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Abstract

When rock-paper-scissors game is played by many people, there is
an emergent behavior. Analytic model suggests that there are three
phases, and computer simulation shows that phases are determined
by how local interactions are. In this paper, analytic and computa-
tional model of RPS game, as well as applications to biological systems
(E.coli and side-blotched lizards) are discussed.
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INTRODUCTION

Rock-paper-scissors game, a game that is often played by children, has a
simple rule; Rock wins against scissors, scissors win against paper, and paper
wins against rock. If this game is done by many people over and over again,
this simple interaction between people suggests a possibility of an emergent
behavior. In particular, it has been of interest for many people when the
game is played as follows; each person picks one strategy from rock, paper,
and scissors randomely at the beginning → they randomely choose one person
to play RPS game with → they keep their strategy if they win or tie, but
change the strategy to the opponent’s strategy if they lose → find the next
opponent and repeat.

Of course it is unlikely that people play RPS game in this manner, but
this situation is observed in some biological systems, such as in the system
of E.coli[5], and in the system of side-blotched lizards[6]. In both cases,
three different types of the same spieces have cyclic dominance, and a loser
is displaced by a winner, through the fact that a winner can have offsprings
but a loser cannot.

The above biological examples being part of the motivation, RPS game
model was studied by several people. It turns out that a simple theory
suggests that there are three different stable solutions: the solution where
everybody has the same strategy, the solution where number of people with
each strategy is 1/3 of total, and the solution where the number of people
with each strategy oscillates in time[1]. For the first step and perhaps the
best step to study this emergent behavior (best step according to V. Darley
[4]), computer simulations were done, and succeeded in seeing an emergent
behavior.

In this paper, I will discuss a simple analytical and computational model
of RPS game that done in the manner described above, and biological systems
that have interactions described in this manner.

SIMPLE ANALYTIC MODEL OF RPS GAME

THE GOVERNING EQUATIONS

Consider a system of many particles (or people) that can have one of three
different strategies, S1, S2, or S3 (which correspond to rock, paper and scis-
sors), and those three strategies have a cyclic dominance S1 > S2 > S3 > S1.
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Further, assume that when two particles encounter, the winner displaces the
loser, hence the number of the winner strategy goes up by one and the number
of the loser strategy goes down by one in this process.

Therefore, if we focus on one strategy, S1 for instance, having many S2

in the system increases the number of S1, and having many S3 reduces its
number. In other words, S1 gets successful with having S2 around, and
unsuccessful with having S3 around.

In order to understand the collective behavior of the system, we will define
’fitness’ fi, which is a measure of how successful streategy i is in the system.
If xi is a density of the strategy i, then the rate of change in xi, in terms of
fi, can be written as

ẋi

xi

= fi(x) − f̄(x), (1)

where x = (x1, x2, x3) and f̄(x) is the average fitness

∑

i xifi
∑

i xi

(2)

[1]. For convenience, normalization
∑

i xi = 1 will be used from now on (so
now xi represents the ratio of the nuber of Si to the total nuimber). The
equation (1) shows that the number of Si grows if its fitness fi is greater
than the average (i.e. if it is successful), and vice versa.

Fitness fi(x) certainly would depend on x1, x2, x3, but it is not clear how
it depends on them. As a simple model, we will assume that fi(x) is linear
in xj , ∀j. Then there exists a matrix A such that

fi(x) = Aijxj , (3)

where Einstein convention is used[1]. Recall that fitness fi is a measure
of how successful Si is, so Aij should be positive if having Sj around Si is
comfortable for Si (i.e. if i wins against j), and negative if it is the other way
around, and how successful/unsuccessful it is should be represented by the
magnitude of Aij . In the case of the regular RPS game, it is comfortable for
S1 (rock) if there are S2 (scissors) around, and uncomfotable with the same
degree if there are S3 (papers). Hence

A12 = k

A13 = −k
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where k is some real number. Following the same analysis for all components,
the whole matrix A can be written as







0 1 −1
−1 0 1
1 −1 0





 . (4)

Note that k = 1 is used in normalization.
With this matrix A, equation (1) becomes

ẋ1 = x1(x2 − x3)

ẋ2 = x2(x3 − x1) (5)

ẋ3 = x1(x1 − x2).

These three equations can now be solved to yield the behavior of RPS game.

SOLUTIONS

Looking at the equation (5), it is easy to see two stable solutions, where
ẋ1 = ẋ2 = ẋ3 = 0:

xi = 0, xj = 0, xk 6= 0 (i 6= j 6= k) (6)

and
x1 = x2 = x3. (7)

The more general solution of x1, x2, x3 in the equations (5) can be seen most
conveniently by considering the sum x1 + x2 + x3 and the product x1x2x3.
Using the equations (5), it is easy to show that

d

dt
(x1 + x2 + x3) = 0 (8)

and
d(x1x2x3)

dt
= 0. (9)

Hence the densities satisfy equations

x1 + x2 + x3 = N (10)

and
x1x2x3 = A, (11)

4



Figure 1: The solution for the equation (5) must lie on the grey plane indi-
cated in the left figure, due to the fact that x1 + x2 + x3 = constant. The
right figure shows trajectories of the solutions for different N and A on a
triangle in the left figure. ei’s correspond to xi’s here. (The picture taken
from [1].)

where N and A are some positive constants. If we plot x1, x2, x3 with them-
selves being the axis, all trajectories have to be on the plane given by the
equation (10). Moreover, combining the equation (11) with the equation
(10) suggests that there are only two possible values for xi for each xj (i.e.
eliminating one variable using the two equations gives a quadratic equation
for the remaining variables, which can be solved for one of them. It can
be shown that two positive solutions exist.) Therefore, for given N and A,
possible values of x1, x2, x3 must lie on a closed path shown in Figure 1.

Note that solution (6), (7) and the solution seen in Figure 1 all have com-
pletely different features. The solution (6) is the case where everybody has
the same strategy and the system stays that way forever (called an absorbing
phase[3]). The solution (7) is the case where the densities of strategies is the
same for all three kinds (called a self-organizing phase[3]). Lastly, in the final
solution (except for the special limits of this solution, which correspond to
(6) and (7)), densities of x1, x2, x3 oscillate, preserving the sum and product
of densities of all three of them (called an oscillating phase[3]). These are
phases of RPS games, and how these phases emerge have been studied with
computer simulationtions, as seen in the next section.

COMPUTER SIMULATION OF RPS GAME

A Szalnoki and G Szabo studied phase transitions of RPS games using a
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computer simulation. The simulation was done on a network that consists
of sites where each can occupy one strategy (rock, paper, or scissors), and
each site being connected to z other sites. In particular, a phase diagram
was made for z=3 honeycomb lattice case, so here we will focus on z=3
case. Starting from a random initial condition, a link between two sites are
chosen randomely at each time step and compare the strategies. The winning
strategy occupies the other site and the same procedure is repeated until the
system goes to a steadt state[2]. The authors of [2] and [3] seem to have
suspected that how local the interactions are controls the system. So they
decided to make the following two modifications to the regular honeycomb
lattice.

In the simulation, Q portion of the links that are connecting nearest
neighbors were replaced by links that connect sites that are not the nearest
neibours to each other. This means that the lattice is the natural honeycomb
lattice if Q=0, and is completely random if Q=1. This type of randomness
is called quenched randomness[2].

In addition to having quenched randomness, annealed (temporal) ran-
domness P was introduced. This is the probability that standard links (ones
connecting nearest neighbors) are replaced by random ones at each time step
in the simulation[2].

When standard links were replaced by random ones in both procedures
described above, the number of links connected to each site was kept fixed
to 3[2].

Suspecting that P and Q are the control parameters of RPS games, the
authors of [3] performed simulations with various Q and P values. As a
result, all phases in the last section (absorbing, self-organizing, and oscillating
phases) were observed. The system is in absorbing phase for small Q and
P, absorbing state for large Q and P, and oscillating phase in between. The
phase diagram is shown in Figure 2.

This simulation shows that there is an emergent behavior in rock-paper-
scissors game, and control parameters are (at least) quenched randomeness
Q and annealed randomeness P–the phase of the system is determined by
how randomely sites can interact with other sites.
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Figure 2: Phase diagram of RPS game by A. Szolnoki and G. Szabo. Q is the
portion of the lattice that is randomely connected, and P is the probability
that a regular link is replaced by a random one in each timestep. Small Q
and P corresponds to a self-orgnizing phase(number of strategies is the same
for all three), large Q and P corresponds to an absorbing phase(all sites have
the same strategy), and in between, there is an oscillating phase(number of
each strategy oscillates).
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APPLICATION TO BIOLOGICAL SYSTEMS

ESCHERICHIA COLI

Rock-paper-scissors game relationship is occationally seen in biological
systems. One example is a collection of Escherichia coli, normally called
E.coli[5]. There are three types of E.coli:

• type C–has the ability to create toxin called colicin, but it is rresistant
to the colicin

• type R–resistant to colicin, but it does not have the ability to make
colicin

• type S–gets killed when exposed to colicin

Type R bacteria grow more rapidly than type C bacteria, because not having
the ability to create colicin makes it easier to grow. So if those two types of
bacteria are put in a same container, then type R ’wins’ and displace type C.
Type S bacteria grow even more rapidly than type R bacteria because type
S bacteria absorb nutrients more efficiently. Hence S wins against R. Lastly,
C wins against S beacuse the colicin of type C bacteria kills type S bacteria.
Hence, these three types of bacteria have the feature of rock-paper-scissors
(S > R > C > S).

The authors of [5] put those three types of bacteria together in a container
(which makes the situation be ideally described by the computer simulation
in the last section). The number of each type of bacteria was measured
every one day, for seven days. The experiment was done with three different
conditions: Static plate condition (bacteria can interact with ones close by
only), Flask condition (the container was shaken frequently so that bacteria
interactions are not local), and Mixed condition (somewhere in between the
last two extrema). The result is in Figure 3.

Two of the three states that were suggested in the computer simulation
were observed. The number of bacteria is roughly the same and stays con-
stant if bacteria can interact only locally (Static plate condition gives self-
organized state), one type dominate if the interaction is allowed at random
locations (Flask condition gives absorbing state). The result for the mixed
plate was also an absorbing state, which suggests that the randomness was
above critical point, if the simulation in the last section corresponds to this
particular case close enough.
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Figure 3: Numbers of all three types of bacteria as a function of time, when
they are put together. The numbers on the horizontal axis are number of
bacteria generations, which corresponds to 10 time days. Graph ’a’ is for
the case where the interaction between bacteria is local, graph ’b’ is for the
case where the interaction is global, and graph ’c’ is for between the last two
cases. Figures are taken from [5].
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SIDE-BLOTCHED LIZARD

Another example of rock-paper-scissors game in biological systems is a
collection of side-blotched lizards. This type of lizards have three different
types of males that can be distinguished with the color of their throat[6]:

• orange throat–They have largest teritorries and posses a large number
of females, and they are physically the strongest among three typese.

• blue throat–They do not guard as many females, but because of the
small number of females, they guard females more carefully. Hence
they win against yellow throat males.

• yellow throat–They are the weakest of all types. However, they look
similar to females, so they try to sneak into territories of other males.

Orange throat males win against blue throat males, simply due to their
strength. Blue throat males lose against orange throat males, but can win
aganst yellow throat males because of strength, and because they guard
females closely, which makes it difficult for yellow throat males to sneak in.
Yellow throat males cannot sneak into blue throat males’ territories due to
a heavy guard, but can sneal into orange throat males’ territories and steal
females. This shows that males of side-blotch lizard are in the rock-paper-
scissors situation (Orange > Blue > Y ellow > Orange). The winner gets
to mate with a female, which results in taking the place of the loser through
making offsprings. The number of each type of males were measured through
the year 1990 to 1999 by Sinervo et. al, and the result is shown in Figure 4.

As in the figure , the state seems to be somewhat close to an oscillating
state, but not close eonugh to say so confidently. In fact, this system is not a
simple RPS game because there are two types of females, and females control
the system as well by choosing their mate. Nevertheless, the feature of RPS
game is reflected in the plot, though not close to 100%, and it seems that
the system is the closest to the oscillating phase.

Conclusion

Simple rock-paper-scissors model have three different phases: Absorbing
phase (everybody has the same strategy), self-organizing phase (number is
the same for all strategies), and oscillating phase (number oscillates for all
strategies). The control parameters are quenched randomeness and annealed
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Figure 4: The percentage of each type of lizards (called frequency here).
White dots indicate the number of all three types, and colors indicate which
type has the most advantage if the dot is there.

randomeness. This emergent behavior was seen in the simulation by A Szol-
noki and G Szabo. In biological systems, the behavior was seen in collection
of E.coli and side-blotched lizards.
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