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Abstract

A quantum phase transition (QPT) is a zero-temperature, generi-
cally continuous transition tuned by a parameter in the Hamiltonian at
which quantum fluctuations of diverging size and duration (and van-
ishing energy) take the system between two distinct ground states [4].
This short review discusses the characteristic aspects of QPT and il-
lustrates possible applications in physics and biology.
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1 What are quantum phase transitions?

A phase transition is a fundamental change in the state of a system when
one of the parameters of the system (the order parameter) passes through its
critical point. The states on opposite sides of the critical point are character-
ized by different types of ordering, typically from a symmetric or disordered
state, which incorporates some symmetry of the Hamiltonian, to a broken-
symmetry or ordered state, which does not have that symmetry, although
the Hamiltonian still possesses it.
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As we approach the phase transition, the correlations of the order param-
eter become long-ranged. Fluctuations of diverging size and duration (and
vanishing energy) take the system between two distinct ground states across
the critical point. When are quantum effects significant? Surprisingly, all
non-zero temperature transitions are considered “classical”, even in highly
quantum-mechanical systems like superfluid helium or superconductors. It
turns out that while quantum mechanics is needed for the existence of an
order parameter in such systems, it is classical thermal fluctuations that gov-
ern the behaviour at long wave-lengths. The fact that the critical behaviour
is independent of the microscopic details of the actual Hamiltonian is due
to the diverging correlation length and correlation time: close to the critical
point, the system performs an average over all length scales that are smaller
than the very large correlation length. As a result, to correctly describe uni-
versal critical behaviour, it should suffice to work with an effective theory
that keeps explicitly only the asymptotic long-wavelength behaviour of the
original Hamiltonian (for instance, the phenomenological Landau-Ginsburg
free-energy functional).

So far, we have shown that classical theory suffices. However, consider
what happens when the temperature around the critical point is below some
characteristic energy of the system under consideration [2]. For example,
the characteristic energy of an atom would be the Ryberg energy. We see
a characteristic frequency ωc and it follows that quantum mechanics should
be important when kbT < ~ωc. In the same spirit, if kbT >> ~ωc close
to the transition, the critical fluctuations should behave classically. This
argument also shows that zero-temperature phase transitions, where Tc = 0,
are qualitatively different and their critical fluctuations have to be treated
quantum mechanically.

In such zero-temperature or quantum phase transitions (QPT), instead
of varying the temperature through a critical point, we tune a dimensionless
coupling constant J in the controlling Hamiltonian H(J). Generically [1], the
ground state energy of H(J) will be a smooth, analytic function of g for finite
lattices. However, suppose we have the HamiltonianH(J) = H0+JH1, where
H0 and H1 commute. This means that H0 and H1 can be simultaneously
diagonalized and the eigenstates of the system will remain the same even
though the eigen-energies will vary with J . A level crossing is possible where
an excited level crosses the ground energy level at some coupling constant Jc,
creating a point of non-analyticity in the ground state energy as a function
of J , which manifests as a quantum phase transition.
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Figure 1. Schematic phase diagram showing a paramagnetic (PM) and a ferromagnetic
(FM) phase. The path indicated by the dashed line path represents a classical phase
transition, and the one indicated by the solid line a quantum phase transition.

1.3. AN EXAMPLE: THE PARAMAGNET-TO-FERROMAGNET
TRANSITION

Let us illustrate the concepts introduced above by means of a concrete
example. For definiteness, we consider a metallic or itinerant ferromagnet.
5

1.3.1. The phase diagram
Figure 1 shows a schematic phase diagram in the T -J plane, with J the
strength of the exchance coupling that is responsible for ferromagnetism.
The coexistence curve separates the paramagnetic phase at large T and
small J from the ferromagnetic one at small T and large J . For a given J ,
there is a critical temperature, the Curie temperature Tc, where the phase
transition occurs. This is the usual situation: A particular material has a
given value of J , and the classical transition is triggered by lowering the
temperature through Tc. Alternatively, however, we can image changing J
at zero temperature (e.g. by alloying the magnet with some non-magnetic
material). Then we will encounter the paramagnet-to-ferromagnet transi-
tion at the critical value Jc. This is the quantum phase transition we are
interested in. Since we have seen that the quantum transition is, loosely

5For the purposes of this subsection we might as well consider localized spins, but the
theory discussed in Sec. 2 below applies to itinerant magnets only.
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Figure 2. Schematic phase diagram as in Fig. 1 showing the vicinity of the quantum
critical point (J = Jc, T = 0). Indicated are the critical region, and the regions dominated
by the classical and quantum mechanical critical behavior, respectively. A measurement
along the path shown will observe the crossover from quantum critical behavior away
from the transition to classical critical behavior asymptotically close to it.

speaking, related to the classical one in a different spatial dimensionality,
and since we know that changing the dimensionality usually means chang-
ing the universality class, we expect the critical behavior at this quantum
critical point to be different from the one observed at any other point on
the coexistence curve.

This brings us to the question of how continuity is guaranteed when one
moves along the coexistence curve. The answer, which was found by Suzuki
[9], also explains why the behavior at the T = 0 critical point is relevant
for observations at small but non-zero temperatures. Consider Fig. 2, which
shows an enlarged section of the phase diagram near the quantum criti-
cal point. The critical region, i.e. the region in parameter space where the
critical power laws can be observed, is bounded by the two dashed lines.
It then turns out that the critical region is divided into two subregions,
denoted by ‘QM’ and ‘classical’ in Fig. 2, in which the observed critical
behavior is predominantly quantum mechanical and classical, respectively.
The division between these two regions (shown as a dotted line in Fig. 2)
is not sharp (and neither is the boundary of the critical region), but rather

(A) (B)

Figure 1: (A) Schematic phase diagram showing a paramagnetic (PM) and
a ferromagnetic (FM) phase. The dotted path represents a classical phase
transition while the solid line indicates a quantum phase transition. (B)
Vicinity of the quantum critical point (J = Jc, T = Tc). Indicated are the
critical region, as well as the regions dominated by the clasical and quantum
mechanical critical behaviour(QM) [2].

2 Features of a quantum phase transition

To illustrate the concepts, we consider the example of a metallic or itinerant
ferromagnet [2]. Figure 1A shows a schematic phase diagram in the T − J
plane, with T the temperature and J the strength of the exchange coupling
that is responsible for ferromagnetism. The coexistence curve separates the
paramagnetic phase (large T , small J) from the ferromagnetic phase (small
T , large J). For any given J , there is an associated Curie temperature Tc
and classical phase transition occurs if we vary the temperature through Tc.
On the other hand, imagine changing J at zero temperature, for instance,
by alloying/doping the magnet with some non-magnetic material. Here, we
encounter a quantum phase transition between the paramagnet and the fer-
romagnet at the critical value Jc.

The behaviour at the T = 0, J = Jc is very different from T 6= 0. In order
to understand what happens in the vicinity of a QPT, a special mathematical
trick which allows us to connect QPT with classical statistical mechanics is
needed [3]. Consider the partition function of a d-dimension classical system
governed by a Hamiltonian H,
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Z(β) = Tr e−βĤ (1)

which can be written, via Feynman’s path integral formulation, as a func-
tion integral of the form (generalized for quantum many-body systems)

Z =

∫
D[ψ̄, ψ] eS[ψ̄,ψ]. (2)

Here, we let Ĥ be the Hamiltonian operator and S is the action of the
system,

S[ψ̄, ψ] =

∫
dx

∫ 1
kBT

0

dτ ψ̄(x, τ)[− ∂

∂τ
+µ]ψ(x, τ)−

∫ 1
kBT

0

dτ H(ψ̄(x, τ), ψ(x, τ)).

(3)
ψ̄ and ψ are the conjugate fields isomorphic to the creation and annihilation
operators in the second quantized formulation of the Hamiltonian. We have
sneaked in the trick of Wick rotation: analytically continuing the inverse
temperature β into imaginary time τ via τ = −i~β, so that the operator
density matrix of Z, eβĤ , looks like the time-evolution operator e−iĤτ/~. The
end result is seen in the action, which looks like that of a d + 1 Euclidean
space-time integral, except that the extra temporal dimension is finite in
extent (from 0 to β). As T → 0, we get the same (infinite) limits for a d+ 1
effective classical system. This equivalent mapping between a d-dimension
quantum system and a d + 1-dimensional classical system allows for great
simplifications in our understanding of QPT.

Since we know that the quantum transition is related to a classical analog
in a different spatial dimensionality, and since changing the dimensionality
usually means changing the universality class, the critical behaviour at the
quantum critical point Jc should be different from that observed at any other
point along the coexistence curve in Figure 1.

Also, another interesting aspect of QPT is that dynamics and thermo-
dynamics(i.e. statics, as thermodynamics is very much a misnomer) cannot
be independently analyzed, unlike the case for classical statistical mechan-
ics. This loss of freedom is due to the non-commutability of coordinates
and momenta in the quantum problem. As a result, both the form of the
Hamiltonian as well as the equations of motion are required, meaning that
one cannot solve the thermodynamics without also solving the dynamics –
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a feature that makes quantum statistical mechanics much harder to solve.
Hence, even though it was mentioned in the earlier paragraph that a quantum
transition can, in some fashion, be mapped into a classical thermodynamic
transition, information about the correlations in excited states which drive
the system out of the ground state cannot be extracted from this map.

3 Relevance in experimental Physics and Bi-

ology

Quantum phase transitions attract intense attention because they are rele-
vant to a host of experimental issues, despite the fact that T = 0 cannot
be achieved experimentally. This is because associated with the quantum
critical point, there is a sizable region where quantum critical behaviour is
observable (labeled QM in Fig. 1B). Some examples are:

• Anderson-Mott models and metal-insulator transitions [4],

• superconductor-insulator (SI) transition in granular superconductors [5],

• transitions between quantum hall states [3],

• the physics of vortices in the presence of columnar disorder [6].

Besides the above, knowledge of dissipative effects [7] on quantum coher-
ence and QPT is essential to assess the reliability of mesoscopic quantum
devices in performing tasks that strongly depend on their ability to maintain
entanglement (for instance, in quantum computation). Among quantum de-
vices widely used, many are based on a collection of regularly arranged or
single small Josephson junctions (JJ). A Josephson junction comprises two
superconductors linked by a very thin insulating oxide barrier and the cur-
rent that tunnels through the barrier is the Josephson current. Josephson
junction arrays also constitute a particularly attractive testing ground for
the superconducting-insulating (SI) transition, because all parameters are
well under control and are widely tunable. Cooper pairs of electrons are able
to tunnel back and forth between grains and hence communicate about the
quantum state on each grain. If the Cooper pairs are able to move freely
from grain to grain throughout the array, the system behaves like a super-
conductor. If the grains are very small, a large charging energy is incurred to
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A. Partition functions and path integrals

Let us focus for now on the expression for Z . Notice
that the operator density matrix e!!H is the same as the
time-evolution operator e!iHT/", provided we assign the
imaginary value T"!i"! to the time interval over
which the system evolves. More precisely, when the
trace is written in terms of a complete set of states,

Z#!$"%
n

&n!e!!H!n' , (3)

Z takes the form of a sum of imaginary-time transition
amplitudes for the system to start in some state !n' and
return to the same state after an imaginary time interval
!i"! . Thus we see that calculating the thermodynamics
of a quantum system is the same as calculating transition
amplitudes for its evolution in imaginary time, with the
total time interval fixed by the temperature of interest.
The fact that the time interval happens to be imaginary
is not central. The key idea we hope to transmit to the
reader is that Eq. (3) should evoke an image of quantum
dynamics and temporal propagation.

This way of looking at things can be given a particu-
larly beautiful and practical implementation in the lan-
guage of Feynman’s path-integral formulation of quan-
tum mechanics (Feynman, 1972). Feynman’s
prescription is that the net transition amplitude between
two states of the system can be calculated by summing
amplitudes for all possible paths between them. The
path taken by the system is defined by specifying the
state of the system at a sequence of finely spaced inter-
mediate time steps. Formally we write

e!!H"(e!#1/"$)*H+N, (4)

where )* is a time interval6 that is small on the time
scales of interest ()*""/, , where , is some ultraviolet
cutoff) and N is a large integer chosen so that
N)*""! . We then insert a sequence of sums over com-
plete sets of intermediate states into the expression for
Z(!):

Z#!$"%
n

%
m1 ,m2 , . . . ,mN

&n!e!#1/"$)*H!m1'

-&m1!e!#1/"$)*H!m2'&m2!•••!mN'

-&mN!e!#1/"$)*H!n' . (5)

This rather messy expression actually has a rather
simple physical interpretation. Formally inclined readers

will observe that the expression for the quantum parti-
tion function in Eq. (5) has the form of a classical parti-
tion function, i.e., a sum over configurations expressed
in terms of a transfer matrix, if we think of imaginary
time as an additional spatial dimension. In particular, if
our quantum system lives in d dimensions, the expres-
sion for its partition function looks like a classical parti-
tion function for a system with d#1 dimensions, except
that the extra dimension is finite in extent—"! in units
of time. As T→0 the system size in this extra ‘‘time’’
direction diverges, and we get a truly
d#1-dimensional, effective classical system.

Since this equivalence between a d-dimensional quan-
tum system and a d#1-dimensional classical system is
crucial to everything else we have to say and since Eq.
(5) is probably not very illuminating for readers not used
to a daily regimen of transfer matrices, it will be very
useful to consider a specific example in order to be able
to visualize what Eq. (5) means.

B. Example: One-dimensional Josephson-junction arrays

Consider a one-dimensional array comprising a large
number L of identical Josephson junctions as illustrated
in Fig. 1. Such arrays have recently been studied by
Haviland and Delsing (1996). A Josephson junction is a
tunnel junction connecting two superconducting metallic
grains. Cooper pairs of electrons are able to tunnel back
and forth between the grains and hence communicate
information about the quantum state on each grain. If
the Cooper pairs are able to move freely from grain to
grain throughout the array, the system is a superconduc-
tor. If the grains are very small, however, it costs a large
charging energy to move an excess Cooper pair onto a
grain. If this energy is large enough, the Cooper pairs
fail to propagate and become stuck on individual grains,
which causes the system to be an insulator.

The essential degrees of freedom in this system are
the phases of the complex superconducting order pa-

6For convenience we have chosen )* to be real, so that the
small interval of imaginary time that it represents is !i)* .

FIG. 1. Schematic representation of a 1D Josephson-junction
array. The crosses represent the tunnel junctions between su-
perconducting segments, and . i are the phases of the super-
conducting order parameter in the latter.

FIG. 2. Typical path or time history of a 1D Josephson-
junction array. Note that this is equivalent to one of the con-
figurations of a 1+1D classical XY model. The long-range cor-
relations shown here are typical of the superconducting phase
of the 1D array or, equivalently, of the ordered phase of the
classical model.
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rameter on the metallic elements connected by the
junctions7 and their conjugate variables, the charges (ex-
cess Cooper pairs, or equivalently the voltages) on each
grain. The intermediate state !mj!, at time " j#j$" , that
enters the quantum partition function of Eq. (5) can
thus be defined by specifying the set of phase angles
%&(" j)'#(&1(" j),&2(" j), . . . ,&L(" j)) , where & i(" j) is the
phase angle of the ith grain at time " j . Two typical paths
or time histories on the interval (0,*+) are illustrated in
Figs. 2 and 3, where the orientation of the arrows
(‘‘spins’’) indicates the local phase angle of the order
parameter. The statistical weight of a given path, in the
sum in Eq. (5), is given by the product of the matrix
elements

,
j

-%&." j!1/'!e".1/*/$"H!%&." j/'!, (6)

where

H#
C
2 0

j
Vj

2"EJcos. &̂ j" &̂ j!1/ (7)

is the quantum Hamiltonian of the Josephson-junction
array. Here &̂ j is the operator representing the phase of
the superconducting order parameter on the jth grain,8

Vj#"i(2e/C)(1/1& j) is conjugate to the phase9 and is
the voltage on the jth junction, and EJ is the Josephson
coupling energy. The two terms in the Hamiltonian then
represent the charging energy of each grain and the Jo-
sephson coupling of the phase across the junction be-
tween grains.

As indicated previously, we can map the quantum sta-
tistical mechanics of the array onto classical statistical
mechanics by identifying the statistical weight of a
space-time path in Eq. (6) with the Boltzmann weight of
a two-dimensional spatial configuration of a classical sys-
tem. In this case the classical system is therefore a two-
dimensional X-Y model, i.e., its degrees of freedom are
planar spins, specified by angles & i , that live on a two-
dimensional square lattice. (Recall that at temperatures
above zero the lattice has a finite width *+/$" in the
temporal direction.) While the degrees of freedom are

easily identified, finding the classical Hamiltonian for
this X-Y model is somewhat more work and requires an
explicit evaluation of the matrix elements, which inter-
ested readers can find in the Appendix.

It is shown in the Appendix that, in an approximation
that preserves the universality class of the problem,10 the
product of matrix elements in Eq. (6) can be rewritten in
the form e"HXY, where the Hamiltonian of the equiva-
lent classical X-Y model is

HXY#
1
K0

-ij!
cos.& i"& j/ (8)

and the sum runs over nearest-neighbor points in the
two-dimensional (space-time) lattice.11 The nearest-
neighbor character of the couplings identifies the classi-
cal model as the 2D X-Y model, extensively studied in
the context of superfluid and superconducting films
(Goldenfeld, 1992; Chaikin and Lubensky, 1995). We
emphasize that, while the straightforward identification
of the degrees of freedom of the classical model in this
example is robust, this simplicity of the resulting classi-
cal Hamiltonian is something of a minor miracle.

It is essential to note that the dimensionless coupling
constant K in HXY , which plays the role of the tempera-
ture in the classical model, depends on the ratio of the
capacitive charging energy EC#(2e)2/C to the Joseph-
son coupling EJ in the array,

K2!EC /EJ, (9)

and has nothing to do with the physical temperature (see
the appendix). The physics here is that a large Joseph-
son coupling produces a small value of K , which favors

7It is believed that neglecting fluctuations in the magnitude of
the order parameter is a good approximation (see Bradley and
Doniach, 1984; Wallin et al., 1994).

8Our notation here is that %&(")' refers to the configuration
of the entire set of angle variables at time slice " . The &̂’s
appearing in the Hamiltonian in Eq. (7) are angular coordinate
operators, and j is a site label. The state at time slice " is an
eigenfunction of these operators: cos(&̂j"&̂j!1)!%&(")'!
#cos(&j(")"&j!1("))!%&(")'!.

9It is useful to think of this as a quantum rotor model. The
state with wave function eimj& j has mj units of angular momen-
tum representing mj excess Cooper pairs on grain j . The
Cooper-pair number operator in this representation is
nj#"i(1/1& j) (see Wallin et al., 1994). The cosine term in Eq.
(7) is a ‘‘torque’’ term which transfers units of conserved an-
gular momentum (Cooper pairs) from site to site. Note that
the potential energy of the bosons is represented, somewhat
paradoxically, by the kinetic energy of the quantum rotors and
vice versa.

10That is, the approximation is such that the universal aspects
of the critical behavior, such as the exponents and scaling func-
tions, will be given without error. However, nonuniversal
quantities, such as the critical coupling, will differ from an ex-
act evaluation. Technically, the neglected terms are irrelevant
at the fixed point underlying the transition.

11Notice this crucial change in notation from Eq. (7), where
j refers to a point in 1D space, not 1+1D space-time.

FIG. 3. Typical path or time history of a 1D Josephson-
junction array in the insulating phase, where correlations fall
off exponentially in both space and time. This corresponds to
the disordered phase in the classical model.
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(A) (B) (C)

Figure 2: (A) Representation of a 1D Josephson Junction array. Crosses
represent junctions between superconducting segments, and θi are the phases
of the superconducting order parameter. (B) Typical path or time history
of the 1D JJ array. Notice it is equivalent to the configuration of a 1+1D
classical XY model. The long-ranged correlations are typical of the ordered
(superconducting for 1D JJ) phase. (C) Typical path or time history of the
1D JJ array in the insulating phase (or disordered phase for 1+1D XY) [3].

move an excess Cooper pair onto a grain. When this energy is large enough,
Cooper pairs cannot propagate and becomes confined on individual grains,
leading to the quenching of the collective superconducting phase.

As an example, we consider a one-dimensional array of identical JJs (Fig.
2). The essential degrees of freedom are the phases of the complex supercon-
ducting order parameter on the metallic segments connected by the junctions
and their conjugate variables, the charges (excess Cooper pairs, or equiva-
lently the voltages) on each grain. Even without doing further math, from
Fig. 2B and 2C, one can draw an analogy between our system and a 2-D
classical XY model. It turns out that, in an approximation that preserves the
universality class of the system, we can indeed map our 1D JJ array into a 2D
X-Y system [3], with our dimensionless coupling constantK ∼

√
Ec/EJ play-

ing the role of the temperature in the classical analog, where Ec = (2e)2/C is
the capacitive charging energy and EJ the Josephson coupling in the array.
This equivalence generalizes to d-dimensional arrays and d + 1-dimensional
classical X-Y models. Among the systems studied, two-dimensional ones are
most interesting as no true long-range order is possible at finite temperatures
while a genuine QPT occurs at T = 0. Moreover, 2D samples can be easily
fabricated and experimentally characterized.
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Frustrated Polyelectrolyte Bundles and T = 0 Josephson-Junction Arrays

Gregory M. Grason and Robijn F. Bruinsma
Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA 90024, USA

(Dated: January 23, 2006)

We establish a one-to-one mapping between a model for hexagonal polyelectrolyte bundles and a
model for two-dimensional, frustrated Josephson-junction arrays. We find that the T = 0 insulator-
to-superconductor transition of the quantum system corresponds to a continuous liquid-to-solid
transition of the condensed charge in the finite temperature classical system. We find that the role
of the vector potential in the quantum system is played by elastic strain in the classical system. Ex-
ploiting this correspondence we show that the transition is accompanied by a spontaneous breaking
of chiral symmetry and that at the transition the polyelectrolyte bundle adopts a universal response
to shear.

PACS numbers: 61.20.Qg, 87.15.-v, 74.40.+k

Negatively charged DNA molecules in aqueous solu-
tion condense into dense hexagonal bundles (or tori) in
the presence of low concentrations of positively charged
multivalent ions, or “counter-ions” [1, 2, 3]. This
property, which has interesting applications in biology
and which is exhibited as well by other highly charged
biopolymers, has attracted significant theoretical inter-
est because it is in clear disagreement with the classical
Poisson-Boltzmann mean-field theory of aqueous electro-
statics. Numerical [4] and analytical [5, 6] studies of
the so-called “primitive model”–where the biopolymer is
treated as a linear, charged rod and the counter-ions as
point charges–indicate that the attraction between two
adjacent rods is in fact a fundamental feature of aqueous
electrostatics. The interaction, which has a short range,
is produced by “out-of-phase” correlations between or-
dered counter-ion arrays on the two rods. The purpose
of this letter is to show that the problem of the finite
temperature counter-ion freezing, or “Wigner crystalliza-
tion” [6, 7], of a hexagonal polyelectrolyte bundle can be
mapped onto a T = 0 quantum phase transition, and fur-
ther, that this mapping leads to surprising predictions for
the properties of polyelectrolyte bundles.

To demonstrate this claim, we begin with a single rod
with a uniform fixed charge per unit length, −eρ0, plus
a neutralizing distribution of mobile polyvalent ions of
charge, +eZ, condensed onto the rod. The rod is placed
in a (monovalent) saline aqueous solution with Debye pa-
rameter, κ. In the absence of thermal fluctuations, the
polyvalent counter-ions form a one-dimensional “lattice”
with spacing, d = Z/ρ0. The modulated part of the
charge density of the rod can be expressed as a sum over
the reciprocal lattice vectors of the Wigner crystal:

δρ(z) =
∑

n!=0

{

|ρn|ein
(

Gz+φ(z)
)

+ cc.
}

. (1)

Here, G = 2π/d is the reciprocal lattice vector, |ρn| an
amplitude determined by the charge distribution of a sin-
gle counter-ion, and φ(z) a phase variable restricted to
the interval [0, 2π]. Specifically, φ(z)G−1 is the local dis-

placement of the of the counter-ion lattice with respect
to the rod. The phase variable obeys an effective Hamil-
tonian,

Frod[φ] =
C

2

∫ L

0
dz

(∂φ

∂z

)2
, (2)

where CG2 is the one-dimensional, T = 0 compression
modulus of the lattice–roughly proportional to |ρ1|2e−κd–
and L is the length of the rods. Due to phase fluctuations
at finite temperatures, the contribution from the nth term
in eq. (1) to the thermal expectation value 〈δρ(z)〉 van-

ishes as e−n2L/βC and the distribution has only liquid-
like correlations, 〈δρ(0)δρ(z)〉 ∼ e−|z|/ξz cosGz, with
ξz = 2βC. Below, we include only the lowest order terms,

x̂

ŷ
ẑ

(a) (b)

FIG. 1: The two degenerate, chiral ground states of the anti-
ferromagnetic XY model on a triangular lattice are shown in
(a). The helical ordering around a triangular plaquette of the
bundle lattice corresponding to one of these ground states is
shown in (b). The dark black lines depict the polymer back-
bone while the spheres depict peaks in the condensed charge
density.

Figure 3: Correspondence between polyelectrolyte bundle and T = 0 2D JJ
array. (A) The two degenerate, chiral ground states of the antiferromagnetic
XY model on a triangular lattice. The helical ordering around a triangular
plaquette of the bundle lattice is shown in (B), where the dark black lines
depict the polymer backbone while the spheres depict peaks in the condensed
charge density [9].
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3

d = 3, n = 2 stacked triangular XY anti-ferromagnet
[12]. These results have interesting implications in the
context of polyelectrolyte bundles. The control param-
eter, α, corresponds to (β2CEij)−1 and 〈eiφi〉 to the
expectation value of the modulated charge density of
the Wigner crystal, 〈δρi(z)〉. This mapping evidently
predicts a continuous freezing transition of the counter-
ions as a function of temperature, even though three-
dimensional freezing transitions are in general first-order.
The critical exponents are, in fact, close to those of a tri-
critical point [12] , which does indicate the proximity of
a first-order transition.

A further surprise is due to the fact that an f = 1/2
Josephson-junction array in the superconducting phase
also has broken chiral symmetry with an associated
Z2 × U(1) order parameter [10]. This is due, as shown
in Fig. 1, to the fact that there are two degenerate sets
of chiral ground states for a d = 2 triangular XY anti-
ferromagnet, with the phase winding around a particular
plaquette in opposite senses, with each spin 2π/3 out of
phase with its neighbors. In particular, the order pa-
rameter, Ψ, can be constructed from a pair of complex
numbers, ψ+ and ψ−, related to the expectation value of
eiφi by,

〈eiφi〉 ∝ ψ+e+iq∗·xi + ψ−e−iq∗·xi , (6)

where q∗ = (4π/3a)x̂, is the wavevector associated with
the chiral winding of the phase. For α < αc the dis-
crete symmetry is broken and the order parameter spon-
taneously aligns along the + or − direction. This indi-
cates that in the charged-ordered phase the modulated
density, 〈δφi〉, breaks chiral symmetry (see Fig. 1), even
when the polymers themselves lack chirality at the molec-
ular level.

The electromagnetic properties of a Josephson array,
such as conductivity and diamagnetic susceptibility, are
determined by the response of the array to an applied
vector potential. Specifically, the conductivity can be
expressed by the Kubo relation as σ(ω) = ImCxx(q =

TABLE I: Correspondence between the d = 3, classical poly-
electrolyte system (left) and the d = 2+1, quantum frustrated
Josephson array system (right).

free-energy functional, βF [φ] imaginary-time action, h̄−1
S [φ]

height along polymer, z imaginary time, τ = it

longitudinal phonon inverse grain charging

(or phase) stiffness, βC energy, h̄E−1
c

electrostatic, inter-rod Josephson inter-grain

coupling, βEij coupling, h̄−1EJ

shear strain, 2Gε⊥z vector potential, (2π/Φ0)a⊥

elastic response, Gxzxz(qz) current response, −Cxx(−iω)

0, ω)/ω where

Cij(q⊥,−iω) =

∫

d2r⊥dτe−i(q⊥·r⊥−ωτ)

×
δ2 lnZ

δai(r, τ)δaj(0, 0)

∣

∣

∣

∣

a=0

, (7)

is the analytic continuation of the current-current cor-
relation function to imaginary frequencies [13], a(r⊥, τ)
is an infinitesimal vector gauge field added to an exter-
nally applied vector potential, i.e. A → A + a. In the
context of polyelectrolyte bundles, the externally applied
vector potential would correspond to the Aij = π con-
dition for the undeformed bundles while, according to
eq. (5), the effect of applying an infinitesimal gauge field
(2π/Φ0)ak(r⊥, τ) on Aij corresponds to that of intro-
ducing a shear strain, (2G)εzk(r⊥, z). It follows from the
definition of the elastic strain energy and eq. (5) that the
finite-temperature strain correlation function equals

Gijkl(r) =
δ2

(

− β−1 lnZ
)

δεij(r)δεkl(0)

∣

∣

∣

∣

εij=0

. (8)

Comparison of eqs. (7) and (8) shows that the
Fourier transform Gxzxz(q⊥, qz) corresponds to minus
the Cxx(q⊥,−iω) component of the current-corrent cor-
relation function. Thus, we can make use of established
results for the current-current correlation function of the
Josephson array to deduce certain elastic properties of a
polyelectrolyte bundle.

In the insulating phase (α > αc) of the Josephson ar-
ray, the low-frequency conductivity is linearly propor-
tional to the frequency and Cxx(−iω) ∝ −ω2ξ(α), where
ξ(α) is the correlation length which diverges at the crit-
ical point as |α − αc|−ν . For the polyelectrolyte bun-
dle, this means that in the molten phase with no re-
sponse to uniform sliding deformations (or Cxzxz = 0),
Gxzxz(q⊥, qz) ∝ (kBTG2)q2

zξ(α). Hence, we have a
columnar liquid crystal with a bending stiffness, K, of
the bundle which diverges at the critical point as the
correlation length, ξ(α). Turning next to the supercon-
ducting phase (α < αc) of the Josephson array, since the
zero-frequency conductivity is infinite the zero-frequency
current-current correlation function is proportional to the
superfluid density, so that Cxx(q⊥ = 0, ω = 0) ∝ ξ−1(α)
[14]. Therefore, the shear modulus of the polyelectrolyte
bundle, Cxzxz = Gxzxz(q = 0) ∝ (kBTG2)ξ−1(α),
is finite in the low-temperature, charge-ordered phase
and vanishes at the critical point. This is the mod-
ulus corresponding to the uniform elastic deformations
pictured in Fig. 2. Finally, right at the critical point
(α = αc) the Josephson is predicted to be metallic [14],
i.e. to have a finite zero-frequency conductivity with
Cxx(q⊥,−iω) = σ∗|ω|. Moreover, the critical conduc-
tance is expected to be a universal quantity equal to,
e2/2h̄ [10]. The corresponding strain correlation func-
tion, Gxzxz(q⊥, qz) ∝ (kBTG2)|qz |, would belong to an

Figure 4: Correspondence between d = 3 classical polyelectrolyte system
(left) and d = 2 + 1 quantum frustrated JJ array system (right) [9].

In biology, nature has a small range of temperatures to play with, due to
the protein nature of life chemistry, and most phase transitions occur with
the variation of a parameter other than temperature. I hypothesize that
it may be possible to draw analogies with QPTs, where the temperature is
fixed (at T = 0) and some other parameter is varied, and hence tap into the
immerse theoretical and experimental work that has been done on JJ arrays.
Although i do not have anything solid to back up my statement, the field of
polyelectrolyte condensation may show some promise. Polyelectrolyte chains
naturally repel each other, but will nevertheless form condensed bundles
in the presence of oppositely charged counterions beyond a certain valency
(depending on the nature of the polyelectrolyte). Examples include DNA
and F-actin. In fact, polyelectrolytes condense above a certain counterion
concentration and dissociate above another counterion concentration. It has
become clear that this condensation results from some form of organization of
the counterions, either dynamical (correlated charge density fluctuations) or
essentially static, in the form of a counterion lattice (positional correlations
between condensed counterions).

Some theoretical work on the counterion ‘melting’ transition suggest that
the melting transition (i.e. the bundle-to-individual polyelectrolyte transi-
tion) is continuous and can be shown to be in the universality class of the
three-dimensional XY model [8]. In another work [9], researchers managed to
establish a mapping between a model for hexagonal polyelectrolyte bundles
and a two-dimensional, frustrated Josephson-junction array (Fig.3). They
found that the T = 0 SI transition of the quantum system corresponds to
a continuous liquid-to-solid transition of the condensed charge in the finite
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temperature classical polyelectrolyte system. Moreover, the role of the vector
potential in the JJ system is played by elastic strain in the classical system
(Fig. 4). The general conclusion of this work relates the elastic constants
of polyelectrolyte bundles to the phase behaviour of the counterions, which
is significant as elastic constants are easier to measure than the scattering
amplitudes of counterion charge modulation.

4 Further work

Due to constraints, much experimental and theoretical details have been
left out. There are interesting instances of quantum phase transitions in
two dimensional quantum magnets which cannot be predicted with an or-
der parameter using the GLW (Ginzburg-Landau-Wilson) formalism that we
have adopted in this study [10]. Also, studies on the dynamics of QPTs
are still active and a quantum counterpart for the classical Kibble-Zurek
mechanism of second order thermodynamic phase transitions was recently
proposed [11, 12, 13]. It appears that both experimentalists and theorists
have their work cut out for them!
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