 2 for next most abundant, etc. Evidently, when ν = 1, then Ps = 1/J for each

existing species s. When ν = 0, then the zero-sum dynamics will proceed from initial conditions until only

one species remains, with Ps = 1. When 0 < ν < 1, Hubbell found that the Ps have the form shown in

Figure 6.4, which is asymptotically similar to the Fisher log-series in the J →∞ limit [118]. If one takes, in

addition, Hubbell’s local-community model then one can also obtain another empirical law, Preston’s log-

normal distribution. Analytic exact solutions and asymptotic forms are known for both the metacommunity

and the local community models [121, 122, 123, 124].
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Chapter 6

Robust computational analysis of
rRNA hypervariable tag datasets

Next-generation DNA sequencing is increasingly being utilized to probe microbial communities, such as gas-

trointestinal microbiomes, where it is important to be able to quantify measures of abundance and diversity.

The fragmented nature of the 16S rRNA datasets obtained, coupled with their unprecedented size, has led to

the recognition that the results of such analyses are potentially contaminated by a variety of artifacts, both

experimental and computational. Here we quantify how multiple alignment and clustering errors contribute

to overestimates of abundance and diversity, reflected by incorrect OTU assignment, corrupted phylogenies,

inaccurate species diversity estimators, and rank abundance distribution functions. We show that straight-

forward procedural optimizations, combining preexisting tools, are effective in handling large (105−106) 16S

rRNA datasets, and we describe metrics to measure the effectiveness and quality of the estimators obtained.

We introduce two metrics to ascertain the quality of clustering of pyrosequenced rRNA data, and show that

complete linkage clustering greatly outperforms other widely-used methods.

6.1 Summary

Microbes constitute the majority of the living mass and genetic diversity on the Earth. They construct

communities with elaborate patterns of abundance and diversity. Major current scientific interest is in

quantifying these patterns in various microbial ecologies, from microbes living in oceans, to microbes in

vertebrate intestines and on human palms. To ascertain the diversity and abundance of microorganisms in

a sample, experimenters sequence organismal tags. However, it is important to carefully analyze these data

sets in order not to overestimate the number of species living in an environment. This chapter describes

how to make correct computational analyses of the next generation of deeply sequenced genome popula-

tions, where the unprecedented sample size and fragmented data sets pose special problems to conventional

approaches. As more and more sequence data are collected, it becomes critical to have robust, reliable and

fast computational methods for analyzing these data. We have developed and made available online the

software TORNADO (Taxon Organization from RNA Dataset Operations) to perform such computational
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analysis, and to quantitatively measure its quality.

6.2 Introduction

There is a long history of using environmental 16S rRNA [125] to estimate microbial diversity [105]. While

early techniques relied on using clone libraries [126], next-generation high-throughput sequencing technology,

such as pyrosequencing, directly generates vast libraries of sequences [127]. Next-generation high-throughput

sequencers are capable of producing large datasets of more than a million reads from a single plate [128]. As

the size of these datasets grow, the ability to computationally manage and characterize such data becomes

a larger and more critical component of microbial ecology.

The goal of analyzing these sequences is to quantify the diversity and abundance distributions of organ-

isms present in the environment. As pyrosequencing technology advances, our ability to measure microbial

diversity increases. Already, this technique has been used to study the diversity of microbiomes from a

variety of environments [129, 130], resulting in reports of a so-called “rare biosphere” of low-abundance

organisms [131].

In order to assess the microbial diversity present in any dataset, the ability to appropriately measure the

distance between different sequences and to reliably group them into operational taxonomic units (OTUs) is

paramount. Typically, the abundance of OTUs is plotted in a rank abundance plot. These plots have been

used as a gold standard for ecological population modeling for many decades[115]. In addition, the OTU

groupings are utilized by other metrics in determining relative species compositions, microbial diversity, and

community comparisons[132, 133]. While much effort and controversy has been focused on measurements

of the quality of next-generation sequences[131, 134, 135, 136, 137], or the interpretation of pyrosequencing

flowgrams [138], less attention has been given to computational analysis of pyrosequenced 16S rRNA data

after quality processing, despite the large discrepancies in OTU numbers and diversity when different analysis

methods are used[139, 136, 140, 138].

There are two major components to the analysis of OTU abundance. The first is multiple alignment of

16S rRNA or fragments of 16S rRNA. The second is clustering the sequences based on a distance metric.

The purpose of this chapter is to provide a careful discussion of the computational analysis of alignment and

clustering of pyrosequencing datasets, identifying sources of error, and appropriate ways to handle the data to

mitigate these artifacts. In particular, we use the Calinski-Harabasz (CH) index [141] to compare the quality

of clustering. We find unexpectedly large differences in the performance of different algorithms. We show

that data analysis is surprisingly sensitive to even small errors in multiple alignment and clustering, but that
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with relatively little difficulty, these artifacts can be substantially mitigated using a judicious combination of

preexisting tools, and others that we have made available on a web site (http://tornado.igb.uiuc.edu).

Following these procedures results in robust characterization of microbial ecosystems.

6.2.1 Multiple Alignment: NAST and Infernal

Multiple alignment is the starting point of almost all analyses performed on microbiome sequences. Most

phylogeny [142, 143], community distance estimates [144, 133], and abundance distributions [145, 146, 147]

ultimately rely on input from a multiple alignment to compute sequence distances within a consistent

alignment template.

The goal of multiple alignment is to align sequences according to their evolutionary relationships. In order

for a multiple alignment to be meaningful in this context, all sequences in the multiple alignment must have

a common origin. The various match, mismatch, and indel events then represent possible reconstructions

of the evolution of those related sequences. In contrast to pairwise alignment, multiple alignment leverages

conserved features of an entire gene family to obtain a broader evolutionary picture. This picture can then

be fed into various algorithms such as maximum-likelihood phylogeny[142, 148, 143] in order to reconstruct

the evolutionary relationships between the individual sequences.

The use of 16S rRNA sequences for discerning evolutionary relationships has a long history. The very

first studies that organized the Bacteria according to their evolutionary relationships and resulted in the

discovery of the Archaea utilized this important ribosomal molecule as a molecular fossil [149] and it still

remains the most widely used evolutionary marker in microbial ecology today [131, 150, 128]. As such, it is

not surprising that a number of tools exist which are specifically tailored to 16S rRNA such as the NAST

pipeline [151] or Ribosomal Database Project [152].

These specialized 16S rRNA alignment tools all incorporate information about the 16S rRNA secondary

structure. The importance of the secondary structure is two-fold. First, the conservation of 16S rRNA

sequences stems from the conserved structure. Second, unlike proteins which are built from up to 20

different amino acids, there are only 4 basic RNA bases. Randomly chosen RNA bases have a greater chance

of aligning well with one another than randomly chosen protein sequences, making it more difficult to

distinguish between evolutionary relationships and random matches. Secondary structure can, and should,

be used to provide extra discriminatory power beyond that available from the one-dimensional sequence

alone.

The NAST algorithm [151] tries to align new sequences against a precalculated multiple alignment tem-

plate, and has been integrated into many commonly used 16S rRNA analysis tools such as Mothur [133] and
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GreenGenes[153]. Typically, this template is hand-curated to include the appropriate secondary structure

considerations. In this chapter we will use the SILVA SEED SSURef database version 102 [154] as the

template and refer to this alignment method as NAST+SILVA. The weaknesses of this method are that

errors in the hand-curated multiple alignment propagate and that alignment against a fixed-size template

necessitates the inclusion of purposeful misalignments. Overall, this results in alignments that are sometimes

inconsistent with alignments based on secondary structure. An example of this is shown in the alignments

in Figure 6.1b. By contrast, Infernal [155], which has been integrated into the Ribosomal Database Project

16S rRNA Pipeline [152], aligns sequences against a predefined structure. However, even among the well-

conserved structures of 16S rRNA, there exist hypervariable regions which vary in their secondary structure

from taxon to taxon. These regions cannot be aligned to a fixed structural template, and are left unaligned

by Infernal (leading to a multiple alignment whose length is not fixed but may be different in different

datasets). An example of this Infernal’s alignment is shown in Figure 6.1a. It is important to note that

while both methods align to a seed model of some sort, the practical difference is that RDP+Infernal does

better in regions of strong secondary structure whereas NAST+SILVA does better in hypervariable regions.

To exploit this distinction, one can merge the best alignments from each tool by combining the hyper-

variable regions aligned using the NAST algorithm with the regions of strong secondary structure aligned

by Infernal. An example of sequences aligned using the merging method is given in Figure 6.1c. One can

also make adjustment to the multiple alignment by hand. Done properly, this can produce a better quality

alignment than automated methods alone. An example of the merged alignment in which the hypervariable

region was further hand-curated is given in Figure 6.1d. For a brief description of the process and the tools

that we developed to perform the merging and hand-curation, please refer to the Materials and Methods

section.
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Figure 6.1: Snippets of 9 sequences aligned using the 4 different methods described in this chapter. The 9 sequences are in the V3 region of the
16S rRNA. (a) Sequences aligned via RDP [152] which uses the Infernal aligner [155]. Note that the hypervariable region is left unaligned (bases 36
through 64). (b) Sequences aligned via NAST [151] (as implemented by Mothur [133]) to the SILVA [154] database. Notice the inconsistencies in
the alignment of the regions with strong secondary structure conservation (bases 5, 25, 29, 72 through 79, and 85). (c) Sequences aligned using the
merge program in the tool we developed, TORNADO ( http://tornado.igb.uiuc.edu). The merge process takes the unaligned, hypervariable
parts of the sequence aligned by (a) and replaces them by the alignment in (b). (d) Sequences aligned like in (c), but with the final hand-curation
step of the hypervariable regions.

68



With the availability of a variety of tools that perform multiple sequence alignment, it is imperative

to have a way to assess its quality. One way to do that is through maximum-likelihood (ML) phylogeny.

ML phylogeny tries to identify the set of relationships with best likelihood value. Conversely, ML scores

can also be used to judge the likelihood of a multiple alignment reflecting sequence evolution. Indeed,

similar measures have been used in the past [156] and tools such as SATÉ [157] already take advantage

of this measure when iterating between multiple alignments and phylogeny to automate the search for the

best alignment and tree. However, exploring enough multiple alignments for large datasets is prohibitively

expensive and therefore remains impractical for now. Nonetheless, it is feasible to use the ML method in

order to compare the quality of alignments by measuring their likelihood values, and we use this below to

compare different alignment strategies.

6.2.2 Clustering Algorithms

Clustering algorithms, such as complete linkage [158], are essential for quantifying the diversity of microbial

communities. The goal of clustering is to group sequences that are within some measure of evolution-

ary distance. Distances can be calculated using many different metrics such as percent sequence identity

(PSI) or distance along the phylogenetic tree branches. Ideally, a clustering algorithm should identify the

natural boundaries between the clusters without utilizing more clusters than necessary to account for the

entire dataset. Ultimately, clustering should accurately reflect the underlying phylogenetic and taxonomic

distribution of sequences.

Complete linkage clustering (also known as furthest neighbor) has become the most widely-used clustering

algorithm in microbial ecology. It relies on input from a distance matrix that can be generated from the

pairwise distances between sequences in a multiple alignment. When calculating sequence distances, it is

important to clearly note how alignment gaps are dealt with. One can ignore the gaps (like Phylip DNADIST

does [147]) or count them in a number of different ways [145]. Once pairwise distances are obtained, complete

linkage operates by progressively merging smaller clusters into larger ones, as long as each element in a cluster

is within a defined radius from other elements in the cluster [158]. Alternative linkage algorithms are also

possible. One can merge clusters into larger ones as long as the average distance within a cluster is within

a defined radius (this is average neighbor clustering, or average-linkage). Finally, one can use single linkage

(or nearest neighbor), where one merges clusters as long as they share 1 sequence that is within a defined

radius. Single linkage generally performs very badly as it creates very large, “snake-like” clusters.

The performance of linkage clustering algorithms, for example as implemented in Mothur [133], scales

poorly (N3, where N is the number of sequence reads) as the number of sequence reads generated per
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study increases. In the studies reported below, we reimplemented Mothur’s clustering algorithm, achieving

an improvement in computational complexity (scaling as N2 logN), better memory usage, and an overall

speedup that is typically a factor of 5-10, leading to the ability to handle datasets with N up to about 30,000.

Despite these improvements, it is understandable that heuristic, computationally efficient algorithms have

been developed, such as FastGroup [159] and ESPRIT[160].

FastGroup does not order clustering in any particular way, but instead chooses a sequence at random,

grouping everything within a defined PSI distance of that sequence. As an example of how that is different

from the complete linkage clustering employed by Mothur, consider the clustering of a scatter of points in two

dimensions, as shown in Figure 6.2. The two-dimensional space is a very simple example of sequence space,

with position in the space corresponding to the particular sequence of an organism. A set of points in this

space, if sufficiently close to one another, represents a set of sequences that can be considered to be grouped

into a single equivalence class—in other words, an OTU. The largest allowable distance between points in a

single equivalence class corresponds to the sequence similarity required for sequences to be included in the

same OTU (typically 97% is used).

When the FastGroup algorithm is used to group these sequences, with a radius equal to the radius

of the circle of points, the number of clustered OTUs can vary, depending on the order of chosen cluster

centers. One example of FastGroup’s clustering is given in Figure 6.2a. On the other hand, complete linkage

clustering with the same diameter correctly identifies the existence of 1 cluster (Figure 6.2b), by progressively

merging clusters as long as they are within a cluster diameter (see Figure 6.3 for the progress of the complete

linkage algorithm).

Figure 6.2: Calculation of clustering a set of points in a plane. (a) FastGroup’s method. (b) complete linkage
clustering. Both of these clusterings are performed with the same radius r equal to the radius of the set of
points. FastGroup constructs 4 clusters whereas complete linkage finds 1.

ESPRIT[160] goes one step further and does away with multiple alignment entirely and processes the

clusters in two steps: the first relying on a k-mer heuristic, similar to that used in BLAST[161], in order to
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Figure 6.3: Illustration of the process of the complete linkage algorithm. Smaller clusters are progressively
merged into larger ones as long as no two elements of a cluster are farther than r from each other.
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group closely related sequences under one representative sequence; the second relying on pairwise distances

between representatives in order to determine the final clusters. Both FastGroup and ESPRIT differ from

the more controlled calculations of the complete linkage algorithm, but at the same time promise less

computationally intensive results. Before pursuing such alternatives, it is important to understand the

differences between the results produced by each of these algorithms.

In other words, do the heuristic algorithms produce natural cluster borders and correct cluster composi-

tions? A natural cluster should have a representative sequence that is near the center of the cluster, i.e. the

representative sequence should be one that shares the most similarity to all other sequences in the cluster.

Natural clusters should not partition the dataset into more groups than necessary. One way to quantify this

goodness of clustering is via the Calinski-Harabasz (CH) index [141, 162] that has been found to be the best

in a comprehensive study of 30 different clustering quality indices [163]. CH is defined in the following way:

CH =
n− k
k − 1

∑
K,L(x̄K − x̄L)∑

K

∑
i,j∈K(xi − xj)

,

where n is the number of elements (x1, . . . , xn), k is the number of clusters (with means x̄1, . . . , x̄k), K and L

label clusters, i and j label elements within clusters and subtraction of the x indicates distance according to

a specified metric. Qualitatively, CH is larger when clusters are compact (denominator becomes smaller), or

when clusters are farther away from each other (numerator becomes larger). The CH index is also correctly

normalized so as to be comparable for different number of OTUs. The implementation of the program that

calculates the index is available at http://tornado.igb.uiuc.edu/.

6.3 Results

In this work, we demonstrate that different methodologies can lead to very different estimates of OTU

abundances. We characterize these differences and deconstruct their two primary sources: multiple alignment

and the clustering method used. We measure the performance of both components of this process, restricting

ourselves to 16S rRNA based techniques. We also provide metrics to quantitatively evaluate the effectiveness

of algorithms used. Our analysis includes an examination of the robustness of these algorithms on real

biological data. We perform our analysis on a dataset of 22, 911 bacterial 16S rRNA sequences (V3 region)

with an average length of 205bp from a sample of a chicken caecum. We note however, that our methodology

is also applicable to longer 16S rRNA reads.

Before further analysis, we treated our dataset in the following way. To handle length variation among se-

quences, we trimmed our sequences to only be between the first and last conserved columns in the NAST [151]
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alignment to SILVA database [154]. We further removed any sequences less than 100bp long and any se-

quences that contained an unknown nucleotide (N). After cleanup our dataset had 21,646 sequences.

6.3.1 Multiple Alignment: Performance

We compared the effectiveness of the different alignment algorithms by using the likelihood values returned by

maximum-likelihood phylogeny. In alignment of nucleotide sequences with secondary structure the aligners

that are aware of the secondary structure generally outperform those that rely on sequence data alone [164],

such as ClustalW [165] and MUSCLE [166]. In addition, these aligners scale poorly with dataset size [167].

Thus, we test the two commonly used 16S rRNA alignment algorithms: RDP [152]+Infernal and NAST in

conjunction with the SILVA database [154]. Using ML phylogeny, we find log-likelihood scores of −17, 012

and −17, 322 for RDP+Infernal and NAST+SILVA, respectively, as obtained from the FastTree ML algo-

rithm [142]. The merged alignment of RDP+Infernal with NAST+SILVA, described in the introduction,

has a log-likelihood value of −16, 262, representing an improvement over either of the two algorithms alone.

When we perform further hand-curation of hypervariable regions of the 16S V3 in the merged alignment, we

obtain a log-likelihood score of −15, 036—reflecting the misalignments that can occur in the other automated

procedure.

We can also take these different multiple alignments and cluster them in order to see how the OTU

abundance results depend on the multiple alignment procedure. The OTU numbers after complete linkage

clustering with radii 3%, 5% and 7% on seven different alignments are shown in Table 6.1. Here, “merge”

refers to the merging of RDP+Infernal with NAST+SILVA. Note that running the aligners on sequences

after quality processing produces thousands of OTUs. However, performing hand-trimming of sequence tails

reduces the number of OTUs by an order of magnitude. This suggests that poorly curated alignments may

overestimate microbial diversity.

6.3.2 Clustering: Performance

We compared the three clustering algorithms (complete linkage, FastGroup and ESPRIT) by running them

on the hand curated alignment described in the previous section. We can visualize the effect of the choice

of clustering algorithm by comparing rank abundance curves and cluster compositions. Rank abundance

curves for the chicken caecum dataset are compared in Figure 6.4, for the 3% sequence difference clustering

distance (and 1.5% FastGroup). As demonstrated by the curve, complete linkage clustering, ESPRIT and

FastGroup 1.5% obtain the same shape of the curve, but FastGroup with 3% finds a very different one. This

is because complete linkage at distance r corresponds to clusters where every element is at distance r to
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Alignment method
Number of OTUs
3% 5% 7%

NAST+SILVA (on raw) 1141 646 406
RDP+Infernal (on raw) 3588 2313 1743
Merged (on raw) 3647 2297 1682
NAST+SILVA (on trimmed) 425 251 187
RDP+Infernal (on trimmed) 406 234 169
Merged (on trimmed) 393 227 165
Hand-curated 354 207 153

Table 6.1: Dependence of the number of OTUs on the alignment method used. The percentages indicate
clustering radius. Trimmed sequences refer to sequences in which elementary hand-curation was performed
(see introductory paragraphs of Results for more information). Merged refers to the multiple alignment
that is a merging of the hypervariable regions aligned by NAST+SILVA regions with strong secondary
structure conservation aligned by RDP+Infernal. See Introduction for more information. Note that crude
hand-curation can reduce numbers of OTUs by a whole order of magnitude.

every other element in the cluster. On the other hand, FastGroup guarantees that every element is only at

distance r from the chosen center of the cluster. This means that there may be elements in the same cluster

that are at a distance of 2r from each other. Hence, r for FastGroup denotes the “radius” of the cluster,

whereas r for complete linkage denotes the “diameter” of the cluster. Thus, FastGroup at 1.5% sequence

distance can be compared to complete linkage and ESPRIT at 3%.

We find that FastGroup at 1.5% overestimates the number of OTUs in the sample. The binning in Figure

6.4 hides the fact that the number of OTUs found by FastGroup 1.5% is much larger than that of ESPRIT

and complete linkage. FastGroup 1.5% finds 834 OTUs compared to complete linkage (354) and ESPRIT

(434). Most of these extra OTUs are singletons. Of the 834 FastGroup OTUs, 440 are singleton OTUs. In

comparison, complete linkage has 103 OTUs that are singletons out of total of 354. ESPRIT has 122 OTUs

that are singletons out of 434 total. This is in accordance to the idea that is sketched in Figure 6.2, that a

clustering algorithm such as FastGroup overestimates the number of OTUs.

We now evaluate the clustering quality via the CH index. For 3% clustering distance, complete linkage

has a CH index of 167,771, whereas ESPRIT clustering has a CH index of 244. FastGroup with 1.5%

clustering radius has CH index of 94,696. We note that complete linkage significantly outperforms other

linkage clustering algorithms: nearest neighbor linkage (single linkage) got a CH index of 14,042 and average

neighbor linkage got 23,512. We can also compare CH indices for clustering assignments that have roughly

the same number of OTUs, rather than the same clustering distance. We find that complete linkage has CH

indices between 140,000 and 160,000 for a range of clustering assignments with 200 to 300 OTUs. ESPRIT

produced two clustering assignments in this range: first with 235 OTUs has a CH score of 280, and second

with 303 OTUs has a CH score of 286. Finally, FastGroup (with 3% distance) got a CH score of 16,000 for
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Figure 6.4: Rank abundance curves obtained with different algorithms and/or clustering distances. Notice
that FastGroup with 1.5% sequence distance identifies a similar rank abundance curve to those of ESPRIT
and complete linkage. However, it is not evident from the Figure that FastGroup identifies almost two times
the number of OTUs than ESPRIT or complete linkage.

a clustering assignment with 251 OTUs.

Another way to quantitatively judge the goodness of clustering is by comparing the OTU assignments to

the structure of the maximum likelihood phylogenetic tree. To do this, we count the number of clades in a

phylogenetic tree that contain only sequences of the same OTU (as determined by the clustering algorithm).

We expect that a good clustering assignment will have many such clades. Two examples of this calculation

are sketched out in Figure 6.5. We ran this calculation on 2 phylogenetic trees, one made by FastTree [142]

(FT) and one made by RAxML [143] (RX), both inferred from our dataset described above. We find that

complete linkage clustering has the most clades with uniform OTUs: 863 in FT and 698 in RX. Clustering

with FastGroup (with 1.5% distance), we find 427 clades in FT and 367 in RX, whereas ESPRIT performs

the most poorly: 6 clades in FT and 7 in RX.

We also explored if the rank abundance curves depend upon the clustering distance metric used. We find

that the complete linkage clustering with the hand curated multiple alignment is very robust with respect

to the choice of distance metric. In Figure 6.6a we compare the rank abundance curves (made by complete
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Figure 6.5: Sketch of the calculation of the number of clades with uniform OTUs. A phylogenetic tree with
2 different cluster (OTU) assignments is shown. The cluster assignment is indicated by OTU number and
color. Both cluster assignments have 2 uniform clades (interior nodes indicated by +1). (a) The uniform
clades are: one made up of two OTU 1 organisms, and one made up of three OTU 3 organisms. (b) The
uniform clades are: one made up of two OTU 1 organisms and one made up of three OTU 1 organisms.

linkage) for three different distance metrics: Phylip DNADIST[147], percent sequence identity and distance

along phylogenetic tree constructed by FastTree. We see that regardless of the choice of the distance metric,

the shape of the rank abundance curve is conserved.

If we seek universal laws in the rank abundance data, we should expect that the shape of the rank

abundance curve does not depend upon the particular clustering radius chosen. If instead rank abundance

changes significantly with radius, that would imply that there is an interesting interplay between population

dynamics and sequence distance. The complete linkage clustering with our hand curated multiple alignment

is found to be robust with respect to choice of clustering radius. As an example, see Figure 6.6b for the

rank abundance curves of our chicken caecum microbial sample clustered at three different distances. By

rescaling the axis of the rank abundance curves, while keeping areas under them constant, we can compare

the functional forms (i.e. shapes) of the rank abundance curves. The figure shows that the chicken caecum

microbial sample rank abundance seems to obey a universal law over a range of clustering distances.

6.4 Discussion of the Results

In the literature, the quality of data from pyrosequencing has been called into question [139, 168], especially

with regard to its use in surveys of OTU diversity. Concern has been directed mostly at the experimen-

tal process of acquiring DNA sequences with high quality. Sogin et al. [131] showed that a number of

heuristics can guarantee that per-base error rate of pyrosequencing is lower than that of Sanger sequencing
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Figure 6.6: Two checks that should be used to verify quality of rank abundance curves. Both plots show
rank abundance curves of the chicken caecum dataset. (a) Comparison of rank abundance curves for three
clusterings using three different distance metrics. We compare the clusterings that produce 300 OTUs
(which corresponds to different radii r for different metrics). (b) Rank abundance curve is robust if it does
not change shape (functional form) when a different clustering radius is used. The rank abundance curves
for different clustering radii all fall onto the same curve after rescaling the ranks to the same number of
OTUs (while keeping area under the curve constant).

while retaining more than 90% of data. Other artifacts that raised concern came from the shortness of

pyrosequenced reads [134, 135]. Quince et al. [138] showed that reinterpreting pyrosequencing flowgrams

via a maximum-likelihood scheme can lead to fewer OTUs. In this chapter we showed that a significant

part of the discrepancy may arise from different computational analyses employed. Recent work [140] that

has been similarly motivated has been commensurate with the conclusion that clustering is an important

step in OTU analysis. In particular, they suggest that a preclustering step can help fix problems where
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deep sequencing overestimates species richness. Our work presents more general quantitative metrics that

can be used as a standard for clustering programs. In addition, we find that calculating the log-likelihood

of a maximum-likelihood phylogenetic tree is a good way to compare the quality of nucleotide alignments.

Clustering quality index such as Colinski-Harabasz can even be used to verify what clustering radius is

appropriate for a particular dataset. Our results that the multiple alignment and distance metrics can have

a large effect on OTU abundances are also in agreement with recent work by Schloss [169].

In general, we found that multiple alignments can have a large influence on OTU abundance information,

and the automated 16S rRNA alignment tools should be subjected to hand curation. Fast clustering tools

such as ESPRIT do not make use of a multiple alignment and rely on k-mer heuristics to calculate pairwise

distances between ungapped sequences. Our results show that such tools, intended to improve upon complete

linkage, actually perform significantly worse. Hence, even with increasing dataset sizes, it is important to

verify that the clustering method used performs no worse than complete linkage. We developed tools that

ease the burden of performing hand curation and complete linkage of large contemporary datasets. These

are available as supplementary software and are described in more detail in Materials and Methods.

6.4.1 Discussion of the Recommended Analysis Pipeline

In this section, we summarize for the reader’s convenience, step-by-step recommendations for handling a

large 16S rRNA dataset, based on the analyses we have reported here. These are graphically illustrated in

Figure 6.7.

1. Quality Processing: Remove short reads and sequences with unknown nucleotides (N). Make an align-

ment to the SILVA database [154], via NAST [151] as implemented by Mothur [133]. Trim sequences

to be between the first and last strongly conserved columns in this alignment.

2. Alignment: From the trimmed dataset, produce another alignment through RDP pipeline’s [152] front

end to the Infernal aligner [155]. Merge the two alignments (NAST+SILVA with RDP+Infernal)

using the tool that’s a part of the TORNADO pipeline at http://tornado.igb.uiuc.edu. Further

hand-optimize hypervariable regions of the reads by using the tool available on the website above.

3. Cluster: Cluster the dataset using the complete linkage tool available on the website above.

Further analysis can be performed by calculating estimators in Mothur [133], or by estimating phylogenetic

trees via RAxML [143] or FastTree [142].
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Figure 6.7: Diagram of our proposed 16S rRNA alignment pipeline, TORNADO. After the preliminary clean
up step, we align the sequences in two different ways. First, we use Mothur[133] to align our sequences to the
SILVA[154] database. Second, we align using Ribosomal Database Project’s front end[152] to the Infernal
aligner[155]. We then merge the two, using Infernal’s secondary-structure-aware alignments and SILVA’s
alignment of hypervariable region. Finally, we manually curate the hypervariable regions, using a helper
tool, splicer, we developed (see Fig. 6.8).

6.5 Materials and Methods

6.5.1 V3 rRNA amplicon sequencing.

We used the V3 rRNA sequences from the chicken caecum from batch B of a previous study [170]. PCR

specific primers flanking the V3 hypervariable region of bacterial 16S rRNA were used to generate PCR

products for pyrosequence analysis. The forward fusion primers for pyrosequencing included 454 Life Sciences

A adapter, and barcode A fused to the 5′ end of the V3 primer 341F (5′ gcctccctcgcgccatcag-ACGAGTGCGT

-CCTACGGAGGCAGCAG3′ ) or with barcode B (5′ gcctccctcgcgccatcag-ACGCTCGACA-CCTACGGA-

GGCAGCAG3′ ). The reverse fusion primer included 454 Life Sciences B adapter fused to 5′ end of V3

primer 534R (5′ gccttgccagcccgctcag-ATTACCGCGGCTGCTGG3′ ). Cycling conditions (20 cycles) were;

initial denaturation at 94 ◦C for 5 min; 20 cycles of 94 ◦C 30 s, 60 ◦C 30 s and 72 ◦C 30 s; then 72 ◦C 7

min for final extension. The amplicon products were cleaned using PCR purification clean-up kit and SPRI

size exclusion beads. The quality of products was assessed using a Bioanalyzer using DNA1000 chip. The

fragments in amplicon libraries were subjected to a single pyrosequence run using a 454 Life Science Genome

Sequencer GS FLX (Roy J. Carver Biotechnology Center, University of Illinois). The resulting dataset had

22953 sequences of average length 204.7bp. Before further analysis was performed, we performed basic
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filtering. We removed all sequences that were shorter than 100bp reducing the number of sequences to

21646. The sequences have been uploaded to GenBank (accession numbers HQ293272-HQ315544).

6.5.2 Multiple Alignments

We compared 4 different alignment methods as illustrated in Figure 6.1. (1) We fed the sequences into

Infernal [155] with bacterial secondary structure template as provided by RDP [152]. (2) We aligned the

sequences to the SILVA database [154] using the NAST[151] algorithm as implemented by Mothur [133, 171]

(align.seqs command). (3) The results of (1) and (2) were then fed into a merger script we have made

available on the Web at http://tornado.igb.uiuc.edu/. (4) The merged data sets’ hypervariable regions

were then hand curated using splicer, a tool we developed and made available on the Web as part of

our pipeline TORNADO at http://tornado.igb.uiuc.edu/. This tool allowed us to greatly reduce the

number of unique snippets of the hypervariable region of V3 down from 21,646 to about 200, by cutting the

longest hypervariable subregion from the alignment, and then dereplicating it. These snippets of sequences

in the hypervariable subregion ranged from 1bp to about 30bp. This meant that we only needed to hand-

curate 200 short snippets to handle the alignment of the hypervariable region. These snippets were separated

into two groups according to their secondary structure: loop, and stem-loop-stem. We used RNAfold web

server [172, 173, 174, 175] to verify the structure. The two groups were then hand curated and merged back

into the complete multiple alignment using the splicer merge command. For clarity, the process of using

splicer is described in Figure 6.8. All multiple alignments are available at http://tornado.igb.uiuc.

edu/.

6.5.3 Likelihood Scores

Each data set described in the previous section was dereplicated producing 2215 clones each. Likelihood

scores were then computed for each dataset using FastTree 2.1.1 with command line parameters -gamma -nt

-gtr.

6.5.4 Distance metrics

We compared 3 different distance metrics to generate Figure 6.6a. (1) Phylip DNADIST 3.67 [147] with

default model parameters. (2) Percent sequence difference calculated using a program we developed,

psi-distance, available at http://tornado.igb.uiuc.edu/. The program constructs pairwise differences

by calculating the number of letters that are different between every two sequence (gap is considered a letter).

This number is then divided by the average of the ungapped lengths of the two sequences compared [145].
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Figure 6.8: Using splicer, a part of the TORNADO pipeline, to perform hand curation. Dereplicating the
hypervariable region significantly reduces the effective number of snippets of sequences one needs to hand
curate (4 instead of 6 in this example). In our dataset of around 20,000 sequences, there were only around
200 unique sequence snippets in the hypervariable region varying in length between 1 and 30 bp.
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Figure 6.9: Comparison of running times of c-linkage with the running times of Mothur. The two programs
were benchmarked on artificial datasets of 1000, 2000, 4000, 6000 and 8000 elements. The sripts used to
generate these datasets and run the benchmarks are available at http://tornado.igb.uiuc.edu.

(3) Tree distance calculated from the phylogenetic tree calculated by FastTree in the previous section. The

tree distances were acquired by calculating tree branch lengths from the Newick formatted tree using the

tree-distance program we developed, available at http://tornado.igb.uiuc.edu/.

6.5.5 Clustering algorithms

Three different clustering algorithms were compared, all on the hand-curated dataset.

1. Complete linkage clustering with furthest neighbors, as implemented in c-linkage, a program we

developed that is available at http://tornado.igb.uiuc.edu/. We tested that the program produces

the same results as Mothur, but much faster and with less memory usage since it works in O(N2 logN).

For a comparison of running times of c-linkage and Mothur version 1.12.3, when clustering up to a

clustering cutoff of 10% see Figure 6.9.

2. FastGroup[159] with no trimming, PSI difference of 97% with gaps.

3. ESPRIT[160], for which the dataset was first degapped.
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Chapter 7

Fast clustering algorithms for
sequence data

In Chapter 6, we described some ways in which the analysis of 16S rRNA datasets can be improved (in

the sense of minimizing processing artifacts). In this Chapter we focus our attention on the clustering of

sequence data. As shown in Chapter 6, a clustering is optimal when the complete-linkage algorithm is used.

However, the big disadvantage of complete-linkage clustering is that it takes a long time. In Chapter 6

we referred to a O(n2 log n) algorithm, where n is the number of sequences. The technical question that

we answer in this chapter is: Can we find a heuristic algorithm that scales better with time, but keeps

clustering artifacts at a minimum? As metagenomic datasets become bigger, this question will become very

important and it has already attracted research interest [176]. For our own research in understanding the

phase transitions in complex biological systems, clustering is a key technical component of the analysis that

needs to be done correctly and efficiently before one can move on to the more interesting physical questions.

But one also needs to keep in mind that cluster analysis is a first-order approach: it is possible that the

structure of a dataset is such that it is not amenable to clustering (i.e. dataset does not have clear clusters).

The approach presented here has several key steps. First we use a greedy algorithm to find a local solution

for the clustering. This is described in Section 7.1. Then we follow up by an optimization step that attempts

to optimize the clustering, by finding a better local optimum in the neighborhood of the greedy solution.

The optimization step is described in Section 7.2. We conduct some tests on how well our solution performs

in Section 7.3 using one artificial and one representative data set. Then we discuss an alternative, heuristic

way to cluster sequences, one that scales with fast O(n) time. This algorithm is described in Section 7.4.

Finally, we describe other approaches through which clustering of sequence data can be improved, and we

list some open problems in Section 7.5.

7.1 Greedy modal clustering

Metagenomic amplicon reads such as 16S are generally short and degenerate. The degeneracy here means

that many reads may share the same sequence. The number of degenerate reads is generally used as a proxy
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for sequence abundance though this assumption can introduce artifacts [177, 178]. In this chapter, we use

this degeneracy to improve the greedy cluster assignment. The reads with a large degeneracy are used as

priority seeds for the clusters. The clusters then have a uniform radius of size r around them.

The concrete algorithm is the following:

1. Sort the reads into an input list I according to their degeneracy with the most-degerate (modal) reads

first.

2. Initialize an empty list C of clusters.

3. For each subsequent read R in the list I:

4. For each subsequent cluster C of C with seed S:

5. Calculate sequence distance d of R to S: d(R,S)

6. If d(R,S) ≤ r then add R to C and go back to step 3.

7. Otherwise, go back to step 4.

8. If no suitable cluster has been found in step 6, then create a new cluster in C with R as its seed.

The runtime of the above algorithm is O(nm) where n is the number of reads in I and m is the final number

of clusters. Evidently, m ≤ n, and hence the worst-case runtime of the algorithm is O(n2). In practice,

however, m� n and the algorithm performs much faster than complete linkage (see Section 7.3). The major

problem though, is that artifacts can occur due to the greediness of the algorithm, namely, the clustering

solution is stuck in a local minimum due to the greediness of the algorithm. We deal with this problem in

the following optimization step.

7.2 Voronoi diagram optimization

The following situation happens while running the greedy clustering algorithm. Consider a cluster C1 with

seed S1, and a read R2 from the input list I. Suppose that in step 6 of the greedy algorithm, it is found

that d(R2, S1) < r and hence R2 is added to C1. At a later time, read R3 is read from the input list I.

Suppose that d(R3, S1) > r and hence R3 nucleates a new cluster, C3 with seed S3 = R3. In this case, an

artifact is possible, since, whereas d(R2, S1) < r and d(R3, S1) > r, and R2 ∈ C2 it is quite possible that

d(R2, S3) < d(R2, S1).

To resolve the above artifact we run an optimization step. For each non-seed read R in each cluster C,

we compute the distance of R to seeds of all other clusters. If R is found to be closer to another cluster’s
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seed, it is moved to that cluster. Evidently, this step runs in O(nm) just like the greedy step in Section

7.1 and hence it doesn’t add any additional computational complexity. At the end of the this optimization

step, every read belongs to the cluster of the nearest seed. Hence, the reads’ cluster assignment resembles a

Voronoi diagram in high-dimensional space [179].

7.3 Test results

In this section, we test the modal clustering algorithm by comparing it against other common clustering

algorithms, Mothur FN (furthest neighbor, i.e. complete linkage), Mothur AN (average neighbor, i.e. average

linkage) and NN (nearest neighbor, i.e. single linkage) [133] as well as uclust [180]. We have previously

introduced the linkage algorithms in Section 6.2.2. Uclust is an algorithm equivalent to our greedy algorithm

from Section 7.1, except for the lack of step 1. Uclust does not sort the input data according to degeneracy of

sample reads. Instead, it processes the sequences in whatever order they are in, and performs no optimization.

7.3.1 Artificial data

For our first test, we generated an artificial dataset of 57 different sequences. The first sequence (X) was

the initial 1500bp of the Escherichia coli 16S rRNA sequence (Genbank accession J01859.1). Two lineages

of variation (A and B) were then gradually evolved from X, such that each (1-28) varied by 1% from the

previous sequence. Sequences from linage A (A1 A28) each switched a further 15nt (1%) from A → T, T

→ A, G → C and C→ G. In contrast, sequences from lineage B (B1 B28) each switched 15nt (1%) from A

→ C, T→ G, C→ A and G→ T. So for example, A1 and B1 were each 1% different from X but 2% different

from each other and A2 and B2 were each 2% different from X, 4% different from each other and 1% different

from A1 and B1 respectively. The two lineages were formed as a control, such that the clustering patterns

in set A should be the same as those in set B. The abundance of each sequence in the dataset was varied

such that there were 100 copies of X and every 4th sequence in each lineage had 12 fewer copies (i.e. A4 and

B4 had 88 copies, A8 and B8 had 76 copies etc.). All other sequences had a randomly generated number of

copies between 1 and 20.

Each tool we tested clustered identical sequences together. Results are shown in Figure 7.1. Our algorithm

performed as expected, with clusters in the A series reflecting those in the B series. All OTU clusters centered

on the abundant sequences (X, A4, B4, A8, B8 etc.) and did not extend beyond a 3% margin from the seed.

The other tools did not perform as well. Uclust formed OTUs with sequences as divergent as 9% (up to 5%

from the seed; X, A1-A5, B1-B4) despite being given a 97% threshold (command: --id 0.97). The NN
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Figure 7.1: Clustering results for each of the 5 methods considered. Vertical axis indicates sequence
abundances for the input set. Lines at the bottom indicate cluster assignments for each tool.

(nearest neighbor, i.e. single linkage) implementation of Mothur grouped all sequences into a single OTU as

expected, but clustering patterns in the FN and AN mothur implementations were inconsistent. Complete

linkage dimensions ranged from 2% to 5% in AN, and 1% - 3% in FN. Further, the clustering patterns of

Uclust and Mothur’s NN and AN implementations differed for series A and B.

To assess the programs robustness we randomly shuffled the sequences in the continuous dataset 100

times and tested for variability in the resulting OTU clusters as well as variation in the number of OTUs

formed. These tests were repeated with the other clustering algorithms and the results were compared.

Our algorithm and the NN implementation of mothur formed the same fifteen and one OTU cluster(s),

respectively, in all 100 shuffles (Fig. 7.2 A and C). The clustering patterns for UClust, FN and AN all

showed considerable variation with sequence order (Fig. 7.2 B, D and E).
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E) mothur (AN) D) mothur (FN) 

A) ModalClust 

C) Mothur (NN) 

B) UClust 

Figure 7.2: Clustering results for different methods after 100 shuffled data sets. Thickness of the line
indicates the number of shuffles in which the two elements were members of the same cluster.

OTU 1

OTU 2

OTU 3

CH=7.98

a) OTU 1

OTU 2

OTU 3

CH=1.21

b) OTU 1

OTU 2

OTU 3

CH=0.66

c)

Figure 7.3: Illustration of an artificial data set with 3 possible cluster assignments and the CH value. (a)
Optimal clustering. (b) Worse clustering. (c) Worst clustering. As expected, the quality of the cluster
assignments correlates with CH value.
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7.3.2 Calinski-Harabasz metric

To evaluate the quality of the cluster results, we use the Calinski-Harabasz (CH) metric introduced in

Section 6.2.2. To test the Calinski-Harabasz metric on sequence data, we generate an artificial dataset and

we permute the OTU assignments. The results are shown in Figure 7.3. As expected, the worse the OTU

assignment is, the lower the CH score is. However, there is a subtle issue with the CH score assignment. If

a clustering assignment has a different number of clusters k from another clustering assignment, then the

comparison of CH indices is not necessarily indicative of clustering quality. To be able to compare clustering

quality for different number of clusters, we define separate measures A and B for the sums in the CH score,

correctly normalized for comparison. We define:

A =

∑
K,L(x̄K − x̄L)

k
(7.1)

and

B =
∑
K

∑
i,j∈K(xi − xj)
|K|(|K| − 1)

. (7.2)

where the sum for B only runs over clusters K with at least 2 elements. Here A is the average distance

between two clusters, and B is the average width of each cluster, and both quantities are normalized so that

they can be compared for different k. Ideally, a good cluster assignment will have a large score for A and as

small score as possible for B. Hence, we propose A/B as a good metric for comparison.

7.3.3 Real metagenomic data

Method Radius Num. OTUs CH Runtime (s) A B A/B
Complete Linkage 0.03 2868 1479.1 1708.1 0.107 0.003 30.8

(Mothur FN)
Single Linkage 0.03 671 2.6 1724.3 0.114 0.012 9.4
(Mothur NN)

Uclust 0.03 1137 42.1 1.6 0.110 0.778 0.14
Modal Clustering 0.03 1039 11.7 40.5 0.113 0.007 15.5
Modal Clustering 0.03 1039 7.4 4.1 0.114 0.008 13.5
(no optimization)
Modal Clustering 0.015 4077 375.1 182.1 0.108 0.004 24.9
Modal Clustering 0.015 4077 126.4 25.4 0.109 0.005 22.8
(no optimization)

Table 7.1: Summary of results of clustering the Cattle rumen 1 dataset with n = 31, 201 sequences.

To further evaluate the quality and speed of the algorithm we turn our attention to realistic sequence

data. Here we use the cattle rumen 1 dataset from Chapter 8. This is an aligned, quality-filtered dataset with
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31, 201 sequences with alignment width of 471. The results of the algorithm and the quality of clustering

are presented in Table 7.1. The results show that complete linkage clustering still outperforms heuristic

methods, but the modal clustering performs well at comparable radius (which is half of the complete linkage

cluster diameter). Optimization step described in 7.2 significantly improves the CH index value at a cost of

8-10 longer computation time, but it still outperforms complete linkage in speed by a factor of 10. Looking

at the A/B column, we see that the modal clustering performs the best from all the heuristic methods.

In this test, complete and single linkage were performed using Mothur 1.28 from October 2012, and the

measurements of time include the time spent computing the distance matrix. Uclust 1.2.15 was used, and

sequences were sorted by length prior to clustering as advised by the uclust manual.

7.4 Simhashing applied to biological sequences

Recent datasets are breaking the barrier of 100,000 sequences per sample. Complete linkage clustering quickly

becomes inviable beyond 40,000 sequences or so, simply because the distance matrix becomes too large to

fit into the available memory a typical server. One can apply some patchwork solutions (such as in-memory

compression of matrix rows), but complete linkage of more than 100,000 sequences is impossible. Therefore,

alternative clustering methods will still be necessary. One method, called similarity hashing (simhashing),

introduced in 2007 by Sadowski and Levin [181], is capable of clustering N elements in O(N) time and space.

A requirement for the algorithm is that the elements have to be sets. In the case of sequences, substrings

of sequences can be used as elements of each set (each read is a set). One or more pseudo-random hash

functions are applied to each substring, and the minimum (or maximum) value of a hash function is used as

the label for the cluster. Since the hash functions are pseudo-random, the probability that the value of the

minimum is same for two sets A and B is proportional (in the statistical limit of many elements in a set) to

the Jaccard index J of similarity between two sets:

J =
|A ∩B|
|A ∪B|

. (7.3)

Evidently, this algorithm is extremely heuristic – in O(N) time, one cannot consider all N2 distances

between the sets. We do not expect that this algorithm should perform as well as complete linkage, but

it could nevertheless be an important addition to our present bioinformatics pipeline and widely used in

contemporary and future datasets. However, the major challenge at this time is to find a way to associate

the parameters of simhashing algorithm (choice of hash function and number of substrings) to the percent

sequence identity radius. Until then, the clusters formed by the uncontrolled choice of hash functions are
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not biologically relevant.

7.5 Conclusion

In this chapter, we introduced a novel, fast, clustering algorithm and we showed that it runs faster than

complete linkage while not having as many clustering artifacts as the greedy solution. While complete

linkage clustering still outperforms other heuristics, it is important to point to consider the scaling of the

algorithms used and the trade offs between accuracy, efficiency, and computational complexity. As datasets

become bigger, the O(nm) scaling of our algorithm will significantly outperform complete linkage scaling of

O(n2 log n). But there are other interesting questions to answer regarding clustering.

One should note that the complete linkage clustering methodology is not ideal. It is a method that builds

clusters from bottom up. It merges small clusters into larger ones, until the desired clustering distance r is

reached. Hence, it is a “quenching” algorithm because the clustering can be trapped in a local minimum by

one of the early steps of the hierarchical algorithm. For an example of such a quenched clustering solution,

see Figure 6.3. The Figure shows how a clustering assignment is made as the hierarchical process of complete

linkage happens. The quenching happens because once two elements are in a cluster together, they stay in

a cluster together throughout the hierarchical clustering process. The question of whether this quenching is

detrimental to quality of clustering has not been addressed in the bioinformatics community yet according to

our knowledge. One easy solution to the problem would be to implement a Simulated Annealing or Quantum

Annealing method to minimize the Calinski-Harabasz function. One could then measure and compare how

much better this works in comparison to existing methodologies.

A further interesting question in the literature is the question of the validity of taxonomic assignments

at the microbial level [182]. A taxonomy is an organization of the tree of life according to evolutionary

relationships inferred from the observed phenotypes and fossil evidence as opposed to phylogeny, which is

inferred from the genomic evidence (though that is not the only possible taxonomy, see [183] for a statistical

physics perspective). It is known that the scaling of the topology of the tree of taxonomy is significantly

different from that of phylogeny [184]. Does a clustering analysis show the same result? One can use a

clustering quality index such as Calinski-Harabasz, in conjunction with reference full-length ribosomal RNA

sequences, to evaluate the quality of the taxonomic assignment. One can then compare this quality with that

generated from a phylogenetic tree and in that way contribute to the debate of phylogeny versus taxonomy.

Finally, existing high-throughput sequencing technology can only sequence partial reads of genetic se-

quences. Depending on which subregion of 16S gene is sequenced, it is known that tree phylogenies can vary

90



widely [185]. The dependence of OTU clustering assignment on short reads is not known. Typically, the

same clustering radius of 3% is used for all short reads, but different subregions of 16S rRNA have different

proportions of conserved columns. Having a map of 16S rRNA for effective clustering radii would facilitate

easier comparisons of datasets in metagenomics. To calculate this map one can use a reference database,

artificially simulate the primers commonly used in the literature and evaluate how much do the clustering

assignments change when short reads are used (as opposed to reference full-length sequences).
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Chapter 8

Quantification of the relative roles of
niche and neutral processes in
microbiomes
The theoretical description of the forces that shape ecological communities focus around two classes of models.

In niche theory, deterministic interactions between species, individuals and the environment are considered

the dominant factor, whereas in neutral theory, stochastic forces, such as demographic noise, speciation

and immigration are dominant. Species abundance distributions predicted by the two classes of theory

are difficult to distinguish empirically, making it problematic to deduce ecological dynamics from typical

measures of diversity and community structure. Here we show that the fusion of species abundance data

with genome-derived measures of evolutionary distance can provide a clear indication of ecological dynamics,

capable of quantifying the relative roles played by niche and neutral forces. We apply this technique to six

gastrointestinal microbiomes drawn from three different domesticated vertebrates, using high resolution

surveys of microbial species abundance obtained from carefully curated deep 16S rRNA hypervariable tag

sequencing data. Although the species abundance patterns are seemingly well fit by the neutral theory of

metacommunity assembly, we show that this theory cannot account for the evolutionary patterns in the

genomic data; moreover our analyses strongly suggest that these microbiomes have in fact been assembled

through processes that involve a significant non-neutral (niche) contribution. Our results demonstrate that

high-resolution genomics can remove the ambiguities of process inference inherent in classical ecological

measures, and permits quantification of the forces shaping complex microbial communities.

8.1 Introduction

Ecological species distributions are determined by the interplay between environmental factors and evolu-

tionary processes. In classical ecological theory, niches, characterized, for example, by nutrients and other

environmental factors, determine species abundance distributions and populations primarily through deter-

ministic partitioning of resources amongst species [186]. Species populations are limited by niche carrying

capacity, rather than interspecies competition, thus tending to promote coexistence [187]. In niche theory,

diversity is determined primarily by the number of available niches, raising the issue of how to account
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quantitatively for the apparent observed diversity [188, 189, 190, 191] from well-documented instances of

niche differences [192].

An alternative perspective is the class of neutral theories, in which species are functionally equivalent,

and stochastic factors such as immigration, birth-death processes and speciation are the primary drivers of

ecological diversity and community structure [193, 194, 118, 195, 196, 197]. This class of models has been

reported to be capable of accurate predictions for the species abundance distributions in (e.g.) riverine

fish populations [198] or microbial populations [199], in addition to the early successes in forest ecosystems,

a planktonic copepod community, and a bat community in Barro Colorado Island (BCI) [118]. However,

the methodology used in such comparisons is contentious when examined carefully [200, 201], with sam-

pling issues, parameter estimation, and model definition being some of the key factors that require careful

attention. The assumptions of neutral theory, in particular functional equivalence, are not transparently

biological [119], and additionally have been criticized on a variety of empirical grounds [202, 203], including

the predictions for species lifetimes, speciation rates and the incidence of rare species [204]. Other tech-

nical assumptions, for example that the number of individuals competing for a resource is a constant (the

“zero-sum” assumption), may be unrealistic, but can be extended or relaxed [120, 124, 197]. Perhaps a

more useful insight into the applicability of neutral theory comes from considering the interplay between

niche stabilization mechanisms and fitness [205]. A recent study of a sagebrush steppe community, where

strong niche stabilization mechanisms were identified even in the presence of apparently small fitness differ-

ences [206], underscores the fact that weak functional inequivalence need not necessarily mean that niche

dynamics are negligible. On the other hand, a study that attempted to infer pairwise interaction strengths

among the most abundant species in the BCI site found that interspecies interactions were much weaker

than intraspecies one, in apparent agreement with neutral assumptions [207]. One study on plant, bacteria

and ammonia-oxidizing archaea in steppe ecosystems found that strength of neutral and niche effects could

be tuned by controlling the artificial Nitrogen deposition rate [208].

Despite their fundamental differences, and the plethora of studies nominally supporting each side of

the niche-neutral dichotomy, these theories predict species abundance distributions that are difficult to

distinguish empirically [190, 209], with similar mathematical properties for asymptotically large diver-

sity [210]. The inverse problem of inferring ecological dynamics from measures of diversity does not appear

to have a unique solution, either theoretically or empirically. Accordingly, a more nuanced perspective has

arisen [187, 202, 211], in which elements of both types of theory may contribute to a proper description

of the ecological dynamics and a variety of mathematical frameworks for accomplishing this type of syn-

thesis have recently appeared [212, 213, 214, 215, 216, 207, 217]. For example, such theory may apply in
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tropical arthropod populations, where there is evidence that communities assemble neutrally within each

niche defined by habitat [218]. Nevertheless, it remains an open question as to how to properly characterize

community dynamics, and how to usefully quantify the relative roles of niche and neutral processes in the

evolutionary dynamics of ecosystems.

These questions are of particular relevance to microbial communities, which play functionally important

roles in ecosystems, but are typically rich in diversity, suggesting the presence of sub-populations shaped

primarily by stochastic forces. Such communities would not be expected to represent end members of the

niche-neutral continuum, and quantification of their structuring process represents a complex problem that

has recently attracted attention. Most studies find evidence for a mixture of neutral and niche processes in

microbial community assembly [219, 220, 221, 222, 223]. These seem to arise for different physical reasons.

One indication is that the neutrally-assembling taxa are generalist microbes, that can exist in a wide variety

of environments [221], whereas the niche portion of the microbiota are adapted to the media conditions [224].

There are also indications that that microorganismal coocurence patterns are shaped by the same processes

and interactions that shape macroorganismal coocurence patterns [225].

In this chapter we propose a methodology for addressing the problem of quantifying the relative role of

niche and neutral processes in structuring microbial communities, by fusing measures of abundance with

phylogenetic information. The merging of classical ecological measures with phylogenetic analysis is growing

in importance, but is still in its infancy [226, 227, 228, 229, 230]. The method presented here is particularly

applicable to uncultured microbial communities that are characterized by a high level of diversity, and are

amenable to modern metagenomic tools, such as pyrosequencing.

In order to explain the basic idea of how we quantify an ecosystem on the niche-neutral continuum, it

is necessary to recall how microbiomes can be probed by genomic methods. The first step in an ecological

study of a microbiome, following sequencing, cleanup and alignment, is the assignment of sampled sequences

into Operational Taxonomic Units (OTUs) through a clustering process [7]. The OTUs are then used as

a proxy for estimating microbial species abundance [231]. The OTU data are two-fold. On the one hand,

the OTUs have relative abundances that are estimations of the species’ abundances in the environment. On

the other hand, OTUs also have representative sequences associated with them. Typically a representative

sequence of an OTU is the most abundant of the identical clones within the OTU, and also it is more than

97% similar to every other sequence within that OTU. This genomic data associated with the representative

sequence allows us to think of OTUs as points in a sequence space as illustrated in Fig. 8.1. We can think of

distances between points in this space as corresponding to the phylogenetic or sequence distances between

the sequences in these OTUs.
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Figure 8.1: Sketch of the starting point for a metagenomic analysis of an environment. Circles indicate
OTUs, and abundance (number of sequences within the OTU) is labeled by the size of the circle. A
representative sequence is associated with each OTU. The OTUs are embedded in a sequence space such
that the distance between the circles in the sequence space corresponds to e.g. sequence or phylogenetic
distance between the representatives.

This cloud of points in high-dimensional sequence space can also be labeled by OTU abundance. In our

work, this is determined by sequence abundance (after every effort has been made to account for artifacts),

but in principle OTU abundance labels could be obtained from any other source, such as Q-PCR. In this

space, we can categorize the OTUs into two sorts: the most abundant OTUs (which we term “modal”

OTUs, and define this precisely below) and the other, less abundant, OTUs (which we term “rare” OTUs,

and define this precisely below). The correlations between the modal and rare OTUs will depend upon the

evolutionary dynamics, and in fact exhibit sharp mathematical differences that can be used to discriminate

different putative dynamics. To see the essential idea, we will now explain how this would work in two

caricatures of ecosystem dynamics: a simplified neutral model and a simplified niche model. A significantly

more elaborate analysis is carried out below, in the main body of this chapter, but the key concepts are

captured by these simplified models.

First, suppose that the evolutionary dynamics is itself neutral, so that the rare and modal OTUs are

distributed at random in the high-dimensional sequence space. We are going to be interested in measuring

the distances between sequences corresponding to different OTUs, and comparing their similarity. Let us

assume that the sequences being analyzed are all of the same length, containing L nucleotide bases from the

usual 4-letter alphabet (ACGT); here we are ignoring real life complications such as insertions, deletions and

gaps. We label the sequences by Siα, where α = 1 . . . L labels position along the sequence and i labels the

OTU; Siα can take the values 1,2,3,4 corresponding to the alphabet of bases ACGT. We define the normalized

Hamming distance Hij between two sequences i and j as the fraction of bases in i that are different from
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the base in the corresponding position in j:

Hij ≡
1

L

L∑
α=1

(1− δ(Siα − Sjα)) (8.1)

where δ denotes the Kronecker delta. The mean 〈H〉 of Hij averaged over a large sample of random sequences

would be 3/4, because there is a 1/4 chance that two bases at the same position are identical. Thus, the

probability distribution of H would be expected to be a roughly bell-shaped curve, peaked around H = 3/4,

with a width dependent on the number of sequences. In practice, there are complications due to insertions,

deletions and gaps, but most importantly, conserved positions. Bases that are highly conserved cannot be

appropriately modeled as being chosen randomly from the alphabet. This can be taken into account by

simply restricting the above analysis to bases that are strongly non-conserved: let us call the number of

highly conserved bases M < L, so that the expected value of H will now be reduced by the fraction of

conserved bases: 〈H〉 = 3(L −M)/4L. Thus, taking into account conservation, the bell-shaped curve will

shift its peak to a smaller value of H. In the data presented below, we found that L ∼ 200 and M ∼ 160,

so that the distribution of H should be peaked at about 0.15, in the case of a neutral system. Now consider

a subset {Ek} of distances{Hij}. For each “rare” OTU k, we rank all of the distances between OTU k

and each “modal” OTU l. Then, we select the shortest such distance and label it Ek. In this way, the set

{Ek} is the set of distances of “rare” OTUs to their nearest niche neighbor. For the above case where the

evolutionary dynamics is neutral-like, the distribution of E is also a bell-shaped curve like the distribution of

H. However, its mean is slightly shifted to the smaller values, and its standard deviation is smaller (because

{E} is the subset of shortest distances from the set of {H}). In other words, 〈E〉 < 〈H〉.

Second, let us consider a caricature of a system that is dominated by niche dynamics. In the extreme

(and unrealistic) case where there is only one niche, occupied by one particular modal OTU, the probability

distribution of E will be a delta distribution peaked at E = 0. In a more realistic model, where there

is a cloud of rare OTUs surrounding the modal OTU, having evolved from it by a few point mutations,

one would expect the probability distribution of E to be peaked at E = 0, and then to monotonically

decrease for E > 0. In the case of a system with several niches, the probability distribution for E will

be somewhat more complicated, because one needs to calculate the normalized Hamming distance from

each rare OTU to the nearest modal OTU, and this requires making a Voronoi polyhedron construction in

sequence space. Nevertheless, for small values of E, the probability distribution will be dominated by the

single niche argument given above, and the functional form will be unchanged: peaked at the origin and

monotonically decreasing for E > 0. These two caricatures for simplified models of ecosystem structure are
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sketched in Fig. 8.2, and show that there are clear and distinct signatures arising from the nature of the

processes that have structured the community.

In the remainder of this chapter, we numerically evaluate the metric for model systems in order to quanti-

tatively and concretely confirm the above heuristic description. We then describe how we have implemented

these ideas in a proof-of-principle study of vertebrate gastrointestinal microbiomes. These experimental

systems were chosen, not only because of the growing recognition of the importance of microbiomes as a

determinant of host health [232], but also because these are systems that have high diversity, and are likely to

be shaped both by stochastic and niche processes. Indeed, as we will see, they can be well-described naively

by neutral theory, although in fact niche processes play a fundamental role in structuring these communities.

8.2 Model calculations

In this section we evaluate our metric on model systems parametrized by a single parameter, α, the proportion

of the system undergoing a niche dynamic. We perform 5000 Monte Carlo simulations of the following

process. We simulate N OTUs (here N = 1000) each with representative sequences of length L = 200. A

subset αN (0 ≤ α ≤ 1) of the OTUs undergo a niche dynamic in the following way. A single random OTU

is chosen to be the center of the niche. The remainder of the αN − 1 OTUs (niche OTUs) are are generated

by performing random mutations of the genome of the OTU representing the niche center. The placement

and number of the mutations were chosen randomly in the following way. Placements of mutations were

sampled uniformly (without replacement) across the entire genome. The number of mutations for each of the

niche OTUs was sampled from an exponential distribution thereby modeling the evolution of OTUs under

multiplicative fitness pressure (larger number of mutations corresponds to smaller fitness, and hence smaller

abundance of OTU). The remaining (1− α)N OTUs (neutral OTUs) are randomly distributed throughout

the sequence space, and they represent the sequences undergoing dynamics under no evolutionary pressure

(neutral dynamics).

Each OTU in the model system is associated with an abundance. The abundances of neutral OTUs

are randomly sampled from an exponential distribution. (In the Hubbell Neutral Model, the OTU rank

abundances are exponentially distributed.) On the other hand, the abundance of niche OTUs exponentially

scales with their closeness to the niche:

Ni = A exp(−di) (8.2)

where Ni is the abundance of OTU i and di is the distance from the OTU to the center of the niche (in

sequence space). The results of our metric, the distributions of {Ek} are shown in Fig. 8.3 for 3 model
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Figure 8.2: (a) Classification of the OTUs into two groups based on the rank abundance. The top k% of
OTUs are labeled modal, whereas the remainder of the OTUs are labeled rare. (b) Sketch of the neutral and
niche evolution processes in sequence space. Light blue OTUs are rare, whereas red OTUs are modal. For
the neutral process, the average distance of a rare OTU to its closest modal OTU is large (indicated by the
arrow). For the niche process, this distance is much smaller since rare OTUs cluster about the modal OTUs
which define the niches. (c) Sketch of the expected distributions of distance to the closest modal OTU. For
the neutral process, this distribution is peaked around some non-zero distance, which is close to the average
distance between the OTUs in the dataset. In the niche process, the distribution monotonically decays with
distance since the rare OTUs are attracted to the niches.

98



0.0 0.2 0.4 0.6 0.8 1.0
distance

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P(
di

st
an

ce
)

Neutral Dataset (α=0)
Intermediate Dataset (α=0.5)
Niche Dataset (α=1)

Figure 8.3: The results of our metric, the distributions of E shown for a fully Niche-like model dataset
(α = 1), a fully Neutral-like model dataset (α = 0) and an intermediate dataset (α = 0.5). The results
shown are the average of 5000 Monte Carlo simulations for each dataset.

systems characterized by values of α = 0, 0.5 and 1. We see that the heuristic arguments we described in

the previous section and sketched out in Fig. 8.1(c) are consistent with these model numerical calculations.

It is instructive to demonstrate the effects of two factors on our metric, in order to highlight some of the

mathematical considerations that went into the design of the metric, in particular our use of an extremal

measure (the shortest distance aspect of our metric) and the influence of sampled abundance distributions.

First we demonstrate the role of extremality introduced by choosing the subset {E}. Instead, if we choose

to plot the distribution of {H} we obtain qualitatively the same results for neutral-like models (compare

models 1 and 2 in Fig. 8.4). However, for niche-like models, the peak at zero moves to a nonzero peak which

corresponds to the average size of the niche (compare models 5 and 6 in Fig. 8.4). Thus, the choice of an

extremal measure is important in making sure that the end member distributions (pure niche, pure neutral)

are clearly distinct.

Second, we demonstrate what might appear at first to be a rather counter-intuitive fact: the distribution

of distances is only weakly dependent on the abundance distribution of the OTUs. If the abundance of an

OTU k is Nk then we could imagine modifying our procedure by weighting the contribution of Ek in the

distribution {E} by a factor of Nk. Such a weighting introduces no change whatsoever to the neutral dataset

(compare models 2 and 4 in Fig. 8.4), and no qualitative change in the niche dataset (models 6 and 8 in

Fig. 8.4). Finally, we can also weigh the distribution of {H} in such a way that each distance Hij between

OTUs i and j gets weighted by a factor of NiNj . The results are exactly the same as with no weighing for

the neutral dataset (compare models 1 and 3 in Fig. 8.4) and qualitatively the same for the niche dataset
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Figure 8.4: Explicit numerical calculations of our metric on 8 model systems. In these systems, we study the
difference between the effects of the metric on neutral (models 1-4) and niche model systems (models 5-8).
We also study the effect of choosing the closest distance (even-numbered models) compared to considering
all distances (odd-numbered models). Finally, we consider the weighted models (3-4 and 7-8) versus the
unweighted ones (1-2 and 5-6).
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(compare models 5 and 7 in Fig. 8.4).

8.3 Results

We performed a pyrosequencing study of the gastrointestinal (GI) microbiomes of 3 pairs of domesticated

vertebrates: 2 swine, 2 cattle and 2 chickens. These pairs of organisms were chosen as pilots for probing

specific microbiome issues of relevance to animal science. In particular, we attempted a comparative study

looking at the effects of diet on identically cloned swine, and the effects of a microbial challenge on two

identically-raised chickens. For the purposes of this chapter, these comparisons and the outcomes of the

experiments are not of interest: full details of the comparisons and other studies will be published elsewhere.

In this study, two genetically identical cloned swine were fed different diets and then their fecal samples were

collected for sequencing. Cattle rumen 1 and cattle rumen 2 were rumen fistula sampled at 0 and 8 hours

after feeding, respectively [233]. Chicken caecum 94 was inoculated with Campylobacter jejuni one week

prior to caecal sampling. Chicken caecum 1 was kept under the same conditions but without oral gavage

of C. jejuni [170]. See the Methods for details regarding the laboratory protocols. The GI Samples were

subjected to deep hypervariable 16S rRNA tag sequencing using a 454 Life Science Genome Sequencer GS

FLX[231]. Table 8.1 shows the average read length and number of reads obtained for each sample.

Following their acquisition, we aligned the pyrosequenced reads using NAST [151] to the SILVA [154]

database. We also aligned the reads using RDP’s front end [152] to the Infernal [155] structural aligner. For

each dataset, the NAST+SILVA and RDP+Infernal multiple alignments were merged and hand curated using

the methodology and tools described in Sipos et al. [7]. Short reads and sequences with unknown nucleotides

were removed. Spurious “tails” in the multiple alignment, sequences that extend beyond the region of 16S

common to all the sequences in the dataset, were also removed. Distance matrices were generated from the

multiple alignments, and were then fed to a complete linkage clustering algorithm to generate the OTUs.

The careful multiple alignment procedure led to a vast reduction in the number of resulting OTUs in the

datasets as previously reported in Sipos et al. [7]. See Table 8.1 for multiple alignment, species diversity

and richness metrics for each of the 6 GI microbiome samples. Rarefaction curves show how the number of

sampled OTUs varies as a function of the number of organisms sampled. Our rarefaction curves are shown

in Fig. 8.5 for each of the 6 datasets.

We plotted the abundances of the OTUs for each of the 6 datasets in our study, and we find a very good

agreement with the Neutral Model. These are displayed in rank-abundance form in Fig. 8.6, and in alternative

forms in Fig. 8.7 and 8.8. The early ranks (high abundance OTUs) show some systematic deviation from the
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# Unique Avg Aligned OTUs Simpson Shannon Jack- ACE Chao1
reads reads length width at 3% diversity diversity knife

Swine 33283 14122 165.0 420 1509 0.0070 5.8 2000 1472 1540
1 ±0.0003 ±0.02 ±260 ±55 ±150

Swine 36254 16198 175.3 418 1856 0.0068 5.9 2300 1633 1720
2 ±0.0003 ±0.02 ±300 ±53 ±150

Cattle 31201 18264 180.7 471 2580 0.0044 6.3 3300 3070 2640
1 ±0.0002 ±0.02 ±260 ±88 ±190

Cattle 19642 10074 183.6 385 1509 0.0110 5.9 2070 1818 1830
2 ±0.0006 ±0.03 ±110 ±62 ±130

Chicken 17585 2151 136.5 310 396 0.084 4 770 655 620
1 ±0.003 ±0.03 ±120 ±75 ±150

Chicken 21646 2223 138.9 332 354 0.046 3.9 560 426 460
94 ±0.001 ±0.02 ±90 ±57 ±100

Table 8.1: Summary statistics of our six datasets.

abundances expected from neutral theory but at face value, these results are consistent with the majority

portion (thousands) of the OTUs evolving in the absence of any apparent selection acting on the individual

OTUs. Given all the factors that influence the gastrointestinal microbiome [234, 235, 102, 236, 237, 238],

and the reproducible, thereby seemingly host-selected, microbial abundances [239], it seems counterintuitive

that there should be no apparent selection for the vast majority of OTUs in the exponential tail of the rank

abundance. However, if we compare taxonomic assignments of microbes across each pair of animals in our

study (Fig. 8.9), we find that there is a correlation between the relative abundances of taxa in members

of each animal pair. Namely, we observe that the most abundant taxonomic orders are the same for each

animal pair (Clostridiales for swine and chickens, and Pseudomonadales for cattle). This correlation also

extends to other taxonomic orders. Hence, our dataset indicates that certain taxa are favored more than

others within the GI tract of these 6 vertebrates.

We now attempt to resolve this apparent contradiction, namely that the Neutral Theory fits the rank

abundance patterns well, with only 2 fitting parameters, even though the taxonomic data suggests Niche

selection. In order to do this, we must turn our attention to other information contained within the pyrose-

quenced reads. As shown in Fig. 8.1 the OTUs with their characteristic sequences and associated abundances

form patterns within a high-dimensional space. Each read constitutes a point in this space, defined by its

nucleotide sequence. One way in which we can attempt to comprehend the structure of this space is through

dimensional reduction. We use Principal Component Analysis (PCA) in order to place the OTUs into a 2

dimensional space spanned by the two principal components. We perform a weighted version of PCA [240]

where we assign a weight to the OTUs proportional to their abundance. The resulting patterns in the space

of two principal components are shown in Fig. 8.10. Each circle in the figure is an OTU and the circles’ size

and color indicates the logarithm of the OTU abundance.
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Figure 8.5: Rarefaction curves for the 6 vertebrate GI microbiomes. Solid line represents the median number
of OTUs (100 resamplings) whereas the shaded area represents the 95% confidence interval.

As a control, we generate datasets of artificially generated sequences (hereafter referred to as neutral

datasets). We generate a neutral dataset for each of the 6 experimental datasets to facilitate a 1-to-1
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Figure 8.9: Taxa Comparisons. Taxonomic assignments at order level for all libraries, at 80% confidence
threshold, sorted by combined abundance. Though there appear to be no differences in the form of the
rank-abundance curves, we see differences in the taxonomic distributions here as the result of changes in
diet or challenges to the microbial ecosystem.

comparison. Each neutral dataset is constructed in a way such that it has the same number of OTUs and

the same OTU abundance distribution as the associated experimental dataset. However, the representative

sequence for each OTU is artificially generated and has a randomized sequence, with constraint such that it

has the same sequence statistics as the original dataset (probability of observing a nucleotide at a position in

the multiple alignment) and column conservation. This ensures that the sequences are randomly distributed

along a realistic sub-manifold of sequence space (the subset of 16S sequences that are allowed by secondary

structure). We then run the PCA on the neutral datasets (Fig. 8.11). Comparing Fig. 8.10 and 8.11,

we notice the following pattern in the experimental GI data: the low-abundance OTUs cluster around the

high-abundance OTUs in the dimensionally reduced space. In the neutral datasets, this is not observed,

instead the PCA distributes the OTUs approximately uniformly in the dimensionally-reduced space.

The fact that, in neutral datasets, OTUs distribute uniformly in dimensionally-reduced space, may seem

to be at odds with the process underlying Hubbel’s model. In Hubbel’s model, “daughter” species appear,

initially rare, in the genetic neighborhood of their abundant “parent” species. Thus, one may be led to believe

that the PCA of a neutrally simulated dataset should appear the same as that of niche selected one, a set of

abundant OTUs surrounded by a cloud of low-abundance OTUs. In fact, this argument will not hold at long

time scales since the rare lineages will have the time to diffuse away from the modal peaks. Nevertheless,

one needs to keep in mind that in the local community neutral model (which is at more realistic time scales

for the case of ecological community assembly), the appearance of rare species is through migration and has

no connection to genomic space. In principle, every event of appearance of a new rare species is an act of

migration of a random organism from a diverse metacommunity (this difference is illustrated in Figure 8.12).

There is a larger question: the metacommunity itself is unlikely to be strictly neutral, being shaped by diet
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Figure 8.10: Weighted PCA ordination applied to the 6 experimental datasets. See the main text for details
on how weighted PCA was performed. Each circle in this Figure represents an OTU and its size and color
indicates the logarithm of OTU abundance.
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Figure 8.11: Weighted PCA ordination applied to the randomized datasets. Compare with Fig. S5. See
the main text for details on how the randomized datasets were generated, and how weighted PCA was
performed. Each circle in this Figure represents an OTU and its size and color indicates the logarithm of
OTU abundance.
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Figure 8.12: A qualitative difference between (a) evolution and (b) community assembly. In the case of
evolution, the daughter species is close to the parent species in sequence space. But for the case of community
assembly, there is no such requirement.

and environment of the host organism. Thus the OTUs migrating into the microbiome will be sampled from

a biased distribution and this could in effect act as a niche, or as a constraint on the allowed sub-manifold

in sequence space.

We now formulate a heuristic to clearly discriminate between the randomly assembled model sequences

and those assembled from a niche-driven process. On a rank-abundance curve, we label the k% of the

most abundant OTUs as modal OTUs. We label the remaining OTUs as rare OTUs (Fig. 8.2(a)). Instead

of using the whole-dataset rank-abundance curve, one can also use per-order rank-abundance curves if

additional resolution is necessary. Once modal and rare OTUs have been assigned, for each rare OTU

we compute the distance to the modal OTU that is closest to it. The motivation behind this heuristic is

the following. The spread pattern of sequence abundances gives us an indication of whether organisms are

evolving neutrally or toward defined niches. In long time behavior, Neutral evolution leads to the expectation

that organisms have an equal chance of being anywhere in this space. Niche selection, however, suggests a

very biased distribution of organisms. In particular, organisms would be densely clustered about the local

optimum for each niche (Fig. 8.2(b)). These two scenarios lead to very different distributions of distance to

nearest niche. If the OTUs are undergoing a niche-driven dynamic, then the rare OTUs will tend to drop off

exponentially in abundance around the modal OTUs. If on the other hand, the OTUs have been sampled

from a community shaped by neutral evolutionary dynamics, then the rare OTUs’ distance to closest modal

OTU will be peaked around some non-zero distance that is the average distance between any two OTUs in

the dataset (Fig. 8.2(c)).

We apply the above analysis to the case of gastrointestinal microbiome datasets of the 6 vertebrates.

The results are summarized in Fig. 8.13. In this figure, the blue bars indicate the results of our metric
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Figure 8.13: Histogram of distances of rare OTUs to the nearest modal OTU for each of the 6 gastrointestinal
microbiomes with cutoff k = 5% (blue bars indicate experimental data). Red dashed lines indicate the results
of the metric applied to sequences that were randomized while preserving rank abundance and sequence
statistics (see text). Cattle and swine datasets share the same y-axis.

applied to experimental data. The dashed red lines indicate the results of the metric applied to a dataset of

sequences that were randomized in the way described above. The results indicate that the GI tracts of the

6 vertebrates largely undergo niche dynamics, with the possible exception of a subpopulation of the chicken

GI tracts. The chicken datasets have a small non-zero peak corresponding to the average distance between

sequences chosen at random. Our study indicates that the sequences within this peak may be undergoing

neutral dynamics. The results that we obtain are robust in that they do not qualitatively depend upon the

choice of the cutoff k. In Fig. 8.14 we show the metric for k = 5% and k = 7%. Similarly, the results of

the metric on model systems are virtually unchanged when k is changed between 2% and 10% (Fig. 8.15)

indicating robustness. Whereas our metric is robust in this way, the reader is reminded that phylogenetic

resolution is nevertheless important: some niches may appear as a single OTUs at 97% percent sequence

identity.
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Figure 8.14: Histogram of distances of rare OTUs to the nearest modal OTU for each of the 6 gastrointestinal
microbiomes with cutoffs k = 3% and k = 7%. Red dashed lines indicate the results of the metric applied to
sequences that were randomized while preserving rank abundance and sequence statistics (see main text)).
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Figure 8.15: Measuring the effect of the choice of k on our metric. Darkest lines indicate k = 2%, medium
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8.4 Discussion

In this work, we set out to construct genomic-based measures of ecosystem diversity and abundance that can

provide evidence for process. We focused on understanding the processes that structure microbial commu-

nities, because these play functionally important roles in many ecosystems, yet are rich in diversity. Thus,

such systems would a priori be expected to contain at least sub-populations shaped primarily by stochastic

forces. The dual features of high diversity and foundational role functionally in their host ecosystem suggest

that microbial communities would not be simple to characterize as either niche or neutral. At the same

time theoretical arguments suggest that such high-diversity communities might appear, for fundamental

statistical reasons, as neutral.

We succeeded in creating a quantitative metric that fuses abundance and genomic data in order to

determine whether an ecological system is dominated by neutral evolution or by niche selection. The key

concept was to explore the correlations and associated probability distributions between the most abundant

members of the community and the long, low abundance tail members. We showed that the signature of

the probability distribution describing the distance in genomic sequence space from each rare OTU to the

nearest modal OTU provided a signature of the strength of niche dynamics. We tested this construct on large

datasets from 6 animal gastrointestinal tract microbiomes, finding in all cases that the results are inconsistent

with neutral assembly. We conclude that niche selection largely dominates within the GI microbiome, despite

the fact that the rank abundance patterns are apparently well-modeled by Neutral Theory.

Our results provide firm evidence from an empirical dataset that apparently neutral patterns of diversity

and abundance can arise from niche-dominated dynamics, in agreement with earlier theoretical expecta-

tions [190, 209, 210, 187, 202, 211]. Our results establish definitively that simple ecological measures need

to be, and can be, augmented by genomic data in order to provide insight into the processes that structure

communities.

8.5 Methods

8.5.1 Sample Preparation

All procedures involving animals were approved by the Institutional Animal Care and Use Committee of the

University of Illinois. For each animal, we used two different samples for our test that vary in some aspect

such as diet or sampling times. The Duroc sow (2-14; TJ Tabasco) was used as the genomic template for

producing cloned animals using somatic cell nuclear transfer. Tabasco was used to produce the CHORI 242
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BAC library which was used to generate the full pig genome sequence [241]. The clones were born by vaginal

delivery and allowed to suckle. They were weaned at 4 weeks of age and continuously housed together. They

were not vaccinated or ever in contact with other pigs after weaning. Pigs were fed once daily in the morning

and had free access to water. Fecal samples were collected on day 14 (the last day of that feed rotation) of

each diet for a total of 4 samples for each animal. Samples were collected from the rectum into a sterile tube

and frozen at -80 ◦C until time of analysis. Bovine rumen samples were collected as previously reported in

ref. [233]. Chicken caeca were collected as previously reported in ref. [170].

8.5.2 Sequencing

Swine and cattle samples were sequenced using PCR product from PCR specific primers flanking the V1-

V3 region of bacterial 16S rDNA [242]. The forward fusion primers for pyrosequencing included 454 Life

Science’s A adapter, and barcode A fused to the 5’ end of the V1 primer 27F. In chicken the V3 primer

341F was used. In all samples, the reverse fusion primer included 454 Life Science’s B adapter (lowercase)

fused to 5’ end of V3 primer 534R. The fragments in the amplicon libraries were subjected to a single

pyrosequence run from the V3 primer end using a 454 Life Science Genome Sequencer GS FLX (Roy J.

Carver Biotechnology Center, University of Illinois). The reads for chicken 1, cattle 1 and 2 and swine 1

and 2 have been deposited to the NCBI Sequence Reads Archive with the accession number SRA052136.3.

Chicken 94 reads have been previously deposited as reported in ref. [7].

8.5.3 Rank-abundance, Species-abundance, Preston Plots and Taxa

Distributions

The reads from cattle and swine microbiomes were cleaned up using the method recommended in ref. [139].

For the chicken caecum microbiome we removed all sequences shorter than 100 bp. The ends of all reads

were trimmed so that the sequences start and end in the same place in the 16S rRNA consensus structure.

All remaining sequences were then aligned using the method described in ref. [7]. The OTUs were clustered

using complete linkage [133] 3% sequence identity with the denominator 4 from [145] (counting indels as dif-

ferences). The OTU abundance data for rank-abundance was then binned into a histogram using the method

in Adami and Chu [243]. Species-abundance and Preston plots were generated following ref. [244]. Neutral

model curves were generated using the algorithm for the sampling organisms from a neutral metacommu-

nity [118]. Hubbell’s θ parameter was fixed to match the exponentially decaying tail of the rank abundance.

Offset was chosen by a least-squares method. Taxonomy assignments and comparison of libraries was made

with the Library Compare tool [245] at RDP [152].
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8.5.4 PCA Ordination

In Fig. 8.10 we show the results of Principal Component Analysis on our OTU data. In performing this

calculation, each OTU was associated with a vector of real numbers of dimension 4L where L is the length

of the multiple alignment. The elements of the vectors were calculated in the following way. Each nucleotide

within the multiple alignment is represented by a sub-vector of 4 numbers, A is (1, 0, 0, 0), C is (0, 1, 0, 0),

G is (0, 0, 1, 0), T is (0, 0, 0, 1), whereas the gap is represented as (0, 0, 0, 0). The vector associated with the

OTU is then the arithmetic average of the vectors associated with each sequence within the OTU. We then

perform the weighted PCA procedure [240] where we weigh each OTU by its abundance.

8.5.5 Closest-distance metric

We used the percent sequence distance metric in Fig. 8.13. The randomized dataset (red line) was generated

in the following way. Each OTU (with its associated abundance) was replaced by a representative randomized

sequence. This sequence was generated by selecting each nucleotide from a distribution of probabilities

generated from the sequence reads. In this way, the base pair distribution for each position in the multiple

alignment of the model dataset is the same as that of the experimental dataset. Furthermore, since the

abundances of OTUs are kept, the rank abundance of the model dataset is exactly the same as that of the

experimental dataset.
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Chapter 9

Theoretical models of ecosystems
with energy flow

In the previous chapter, we saw that complex gastrointestinal microbial ecosystems in several vertebrates

are clearly shaped by non-neutral forces. One of the most widely-used ways to model this state of affairs

is by using models of population ecology. These are typically ordinary differential equations describing the

interactions between species and resulting in functional forms for their spatially-averaged time-dependent

populations. These models usually involve abstract terms for species competition and species fitness. Our

goal in this chapter is to make such models somewhat more concrete and applicable to microbial ecosystems

in particular. To that end, we will acquire an energy-driven perspective of the ecosystem in the tradition of

Odum [246].

In this chapter we consider marine plankton, organisms responsible for more than half of world’s primary

productivity, and important factors in global climate [247]. We will consider plankton living in ocean

surface waters, a low-nutrient environment [248], characterized by a genomically unique microbiome [249].

The questions we answer are: What physical variables matter for the evolution of organisms in these specific

conditions? Can we map the results of abstract models to the metagenomic data? In our model, we introduce

concrete terms for energy balance and the cost for maintenance of the genome. Through our model we intend

to characterize the phase transition between the observed modes of survival in this environment: cooperative

specialization and opportunistic generalism.

We describe a niche structuring model in Section 9.1 to introduce our energy-centric approach. We will

not turn our back to experimental data completely; in Section 9.2 we will introduce the many interesting

genomic features of the world of ocean surface plankton. These features will motivate our model in Section

9.3. This model has some qualitative aspects of plankton microbe systems: we describe these in Section

9.4. The model shows genome streamlining (Section 9.4.1) and spontaneous symmetry breaking (Section

9.4.2) consistent with experimental observations. In Section 9.4.3, we consider the model in fluctuating

non-equilibrium conditions. Finally, we conclude in Section 9.5 by describing the future of energy-driven

ecosystem modeling.
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9.1 Niche structuring through emergent community assembly

One of the models we developed, while working on the niche-neutral dichotomy, is the “energy–cascade”

model. This model is interesting because it is a direct example of a system that produces neutral-like

abundance patterns, even though it has explicit interactions. Here, we are interested to model the cascading

energy flow in an ecosystem. Different trophic levels are created when the organisms symbiotically adjust

to consuming side-products of other organisms in the ecosystem (see Figure 9.1).

Figure 9.1: Schematic diagram of the niche structuring model.

Specifically, in our artificial life model, both the organisms and the available “units of energy” are given

a “genome” g. There is explicit competition between the organisms for the consumption of energy, hence

this model is non-neutral. If organisms are unable to find energy to consume, they die at a constant rate.

The probability for an organism with genome go to consume a unit of energy with genome ge is given by

F (ε(go−ge)) where go−ge denotes the distance of the two genomes in some metric, ε denotes the strength of

the interaction, and F denotes the fitness function. Every time a unit of energy is consumed by an organism,

another unit of energy with genome gp may be created with probability p, as a side product. The genome

of the product is gp = G(go, ge), where G is a deterministic function of the organism and input energy

genomes. For example G could be a hash function of go and ge. In this way, the organisms can create chains

of producers and consumers, and possibly even cycles. They can self-organize into niches that can further

influence how they evolve. In that sense, this model is in the “niche construction” class [250].

Interestingly, simulations of abundance patterns with this model show curves that are of the form given

by neutral theory. Namely, we can calculate steady-state abundance distribution for various ε (the strength

of the competition), with F an exponential function. The genome is a binary string of 100 bits, and G is the

bitwise inverse function of ge. The resulting abundance patterns in steady-state are displayed in Figure 9.2.

Whereas the time to reach the steady-state depends on ε, the final abundance distribution does not, and it
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Figure 9.2: Rank abundance curves obtained from a model interacting community. The shape of the curves
is described by neutral theory.

has the same form as abundance distributions we’ve seen in vertebrate gastrointestinal systems in Chapter

8 (see Figure 8.6).

9.2 Microbiome of the Ocean Surface Plankton

The model in Section 9.1 is interesting because it produces neutral-like curves that are observed in ecological

measurements of rank abundances. But, we have shown that the rank abundance measures are known not

to be good discriminators unless supplemented with genomic data (see Chapter 8). What other questions

about existing metagenomic systems can we answer using the energy-driven approach?

In recent years, metagenomic approaches have given us an understanding of many specific single environ-

ments, but also of spatially extended systems such as soil [251]. Perhaps the most extensive measurement

of a spatially extended system is the Global Ocean Survey (GOS) [252], a metagenomic survey of 52 sites in

the Atlantic, Pacific and Indian ocean taken on board of the ship Sorcerer II.

The authors of GOS collected samples of marine picoplankton (microbes in the 0.1µm − 3.0µm range)

and generated 10.97 million metagenomic reads, assembled into 6.12 million protein-coding genes [253] and

more than 45,000 16S sequences, The data consisted of whole genome assemblies of 197 marine genomes

(of which 137 were previously sequenced). To understand the abundance distribution of the picoplankton,

Yooseph et al. [249] devised a “recruitment” procedure of the metagenomic reads to whole marine genomes.

For each metagenomic read a BLAST [254] is performed against each genome. The read is then recruited

to the highest scoring hit if BLAST matches at least 50% of the nucleotides. Less than 25% of the reads

are recruited in this fashion to the genomes, indicating that the marine microbiome is still far from fully
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understood. Yooseph et al. defined the depth of coverage as the average number of reads covering a base

pair in the reference genomes. Of the 197 genomes, 34 are covered by the recruited reads with a depth of

coverage > 1. These are termed the HRG (high recruiting genomes) and the rest are the LRG (low recruiting

genomes).

The 197 genomes of Yooseph et al. are plotted in Figure 9.3(a) in terms of their recruitment coverage

and number of protein-coding genes in the genome. Yooseph et al. realized that the highly recruiting

genomes tend to be the short ones (with small number of protein-coding genes). This indicates that the

abundant organisms living in the picoplankton community have streamlined genomes, i.e. they seem to

shed unnecessary genes and specialize. Yooseph et al. also provide evidence that these organisms may be

physically small as well [249]. Since HRG organisms have been found at all GOS sampling sites, they have

been termed CAPs (cosmopolitan abundant populations) by Yooseph et al..

To gain some understanding into the functions present in the marine genomes, Yooseph et al. provided

a mapping of the protein-coding genes present in the genomes to the COG (clusters of orthologous groups)

database [255] and the KEGG (Kyoto Encyclopedia of Genes and Genomes) module database [256]. Two

genes that map to the same COG indicates that those two genes are orthologous based on phylogenetic data,

whereas a mapping of a gene to a particular KEGG module indicates that the gene is a part of a particular

metabolic pathway. However, not all genes map to COG and KEGG with sufficient (50%) identity, but

we find that of those that do map, their number is still inversely proportional to recruitment coverage: see

Figure 9.3(b) and (c).

We can use the above COG and KEGG mappings as a proxy for answering the question of what functions

are available to the microbes: we will assume that each COG/KEGG module provides a different function to

the organism. For the elements of the HRG dataset, we plot a presence/absence map of each COG/KEGG

module in Figure 9.5. If at least one gene is found to match a COG or a KEGG module, then that function

is considered present (and colored red in the figure), otherwise it is unavailable to the organism (and colored

blue in the figure). Notice that in this map the order of the rows does not matter (we do not sort the

genomes by any specific measure). Similarly, the order of the columns of the map has no meaning. This

means that we can use a procedure by which we can make the visualization of the presence/absence map

easier to interpret. In this chapter, we will sort the map’s rows by similarity. The procedure is the following.

First, a random row is chosen to be at the top. Then, a similarity (Hamming distance) of this row to each

other row is computed. The most similar row is placed to be second in the map and it is then compared to

all other remaining rows, etc. After sorting the map by rows, we proceed to do the same for columns. For

the case of a random map, the sorting procedure has no effect–the map still has random appearance (See
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Figure 9.3: Fragment recruitment coverage as function of (a) number of protein-coding genes in the genome,
(b) number of protein-coding genes with a match to COG, (c) number of protein-coding genes with a match
to KEGG. This figure has been plotted from data by Yooseph et al. [249].
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Figure 9.4: Plot of presence (red) or absence (blue) of functions for a random distribution. Rows and
columns have been sorted by similarity but this doesn’t destroy the random appearance.

Figure 9.4). However, suppose that there are lineages in the dataset that have a certain set of functions, and

lineages that don’t. In this case, we should expect to see a block of presences and block of absences in the

map for the columns in question. In fact, this is precisely the what we observe in Figure 9.5. This indicates

that the CAPs specialize, in agreement with the fact that they have streamlined genomes.

The correlated relationship of number of genes that match to COGs or KEGG modules to the genome

coverage from Figure 9.3 is not as pronounced when the number of unique COGs and KEGG modules

is considered (see Figure 9.6). In Figure 9.7 we show the presence/absence map for COGs and KEGG

modules for all genomes (HRG and LRG). In the Figure, the HRGs are represented by teal color. No

significant discernible difference can be observed between LRG and HRG from the figure, but the LRGs

do tend to have more functions than the HRGs. This idea has led Yooseph et al. to denote the LRGs as

SAPs (stochastically abundant populations). The motivation is that, unlike the streamlined and specialized

CAPs, the SAPs preserve large genomes with wide functionality which allow them to make use of changing

conditions and favorable fluctuating circumstances should they arise. We now turn our attention to seeing

if this sort of empirical result is predicted to be a generic outcome of an energy-based population model.

121



(a)

0 500 1000 1500 2000 2500
COG

0

5

10

15

20

25

30

Ge
no

m
e 

ID

(b)

0 50 100 150 200
KEGG module

0

5

10

15

20

25

30

Ge
no

m
e 

ID

Figure 9.5: Presence (red) and absence (blue) of protein-coding genes that match (a) COGs and (b) KEGG
modules in Yooseph et al. [249] HRG data.
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Figure 9.6: Fragment recruitment coverage as function of (a) number of COGs matched by at least one gene,
(b) number of KEGG modules matched by at least one gene. Figure plotted from Yooseph et al.’s [249]
data.
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Figure 9.7: Presence (red or teal) and absence (blue) of protein-coding genes that match (a) COGs and (b)
KEGG modules in Yooseph et al. [249] data. Here, teal represent HRG (genomes with recruitment coverage
> 1).
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9.3 Model of an Interacting Community
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Figure 9.8: Schematic diagram of the function presence/absence model. Here a presence of a function in the
genome of an organism allows the organism (displayed as a blue oval) to access nutrients (purple squares).

Our model is schematically illustrated in Figure 9.8. In this model, each organism has a genome that

consists of up to N possible functions denoted by fni (in this chapter, N = 100 in all simulations). Here n is a

label of the organism. The fn1 , . . . , f
n
N can each be 0 (function absent) or 1 (function present). There are also

N different possible types of nutrients (units of energy). If an organism n has a function fni , then it competes

with other organisms with that function for the consumption of the nutrient i. Through fluctuations, the

organisms can either compete for the same resources in which case they are divided equally (such is the case

for nutrient 1 in the figure), or the organisms can consume resources unchallenged (nutrients 3 and 4 in the

figure). Of course, a presence of a function fni = 1 incurs a cost c for organism n (c = 2 in this chapter).

The organisms die at unit rate, and their birth rate bn is proportional to their net energy consumption:

bn = In − c
N∑
i

fni − C (9.1)

where C is a fixed cost (C = 0 in this chapter) and In is the energy input for organism n:

In =

N∑
i

Fi(t)

fni /
M(t)∑

j

f ji

 (9.2)

where Fi(t) is the flux of nutrient i and M(t) is the total number of organisms at time t.

When a birth occurs, the genome of the daughter organism is evolved according to a mutation rate µ.

We consider two mutation strategies:

1. Any function fi can switch from 0 to 1 and vice versa at uniform rate µ.

2. Any function with fi = 1 can switch to fi = 0 with uniform rate µ. However, a function fi can only
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be reacquired (0 → 1) with probability µ if either of functions fi±1 = 1. Here, boundary conditions

for the fi are periodic.

We refer to mutation strategy 2 as the DP (directed percolation) rule. The motivation is that an organism

shouldn’t be able to reenable a function i unless it has a phylogenetically close function i± 1. For example,

in a real biological system, a cell can acquire the ability to resist an antibiotic by acquiring an SNP mutation

in cell membrane or ribosome proteins but this is usually precluded by a sequence of other SNP mutations

that need to happen first. In the opposite sense, we term the mutation strategy 1 as HGT (horizontal gene

transfer) rule. Rather than acquiring a function through piecewise steps, a function may arrive through

HGT from another organism in the environment. In that case, any function is available to any organism

at any time. In the simulations in this chapter, we set µ = 0.01 per base per generation (except in Section

9.4.3). This value is not too big as to entropically wash out the results of the simulation, nor too small to

make the simulations slow.

With the notation in this section, fi = 0 (absent) or 1 (present), we can plot the maps of fi for all

organisms in the simulation and sort them in the same way as described in Section 9.2. We can then compare

these simulation results directly with the presence and absence maps for COGs and KEGG modules in data

from Yooseph et al.’s experiment shown in Figures 9.5 and 9.7 and we proceed to do that in the following

section.

9.4 Results

In this Section, we introduce 3 results of running our model. The genomes undergo streamlining and

they specialize (or spontaneously break symmetry) in order to optimize their energy use. However, non-

streamlined genomes can still provide a benefit over the streamlined genomes in conditions where the energy

flux is fluctuating.

9.4.1 Genome Streamlining

In this section we simulate our model with a constant energy flux Fi(t) = 100 + 2ξ for i = 1, . . . , 100 and

ξ is a normally distributed random variable with unit standard deviation. We consider the average genome

length (or number of present functions per genome):

〈f(t)〉 =
1

M(t)

M∑
j

N∑
i

f ji (t). (9.3)
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We run four simulations of the model, two starting from single lineage with all functions present and two

starting from 100 lineages, each with 50 functions chosen at random. We also run the simulations for each

of the two mutation strategies: HGT and DP. The results for 〈f(t)〉 are shown in Figure 9.9. We observe

that the DP mutation strategy enhances genome streamlining. With DP, the genomes tend to streamline to

about 1/6 of their full length. On the other hand, with HGT, the genomes spontaneously only streamline

only up to 2/3 of their full length. When started from half-length, the genomes stay at that length and do

not streamline further.
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Figure 9.9: Time-trace of the average genome length in 4 simulations of process in Section 9.3. Two
simulations are with all mutations allowed (solid lines) and two simulations are with DP-like mutations only
(dashed). Two simulations begin with a single lineage with all functions available (blue), and two simulations
begin with 100 lineages, each with 50 functions chosen at random (red).

9.4.2 Spontaneous Symmetry Breaking

For the case of DP-like mutations, and same constant energy flux, we observe that the genomes of the

organisms in the simulations undergo a spontaneous symmetry breaking. The state of fni (t) is shown in

Figure 9.10 for the case of 3 times. We see that, as t becomes large, the lineages specialize and stop

competing with each other for most of the nutrients i. This transition is much like in ferromagnetic Ising

systems below Tc where single-spin domains form. Here, however, fni prefers to be different for different n

and this leads to the emergent block structure observed in Figure 9.10. Notice also that, as time passes, and

genomes become more streamlined and specialized, the carrying capacity (total number of organisms in the

simulation) grows (from 50 organisms at t = 0 to more than 150 at t = 266, 000).
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Figure 9.10: Snapshots of presence (red) or absence (blue) of functions in digital genomes undergoing a
simulation described in Section 9.3.
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9.4.3 Energy strategies

The evolution of energy strategies of organisms (how resources are allocated towards growth and reserves),

and the resulting population dynamics have been studied before [257]. In this section we study this problem

in context of our model. We turn off the mutation, setting µ = 0 and we consider the behavior of 5 lineages,

each fixed in terms of their genome. First lineage has all 100 functions, whereas the other 4 lineages each

have 25 non-overlapping lineages. Evidently, in the steady state case of previous 2 sections, the first lineage

will be driven to extinction. The first lineage competes with all 4 other lineages, whereas the 4 lineages

only compete with the first. Is there an environment in which this setup of lineages has benefits for the first

lineage?

In this section we show that there is. We consider a sinusoidally fluctuating environment where Fi(t) =

200 + 180 sin(2πt/P ) + 2ξ for i = 1, . . . , 100 where P is the period of the fluctuation and ξ is a normally

distributed random variable with unit standard deviation. We find that for P < 60, the first lineage is

able to outcompete the other lineages even though it is outcompeted in the steady-state condition. This is

because, when the energy is plentiful (in the rising phase) the first lineage is able to get a bigger share of

the surplus energy.

The results are shown in Figure 9.11 for three different P . The time trace of the first lineage is shown

in blue, the other lineages are shown in red. We observe that for P = 55, the first lineage drives the

other lineages to extinction. Similarly, for P = 65, the other lineages drive the first lineage to extinction. A

metastable coexistence can be observed for P = 60 but we find that, given sufficiently long time of simulation,

it will result in either of the lineages winning. These results, in the context of marine microbiome, indicate

that whereas CAPs are more adapted to steady-state conditions, SAPs can outperform CAPs in fluctuating

conditions.

9.5 Conclusion

Ocean picoplankton communities are presumed to be divided into 2 subcommunities: CAPs and SAPs. The

CAPs are abundant, cosmopolitan specialists, with streamlined genomes and small cell size. The SAPs

are rare, and they have large genomes. Yooseph et al. proposed that CAPs are undergoing a strategy of

“cryptic escape”, whereby they avoid predators by keeping a small biomass. Our model has some properties

of CAPs, namely it provides an emergent mechanism for genomes to streamline (Section 9.4.1) provided

that the effects of HGT are not too strong. Our model also shows spontaneous symmetry breaking. In

the past, symmetry breaking has been proposed as a method for allopatric speciation [258]. Our model, in
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Figure 9.11: Time trace of the population. These are results of simulations of the model from Section 9.3
for the case of a fluctuating nutrient flux (with period P ). There are 5 lineages, 1 with all possible functions
(indicated with blue dashed line), and 4, each with a quarter of the available functions (labeled with the red
lines).
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which new lineages can arise through spontaneous symmetry breaking, is a concrete example of that. The

specialization of CAPs has been observed in metagenomic data. Compare our results in Figure 9.10 with the

data in Figure 9.5. Our model also shows that specialization is not always beneficial: SAPs can outperform

the CAPs in case of fluctuating conditions.

At about the same time that we performed our analysis described in this chapter, Rogers, McKane and

Rossberg published a mathematical model for a competing population, where the competition is proportional

to Hamming distance between organisms [259]. They are able to analytically find that a pattern-forming

instability forms, and they propose that this instability leads to genetic clustering, i.e. speciation. In

addition, Rogers, McKane and Rossberg find that the pattern-forming instability is enhanced by the effects

of demographic noise. We believe that our observations of symmetry breaking in this chapter are the same

as those of Rogers, McKane and Rossberg.

The specialization and streamlining observed in CAPs may be indicative that they are syntrophic organ-

isms [260] (they are extremely symbiotic, i.e. they share electrons or metabolites in order to process free

energy) but there is yet no concrete evidence for syntrophy in microbial ocean systems. It is clear that the

surface ocean waters are a nutrient-poor and energy-starved environment for the picoplankton and this may

be the key driving force for the CAP/SAP phase transition. However, this phase transition remains not

fully understood: more experimental data is necessary and a correct model may require a more elaborate,

syntrophic description.
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Chapter 10

Conclusions and reflections

10.1 Conclusion

In Part I, I gave evidence that the transition to turbulence may be in the directed percolation universality

class. While the abstract phenomenological model of directed percolation cannot predict many of the struc-

tures observed in shear flows, the scaling of the lifetimes and growth rates of turbulent regions seem to be

fully described by the model (Chapter 3). I also showed that the Burgers equation, a simplified model of

the Navier-Stokes equations, may also undergo a transition in the directed percolation class (Chapter 4).

These results imply that statistical, emergent features of fluid dynamics are sufficient to describe many of

the important critical properties of the laminar-to-turbulent transition.

In Part II, I showed how to accurately and efficiently process and analyze metagenomic datasets (Chapters

6 and 7). I also wrote down simple models for ecological assembly (Chapter 8) and energy balance (Chapter

9) and showed how one can relate the conclusions of these models to real metagenomic data in vertebrate

gastrointestinal and ocean surface microbiomes.

What about the future work? Throughout this thesis I have given a number of open problems and

possible future avenues of research. Generally, in the field of transition to turbulence, many of the features

of the transition in pipe flows are now considered fully understood. Of course, in turbulence, there is still

much work to do. A full statistical theory of turbulence still doesn’t exist, and the Millenium prize for the

uniqueness and existence of solutions to Navier-Stokes equations is still not claimed (its value for physics is

in any case small). In comparison, though, the field of quantitative biology is exploding. The amount of data

generated and the number of problems still unresolved is staggering in comparison. The coming biomedical

and technological applications will profoundly change our society and it will be exciting to witness these

changes.
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10.2 Perspective on Computational Biology

In the the first nine chapters of this thesis, I have given the results of my scientific endeavors for the past four

and a half years. This thesis was to provide a starting point for further research and numerous references to

relevant theory and experiments. In that way, another graduate student can pursue the conjectures given

in chapters 4 and 9 for his or her own thesis work. In this section I hope that the reader will permit me a

slight foray away from scientific rigor into a realm of opinions and speculation about the future as I give my

admittedly young and audacious perspective on the future of computational biology and interdisciplinary

research.

10.2.1 Better computational biology tools

Moore’s law has followed the development of computing power for the past five decades [261]. At the same

time, in the past two decades, the sequencing ability has outpaced Moore’s law [262]. As such, it is plausible

that O(N) algorithms, such as the ones presented in Chapter 7 will be just as important in the future as

they are now.

However, algorithmic challenge is only one aspect of computationally processing future data. Another

big challenge is the human understanding and analysis. It is doubtful that the number of people trained to

analyze this data will grow with Moore’s law. Hence, changes have to be made in terms of how the analysis

is performed. Typical approach in computational biology has been to develop pipelines and so-called “black

boxes”. These are automated tools that can process data, filter it and perform analyses. However, these

typically have a slew of parameters associated with them and require a decent training of the operator to

use correctly. In reality, in biological research it is common that the users of these tools do not have the

time to learn how to correctly use them and set correct parameters. As such, processing artifacts such as

the ones described in Chapter 6 are introduced into the analyses.

This problem is also evident in the peer review process of biological papers where the referees are not

able to evaluate bioinformatic methods, and they do not insist that authors provide sufficient bioinformatic

detail. This makes drawing comparisons with other studies very difficult. A set of standards for reporting

bioinformatic analysis in papers should be established. I believe that each bioinformatic study should contain

all the computer code including all the invocations of the tools and parameters used to perform the analysis.

There is another approach that could improve the current state of affairs. I believe that the developers

of future bioinformatic tools must take the issues raised above into consideration as they design their tools.

Instead of developing a pipeline, or a “black box”, one should instead develop an expert system. An expert

system is an adaptive system that verifies input data, assumptions, selects parameters, and gives a detailed
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report of precise reasons for the parameters and algorithms used [263] (much like a human expert performing

the analysis would do). The added effort of developing such programs would be offset by their wider utility

and better automation. This is a perspective that I hope more bioinformatic developers will consider in the

future.

10.2.2 Abstractions in Computational Biology

Scientific development occurs through a sequence of abstractions. A research idea in one paper is an analysis

method in the follow-up paper. Abstractions are important ideas in computer science as well, since they

quickly enable development of large and complex computer systems. For instance, with today’s cloud

computing platforms, it is possible for a single person to run a web application serving millions of people.

Similarly, a single researcher can have very many simulations running on a remote computing cluster, without

having to worry about scheduling, or particularities of the hardware running the simulation.

Abstractions are particularly important in programming languages. They enable writing programs that

would otherwise not be possible (due to complexity and time constraints). One cannot imagine writing a

modern program without using arrays, yet those didn’t exist until the high-level programming languages of

the 1950’s and 1960’s such as FORTRAN, COBOL and ALGOL. In scientific programming, I believe the

success of Mathworks’ MatlabTM and Wolfram MathematicaTM are in part due to the suitable choice of

abstractions. In MatlabTM, everything is a matrix, which makes many scientific and engineering problems

easily representable in its syntax. In MathematicaTM, everything is a mathematical expression, making it

easy to represent mathematical relations and mathematical operations such as factoring and integration.

In computational biology, there are no obvious data structures or abstractions. As such, people use

general-purpose programming languages, with a library of code for common operations (such as loading

data, doing a BLAST or an alignment). In practice, computational biological research is an endless game of

converting data from one format to another, piping data through filtering steps, matching relations in one

database to another one and plugging data into black boxes, all the while having various parameters and

half-processed data floating around.

I don’t have a good solution to this problem and I am not sure that it exists. It seems to me that a network

should be the most fundamental data structure in computational biology, but there would also have to be

some sort of an ontology associated with each network. In practice, building a good programming language

for computational biology based on this idea is hard. Successful programming languages and frameworks are

only successful if many people use them, and advantages would be gained when all databases and data are

available in this “ontological network” framework. But of course, getting to this point is hard. My opinion
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is that this would make it possible to perform systems biology research much more efficiently. It would allow

data mining of relationships that are not readily evident at this time. But, it is also possible that the gains

would not be worth the effort. In any case, it is encouraging to know that there is at least one product,

NextBioTM, that seems to attempt something similar to this approach in biomedicine.

10.2.3 Scientific method in interdisciplinary research

Another problem is the understanding of scientific research. There were an estimated 1.3 million papers

published in 2006 alone [264]. It is impossible for any one person to read all papers in their field, let alone

comprehend them. Staying in touch with literature is especially difficult in biological research where many

major results are made by making connections across different scientific disciplines. Whereas internet has

helped in tracing citations and locating papers, more can be done along these lines. One powerful approach

is the semantic web [265]. I hope for an era where scientific papers will have semantic metadata attached

to them, allowing data mining programs and simulations to make meaningful connections across disciplines

quickly.

Any improvements to the process of performing research can lead to a faster progress of science as a

whole. As such, it is surprising that the semantic web development is running so slow. Nevertheless, I

remain hopeful that the future will bring many improvements for which I have too little perspective to

predict, except to anticipate that among them will be the ideas presented in this chapter. I dare to hope

that the future scientist will be like Hari Seldon from Isaac Asimov’s Foundation [266]. Using a virtual

reality-like device, he or she will be manipulating and tweaking relationships, equations and data at a high

level, and considering problems outside of our reach at the present.
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[66] H. Chaté and P. Manneville. Transition to turbulence via spatio-temporal intermittency. Phys. Rev.
Lett., 58(2):112–115, 1987.

[67] JM Burgers. On the resistance experienced by a fluid in turbulent motion. In Proc. KNAW, volume 26,
pages 582–604, 1923.

[68] J. Bec and K. Khanin. Burgers turbulence. Physics Reports, 447(1):1–66, 2007.

[69] J.M. Burgers. The nonlinear diffusion equation: asymptotic solutions and statistical problems. D.
Reidel Publishing Company, 1974.
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