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Abstract

Color superconductivity is a phenomenon predicted to occur in quark matter
if the baryon density is sufficiently high (well above nuclear density) and the
temperature is not too high (well below 1012 kelvins). Color superconducting
phases are to be contrasted with the normal phase of quark matter, which is
just a weakly-interacting Fermi liquid of quarks.

In theoretical terms, a color superconducting phase is a state in which
the quarks near the Fermi surface become correlated in Cooper pairs, which
condense. In phenomenological terms, a color superconducting phase breaks
some of the symmetries of the underlying theory, and has a very different
spectrum of excitations and very different transport properties from the nor-
mal phase.



1 Introduction

Quantum Chromodynamics(QCD) has been the best theory of the strong
interaction responsible for binding together protons and neutrons within the
atomic nucleus for over 25 years. Nucleons are not treated as the fundamental
objects but as the composite states of more elementary particles called quarks

and gluons of size roughly 1fm. Quarks have spin-1

2
. Gluons are vector gauge

bosons that mediate strong color charge interactions of quarks in QCD.

First, I should explore the consequences of the quark picture for the ther-
modynamics of strongly-interacting matter, i.e., the behavior as conditions
such as temperature and density are varied. Fig. 1 shows a proposed phase
diagram for QCD. The names of the various phases are shown in green, and
the environment in which they might be found in black. Phase coexistence
lines are shown as solid lines, critical points as filled circles, and crossovers by
shaded regions. The control parameters are temperature T and baryon chem-
ical potential µ. There is no process within QCD which can change the num-
ber of baryons NB minus the number of anti-baryons NB̄; in other words we
can identify a conserved quantum number B = NB −NB̄ called baryon num-
ber. Quarks and anti-quarks carry B = ±1

3
respectively. Now, for systems in

which baryon number is allowed to vary, the most convenient thermodynamic
potential to consider is the grand potential Ω(T, V, µ) = E−TS−µB. Ther-
modynamic equilibrium is reached when Ω is minimised, and for a system in
equilibrium we recognise µ as the increase in E whenever B increases by one.
When systems are analysed using the grand canonical ensemble µ is kept as
a control parameter, and the baryon density nB = B/V is a derived quantity
whose value depends on the details of the equation of state nB = nB(T, µ).

In the bottom left-hand corner of the phase diagram Fig. 1 where T and
µ are both small, the thermodynamic behavior can be described in terms of
a vapour of hadrons, which is the composite bound states of quarks and/or
antiquarks. As T is raised, eventually there comes a point where phase
tranisition occurs to a phase where the dominant components are no longer
hadrons but the quarks together with gluons. Since quarks and gluons play
similar roles in QCD to the electrons and photons of QED, the phase is called
the quark-gluon plasma (QGP). Along the µ-axis, the nuclear matter is at
µo ≃ 922MeV, given by the nucleon rest mass minus the binding energy per
nucleon, which is estimated from empirical models of nuclei such as the liquid
drop model. Keeping raising µ, there is believed to be a phase transition at a
larger value of µ to a phase in which quarks rather than nucleons are the dom-
inant degrees of freedom. Such quark matter may conceivably be found at
the cores of compact astrophysical objects such as neutron stars. It has been
speculated that Fermi surface phenomena analogous to the Bardeen-Cooper-
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Figure 1: Proposed phase diagram for QCD. SPS, RHIC and ALICE are the
names of relativistic heavy-ion collision experiments. 2SC and CFL refer to
the diquark condensates).

Schrieffer (BCS) instability, responsible for superconductivity in metals and
superfluidity in liquid 3He at low temperatures, may play an important role.
In the lower-right region of the phase diagram, therefore, QCD becomes a
branch of condensed matter physics.

2 History

The first physicists to realize that QCD implies color superconductivity of
quark matter at high density were Stephen Frautschi, a professor at Caltech,
and his graduate student Bertrand Barrois. Barrois was able to get part
of his work published in the journal Nuclear Physics [2], but the referees
of that journal rejected the longer manuscript based on his thesis, which
impressively anticipated later results such as the exp(-1/g) dependence of
the quark condensate on the QCD coupling g. Barrois then left academic
physics.
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In the early 1980s color superconductivity received renewed attention
from David Bailin and Alexander Love at Sussex University, who studied
various pairing patterns in detail, but did not give much attention to the
phenomenology of color superconductivity in real-world quark matter [3].

Apart from papers by M. Iwaskai and T. Iwado of Kochi University in
1995 [4], there was little activity until 1998, when there was a major up-
surge of interest in dense quark matter and color superconductivity, sparked
by the simultaneously published work of two groups, one at the Institute
for Advanced Study in Princeton [6] and the other at SUNY Stonybrook [7].
These physicists pointed out that the strength of the strong interaction makes
the phenomenon much more significant than had previously been suggested.
These and other groups went on to investigate the complexity of the many
possible phases of color superconducting quark matter, and perform accu-
rate calculations in the well-controlled limit of infinite density. Since then,
interest in the topic has steadily grown, with current research focussing on
the detailed mapping of a plausible phase diagram for dense quark matter,
and the search for observable signatures of the occurrence of these forms of
matter in compact stars.

3 The properties of QCD

(a) (b)

u u

d d

g

Figure 2: Gluon exchange between quarks. For small inter-quark separa-
tion, single gluon exchange (a) dominates. For larger separations gluon self-
interactions (b) are also important.

The fundamental interaction between quarks in QCD arises from the ex-

4



change of spin-1 particles called gluons g, shown schematically in Fig. 2.
Gluons are present inside hadrons and are thus also partons, but carry zero
baryon number. In QCD the corresponding quantity is called chromoelec-

tric flux, and the gluon is the quantum of the chromoelectric and chromo-
magnetic fields. By contrast with QED, however, single gluon exchange in
QCD only gives an accurate description of the force between quarks at very
small distances. At larger separation, things become much more complicated
because as well as interacting with q and q̄, gluons can interact with them-
selves, in contrast to photons which are electrically neutral and hence do
not self-interact. Most of our quantitative knowledge about the quark-gluon
interaction at distance scales >

∼ O(0.5fm) comes from formulating the equa-
tions of QCD on a discrete mesh of spacetime points and modelling quantum
fluctuations of the q, q̄ and g fields by numerical simulation, as known as
lattice gauge theory. It turns out that the potential between a qq̄ pair at
separation r is

V (r) = −
A(r)

r
+Kr. (1)

For small r the first term in (1) dominates, and describes an attractive
Coulomb-like interaction. It is important to note, however, that the coeffi-
cient A itself has a mild scale-dependence due to quantum effects1. Detailed
analysis reveals that A(r) ∝ 1/ ln(r−1), implying that the interaction between
quarks gets weaker as their separation decreases. In the limit r → 0 the
quarks can be considered non-interacting, a property known as asymptotic

freedom. Asymptotic freedom enables inelastic electron-proton collisions to
be interpreted in terms of scattering of high-momentum virtual photons off
almost-free partons; its theoretical discovery thus played a pivotal role in
establishing QCD as the theory of the strong interaction.

As r increases the second term in (1) takes over, implying that the qq̄
potential rises linearly with separation. This can be understood by consid-
ering Fig 3, which shows lines of chromoelectric flux between a quark and
anti-quark. By contrast with QED, the field lines do not spread out in space
to form a dipole pattern, but remain localised within a narrow region of di-
ameter ∼ 0.7fm between the sources known as a fluxtube. Within the tube
the chromoelectric field strength is roughly uniform; therefore the energy of
the system is proportional to the length of the fluxtube, in agreement with
Eq.(1).

Let us develop the analogy with QED a little further. The QCD quantity
corresponding to electric charge is called color, and comes in three forms:
“red”, “blue”. and “green”. Both quarks and gluons have color quantum

1A is proportional to strong force coupling constant αS .
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Figure 3: Chromoelectric flux between a qq̄ pair.

numbers. Anti-quarks have complementary colors “anti-red”, “anti-blue”
and “anti-green”. The gluon exchange responsible for QCD forces carries
color between different particles; hence the colored nature of the gluons can
be regarded as the origin of their self-interaction. The only stable finite-
energy systems are those formed from complementary combinations of color,
such as qg q̄ḡ mesons or qrqbqg baryons. The qq̄ pair formed in string-breaking
is produced with exactly the right color combination to maintain this over-
all color-neutrality. Forces between color-neutral objects such as nucleons
within the nucleus can be viewed as a second-order effect akin to Van der
Waals forces between neutral atoms.2 From our viewpoint the most impor-
tant aspect is that colored objects such as isolated quarks or gluons are never
observed. This property of QCD, supported by all the theoretical considera-
tions of the previous paragraphs, and to date not contradicted by experiment,
is called color confinement.

The two crucial ingredients we have identified, asymptotic freedom and
color confinement, are built into a much simpler description of the strong
interaction known as the Bag model, in which massless quarks move freely
within a spherical hadron of radius R, but are prevented from travelling
further by an inwards-acting pressure due to the confining nature of the bulk
vacuum.

We now come to another important aspect of QCD dynamics. When a
particle with spin ~s propagates, it is possible to define a quantity called he-

licity h = ~s.~k/|k|, which is the projection of the spin axis along the direction

2In fact inter-nucleon forces can be modelled by the exchange of color-neutral mesons
such as pions. The dimension of a nucleus is comparable with the Compton wavelength
of a pion.
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of the particle’s motion, defined by the momentum ~k. For a spin-1

2
particle

like the quark, there are two possible helicity eigenstates h = ±1

2
, usually

referred to as left- and right-handed states since they are related by a mirror
reflection. A quark’s helicity is not altered by either emission or absorp-
tion of a gluon; hence in the absence of any other effect one might deduce
that the numbers of left- and right-handed quarks are separately conserved
in QCD, leading to two good quantum numbers BL and BR. A moment’s
thought, however, shows that this can only be the case if quarks have zero
mass and hence travel at the speed of light. Otherwise, it is possible to
Lorentz boost to a frame in which the quark’s momentum has the opposite
sign; since angular momentum along the boost axis is not changed, helicity
in the new frame must also have the opposite sign. We conclude that in a
relativistically covariant treatment massive quarks must be described as a
superposition of helicity eigenstates, the mass m parametrising the overlap
between them and hence effectively the rate of L ↔ R transitions. Since in
this case only B = BL + BR remains as a good quantum number, we say
that the chiral symmetry relating left and right-handed quarks and enabling
them to be thought of as independent particles is broken by the quark mass.

Chiral symmetry breaking (χSB), like that of other symmetries in many-
body or quantum field theory, can occur via the theory’s own dynamics. We
have seen that QCD is responsible for a strong attractive interaction between
q and q̄. The force is so strong, in fact, that the state usually considered as
the ground state or vacuum, namely that of no particle present, is actually
unstable with respect to formation of a condensate of tightly bound qq̄ pairs,
much as the ground state of superfluid helium is a Bose condensate of He
atoms in the lowest quantum state. Let us denote the vacuum by the ket
|0〉, and the field operators which create or destroy a quark when acting on
a ketas ψ̄, ψ respectively. A χSB vacuum is then given by

〈ψ̄ψ〉 ≡ 〈0|ψ̄LψR + ψ̄RψL|0〉 6= 0. (2)

Since neither |0〉 is annihilated by ψ, nor 〈0| by ψ̄, the vacuum must contain
qq̄ pairs. In QCD it is believed that the value of 〈ψ̄ψ〉 ≃ (250MeV)3, which
can be interpreted as the number of such pairs per unit volume.

As Eq.(2) implies, the condensate pairs ψL with ψ̄R, and vice versa. Since
ψ̄ψ leaves BL + BR invariant but changes BL − BR by two units, a non-
vanishing condensate implies that the latter quantity has no definite value
in the vacuum and only B remains as a good quantum number. A left-
handed quark propagating through such a vacuum can be annihilated by
ψL, leaving ψ̄R to create a right-handed quark with the same momemtum.
The quark will thus flip its helicity at a rate proportional to 〈ψ̄ψ〉 – in other
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words, it will propagate just as if it had a mass. Spontaneous χSB in QCD
is thus the agency by which the nucleon acquires most of its mass. It is
also a natural consequence of quark confinement. Consider the bag model
description of massless quarks moving back and forth within a small volume.
At the surface of the bag the quarks must reverse their direction of travel,
but not their angular momentum, which is always conserved. Therefore the
interaction with the bag wall changes their helicity. Since this cannot be
achieved though any process involving gluon exchange between the quarks in
the bag, it must arise because the QCD vacuum in the volume outside the
bag contains a non-vanishing density of qq̄ pairs with which the bag quarks
can exchange helicity. Confinement implies χSB.

4 Quark Matter and Color Superconductiv-

ity

I now consider the behaviour of QCD as a function of chemical potential µ.
For T strictly zero as µ increases, the ground state is initially the state with
no particle present, ie. the vacuum. This situation persists until µ reaches the
value of the nucleon rest mass minus the binding energy per nucleon in nuclear
matter, when it becomes energetically the ground state with a bound nucleon
fluid. Ignoring Coulomb repulsive forces between protons, this energy can be
estimated from nuclear physics as 16MeV/nucleon; therefore we can identify
an onset value µo ≃ 922MeV at which point baryon density nB jumps from
zero to nuclear density nB0 ≃ 0.16fm−3. Since the vacuum and nuclear matter
coexist at this point, the value µ = µo corresponds to the “room chemical
potential” that would be measured should we ever be able to construct a
suitable potentiometer! Because nB = − 1

V
∂Ω

∂µ
, the discontinuity implies a

first order phase transition. We expect the transition to persist for T 6= 0 on
grounds of continuity, and therefore show it as a coexistence line emerging
from µ = µo in Fig. 1. As it now separates a phase in which baryons can be
present but are dilute from one in which they are condensed, it is known as
the nuclear liquid-vapour transition. It is anticipated that the line ends at
a critical point with Tc ≃ O(10MeV); it is possible that critical opalescence
has been detected near this point in the form of the broad distribution of
fragment sizes observed in medium-energy nuclear collisions.

What happens as µ, and hence nB, increase? Unfortunately the lattice
gauge theory simulations become ineffective once applied to QCD with µ 6= 0.
For densities up to 2 - 3nB0 we can extrapolate from our current knowledge of
nuclear physics. Beyond that we are forced to rely on approximate treatments
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such as the bag model. As nB increases we again expect a transition from a
phase in which matter exists in the form of nucleons to a higher entropy phase
where the dominant degrees of freedom are quarks. Naively this should occur
at densities of the order of a billion tonnes per teaspoonful where the volume
per baryon equals the baryon volume, and the bag surfaces just touch. For
degenerate neutron matter at this critical density we have

nBc ≃ 2
∫ kF

0

4πk2

(2π)3
dk =

k3

F

3π2
≃

(µ2

c −M2)
3

2

3π2
≃

1

R3
≃ 1fm−3, (3)

giving µc ∼ 1200MeV. Various model estimates yield µc ∼ 1100 - 1500MeV,
and the jump in density at the transition ∆nB ∼ 2 - 5nB0.
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Figure 4: Pairing instabilities leading to chiral symmetry breaking (top), and
superconductivity (bottom)
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Let’s discuss the nature of this quark matter (QM) phase. In the bag
model, the QM phase corresponds to the bag interior in which chiral symme-
try is restored and quarks are light. That this might be so on more general
grounds is illustrated in the upper part of Fig. 4, where χSB is shown as due
to a pairing instability between quarks and anti-quarks of equal and oppo-
site momenta; the q̄ are here interpreted as holes in the Dirac Sea of negative
energy states. χSB occurs if the binding energy of the qq̄ pair exceeds the
energy needed to excite them: the result is the modified single-particle exci-
tation spectrum shown at upper right, with an energy gap 2Σ between the
highest occupied and lowest empty states. Now when nB > 0, some positive
energy states are also occupied, as shown at bottom left; we refer to these as
belonging to the Fermi Sea. It is impossible to excite qq̄ pairs if the q state
has momentum k < kF and is hence already in the Fermi Sea; such pairs are
Pauli-blocked. At some point, therefore, available qq̄ states require so much
energy to excite that it is preferable to revert to a chirally symmetric ground
state. Since kF

>
∼ µc/3 ≫ mu,d, we deduce the quarks near the Fermi surface

which participate in QM’s interaction with other forms of matter are highly
relativistic.

Much recent interest has been aroused by the idea that QM might have
richer properties than those of a simple relativistic fermi liquid. Consider the
lower panel of Fig. 4: if the qq interaction is even weakly attractive at the
Fermi surface, then another pairing instability, the so-called BCS instability ,
is expected between quark pairs at antipodal points, leading to a ground
state with a non-vanishing diquark condensate 〈qq〉 6= 0. Analogously to
χSB, the instability leads to an energy gap 2∆ between highest occupied
and lowest vacant one-particle states, the distinction being that this time
the gap is located at the Fermi surface. In metals at temperatures of a few
kelvin, a BCS instability can arise between Cooper pairs of electrons due to
an attractive force arising from interaction with vibrations of the underlying
crystal lattice of positively-charged ions. The Cooper pair condensate leads
to the phenomenon of superconductivity , signalled by electric current flowing
without resistance in a narrow layer close to the sample surface; the screening
effect of this supercurrent results in the Meissner effect, namely the complete
exclusion of magnetic field from the sample. A BCS instability between
neutral helium atoms in liquid 3He at milli-kelvin temperatures, on the other
hand, leads to frictionless flow and quantisation of vorticity, a phenomenon
known as superfluidity .

In QCD the force between two quarks due to single gluon exchange is
attractive (unlike single photon exchange between two electrons), implying
that a weak BCS instability should be present in QM. More recent calcu-
lations which attempt to model realistic strong interactions in the regime
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µ >∼ µc predict a much bigger effect, with ∆ as large as 10 - 100MeV. A
crucial consideration, not applicable to χSB, is that the qq wavefunction is
constrained by the Pauli Exclusion Principle. As a result the ground state
is sensitive to the flavor composition of the available quarks. Suppose µ/3 is
not much greater than ms; in this case kFs ≪ kFu,d and pairing is effectively
restricted to the two light flavors. The diquark condensate which thus forms
is

〈qq〉2SC = ǫαβ3ǫab〈ψ
α
a (k, ↑)ψβ

b (−k, ↓)〉 6= 0. (4)

The quark spins are combined in an antisymmetric singlet state; the overall
antisymmetry of (4) under quark exchange is then enforced by the alternat-
ing ǫ tensors acting on flavor a, b = 1, 2 and color α, β = 1, . . . , 3 indices.
Now, since the qq2SC wavefunction is not color-neutral, we infer by analogy
with the electrically-charged Cooper pair that the ground state is color su-

perconducting . The most immediate consequence is that out of the eight
gluons, the five which carry color #3 acquire a mass of O(∆) and hence
cannot penetrate QM over distances much greater than a screening length
∼ ∆−1, in direct analogy with the Meissner effect in metallic superconduc-
tors.3 The three gluons left massless carry combinations of only the first
two colors. The qq2SC wavefunction however, like the QGP, respects chiral
symmetry; for this reason although the superconducting description will be
the more natural for T <

∼ ∆, there may well be no true transition separating
2SC and QGP phases, and we have shown them separated by a crossover in
Fig. 1.

For larger µ, kFs should increase up to the point where strange quarks
can participate in the pairing. In this case a more symmetric “color-flavor-
locked” (CFL) condensate can form:

〈qq〉CFL =
∑

i

ǫαβiǫabi〈ψ
α
a (k, ↑)ψβ

b (−k, ↓)〉 6= 0. (5)

If anything the CFL state is still more exotic; all 8 gluons are rendered mas-
sive implying color superconductivity, and chiral symmetry is also broken.
Moreover, since the qqCFL operator either creates or annihilates two units of
baryon number, B is no longer a good quantum number – it can be shown
that this B-violation leads to superfluidity. The CFL state is currently be-
lieved to be the stable ground state of matter as µ → ∞, and is shown as a
distinct phase in Fig. 1.

3In weak interaction physics the identical effect, now known as the Higgs phenomenon,
arises as a consequence of the condensation of a scalar Higgs field and gives W± and Z0

bosons masses of O(100GeV), restricting the effective range of the weak interaction to
10−18m.
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5 Neutron Star

Where might QM be found? To reach the higher densities needed for QM an
external pressure is needed; the most likely source is the gravitational binding
in the compact astrophysical objects of mass O(1030kg) and radius O(10km)
known as neutron stars. Neutron star central densities are estimated as ly-
ing in the range 5 - 10nB0. It may well turn out that our best experimental
probe of QM will come through careful observation of the known neutron
star population, focussing on quantities such as the rate of change of angu-
lar momentum, cooling rate, and magnetic field. One interesting possibility
is that once µ/3 >∼ ms the ground state of matter includes an appreciable
fraction of strange quarks, and hence a composition ∼ uds; neutron stars
may actually be made of such strange quark matter (SQM). It is even con-
ceivable, though unlikely, that SQM is the ground state for P = 0, and
nuclear matter therefore only metastable. Observational and experimental
evidence for these fascinating new phases may be difficult to acquire. Since
neutron star temperatures are typically <

∼ 10MeV, it may seem that they
are a natural place to look. However, two factors work against us; even if
a neutron star has a QM core its bulk is probably normal nuclear matter,
and color superconductivity is a phenomenon confined to the vicinity of the
Fermi surface rather than the whole Fermi Sea and therefore has relatively
little impact on the equation of state. Both imply that any effect of color
superconductivity is likely to be quite subtle. One prediction is that a color
superconducting core would stabilise neutron star magnetic fields and pre-
vent them from decaying over cosmologically significant timescales. Another
speculation concerns the formation of a neutron star by core collapse of a
very massive star during a supernova explosion. During this violent event
the star cools from ∼50MeV to ∼10MeV over a timescale of a few seconds
by emission of massless weakly-interacting particles called neutrinos ν, ν̄. 4

If a transition to superconducting QM occurs in this period, ν - q scattering
with k <∼ ∆ will be Pauli-blocked, with the effect of making the core effec-
tivelytransparent to neutrinos. They may emerge from the collapsing core
in a sudden burst, rather than steadily diffusing out over 10-20 seconds as
in standard collapse scenarios; it may be feasible to detect such a burst in
terrestrial neutrino detectors [8].

4An anti-neutrino is produced in the archetypal weak interaction, β-decay of the neu-
tron, via d → ue−ν̄.
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