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Introduction to Two-phase Phenomena Observed in Finance
Phase transition in nature is understood to be an emergent phenomena due

to the collective behavior of individual particles. In the �nancial market, phase
transitions are also observed while people replace the role of particles. In a
demand driven market, the collective behavior of buyers and sellers have lead
Plerou, Gopikrishnan and Stanley to conclude that the collective tendency to
buy or sell may be characterized as an order parameter. The tendency to buy or
sell is quantitatively described by the volume imbalance, Ω(t), and undergoes a
phase transition as the absolute deviation of Ω(t) exceeds a critical threshold Σc.
In light of the observations made by Plerou, the model behind the two-phase
phenomenon was explored by Zheng, Qiu and Ren. Zheng proposed that the
two-phase phenomena could possibly be explained by either the minority games
model or the herding model; the predictions made by the models were then
compared to the German DAX in order to verify the validity of the theoretical
models.

The demand of the market is quanti�ed by the volume imbalance function
Ω(t) which is de�ned to be the di�erence between number of buyer initiated
transations QB and seller initiated transactions QS over a small time interval
∆t. The equation below is taken from the article written by Plerou1.

Ω(t) ≡ QB −Qs =

N∑
i=1

qiai (1)

Equation 1 describes the number of shares traded qi per transaction with
N total transactions over a time interval ∆t. The values of ai = ±1 indicating
repectively whether the transaction is buyer or seller initiated. Over any partic-
ular interval, there will be a distribution on the number of shares traded; that is,
if we analyze the distribution of the Ωi(t0) for any t0, it is possible to calculate
the absolute deviation of Ω(t0). The absolute deviation of Ω(t) is de�ned to
be the �local noise intensity Σ�1. Quantitatively the local noise intensity for a
speci�c time interval ∆t is de�ned to be1

Σ(t) ≡ 〈|qiai − 〈qiai〉|〉 (2)

It was discovered that the probability distribution P (Ω,Σ) of the volume
imbalance, and consequently the most probable value of Ω undergoes a phase
transition as the local noise Σ exceeds a critical value Σc. Below the critical
value, P (Ω,Σ) is a single peaked function centered around zero. This suggests
that when buyers and sellers are generally inactive the mean value of the volume
imbalance is zero and the market is in a stable equilibrium. However, the more
interesting situation is when buyers and sellers become very active, possibly as
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a result of market panic or news of impending doom on the future economy;
Plerou observed that as the panic level reaches above the critical value Σc, the
probability distribution P (Ω,Σ), becomes double peaked. As a result, players in
the market will collectively end up either selling or buying in a situation where
there is a large disparity in the number of shares traded; a situation most likely
resulting from signs of depression or economic revival. The empirical evidence
of such behavior is presented by Plerou and is reproduced below in Figure 1.

Figure 1: Three values of Σ are represented here. The solid black line indicates
the region where Σ < Σc. The dotted red line plots the probability distribution
when Σ = Σc. The dotted green line shows what happens when Σ > Σc. These
graphs hold true for ∆t = 15mins up to half a day.1

From Figure 1, we see that for Σ below the critical value, the probability
distribution of Ω, represented by the black line is sharply peaked at zero indi-
cating the market being at a stable state. At the critical point, the distribution
�attens out as shown by the red dotted line. For values of Σ greater than the
critical value, the distribution undergoes a change and becomes double peaked.
The empirical results discovered by Plerou suggest that socially, there is a pa-
rameter in which the group behavior of participants in the market undergoes
a phase transition. Understanding how this parameter may be measured in
practice may provide indication as to when the market will shift from a stable
state to a dynamical state. Understanding qualitatively what P (Ω,Σ) indicates
from emprical data prompted Potters and Bouchaud to discuss qualitatively the
form of the probability distribution. The form of the probability distribution
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function suggested by Potters is given to be2

P (Ω,Σ) =
1

Z(Σ)
exp

(
−Ω2

2
−
(
βΩ2 − Σ

)2
2σ2

)
(3)

where Z(Σ) is the normalization while β and σ2 parameterize the magnitude
and variance of the noise on Σ respectively. It is then natural to treat the term
in the exponent as the action. After varying the action with respect to Ω and
minimizing it, the classical solutions to the action are

Ωc = ± 1√
β

√
Σ− σ2

2β
(4)

As a result, we can conclude that the critical value for Σ is2

Σc =
σ2

2β
(5)

Given that only the real roots are kept, for values of Σ < Σc, the classical
solution for Ω is zero. However, for values of Σ above the critical point, the
classical solution yields two roots. Therefore, this hypothesis of the probability
distribution function is in agreement with the empirical data gathered by Plerou.
From equation 5, it can be seen that the value of Σc depend on the statistical
characteristics of Σ. Therefore it was concluded by Potters that emergence of
a two-phase phenomenon results from the nature of how trading is collectively
executed. In the language of statistics, the critical value Σc is proportional to
the variance while Σ itself describes the absolute deviation of Ω. This strongly
suggests that the critical value Σc might be related to either the skewness or
kurtosis of the volume imbalanace Ω. This was not a claim made by Potters,
however this appears to be an interesting direction for further investigation.

It is of interest to compare empirical evidence with current models used to
analyze �nancial markets. While empirically the transition between a single
peak to double peaked probability distribution function is due to the statistics
of Σ, theoretically, emergent behavior is a result of a model exhibiting long
range correlations. In the �nancial markets, these are long ranged temporal
correlations; the participants in these models make decisions to buy or sell
according to results which occured in past time steps. Zheng, Qiu and Ren
investigated the possibility of reproducing the emergent behavior though the
minority games model.3
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The Minority Games
The minority game is a generic model used to describe competing and adap-

tive participants in the economy.4 In this game, there are N agents who are
forced to select one of two choices and the reward is awarded to the minority
choice. In order to make this choice, each agent is given a set number of S strate-
gies which they will use to determine the choice they will pick. To more closely
model a real economy, agents may be divided into speculators and producers.
Speculators are characterized as being more versatile in their strategies and
therefore are given more strategies to determine their choice. Producers how-
ever, are less �exible, possibly due to �xed assets associated with the industry
and therefore are given less strategies. In Zheng's approach, a modi�ed version
of the original minority game was applied and an inactive state was added in
order to allow the size of the participants to vary. This is the manifestation of
long range temporal correlation in this model.3 The resulting probability distri-
bution function which arises from the minority games model is shown in �gure
2.3

Figure 2: The axis here is equivalent to Figure 1. Z ≡ Ω and r ≡ Σ. There are
501 speculators and 1000 producers. Here speculators have an inactive strategy
while producers are forced to play. Both speculators and producers are given
s=2 strategies and base their decision on the outcome of the strategies on up to
m=2 time steps before the current state. Probability distributions for di�erent
noise levels (r) are plotted.

From �gure 2 it can be seen that for increasing values of Σ (denoted by r
in the �gure), the probability distribution gains two peaks. However, the peak
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centered around zero does not disappear as values of Σ increase. This is in dis-
agreement with the empirical data described by �gure 1. This result suggests
that the minority games model is inadequate in describing the two-phase phe-
nomena since the probability distribution of volume imbalance simulated does
not evolve in the same way that was observed experimentally. Zheng suggests
that the origin of the descrepency may be traced back to the periodic nature of
the minority games. The periodic nature of the solution is a result of the par-
ticipants having short term memory.6 In the simulation that Zheng proposed,
the participants were set to make decisions based on experiences up to m=2
time steps in the past. In the introductory guide to minority games written by
Moro, he points out that if only recent information is used to make decisions,
then the participants will periodically play the game in exactly the same way.

Figure 3: Time evolution of Attendence for m=2, 7, 15 from top to bottom.
Periodic pattern observed for m=2 and 7.6 Attendence is de�ned to be the sum
of all options A(t) =

∑
ai for ai = ±1. Here the two options are given a

numerical value ±1 although the contents of the options may be arbritrary (eg.
go to Disneyland or stay home and watch TV).

Figure 3 is a graph from Moro's paper showing that for relatively lower
values of m, the way the game is played out, quanti�ed by the function A(t),
will be periodic in nature. This is especially clear for the m=2 case which
Zheng's simulation was set to. One possible avenue for further investigation
of the minority games model is to increase the parameter m to a large enough
value (for example m=15 as suggested by Moro). If indeed the origin of the
disagreement between theory and experiment stems from the periodic nature of
the minority games, then allowing participants with bigger brains and longer
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memory retention rates may be the next step towards improving this model.

The Herding Model
The herding model describes a system of interacting agents who share in-

formation and make decisions based on the collective action of the group. The
model was �rst introduced by Eguiluz and Zimmermann, hence is also called
the EZ herding model. In the paper Eguiluz published5, the algorithm of the
herding model is described as follows. The herd is played by N agents. The
state of agent i is described by φi = {−1, 0, 1} corresponding to selling, inac-
tive or buying state respectively. Initially all agents are inactive, however for
each time step, one agent (denoted by agent j) selected at random is allowed to
become active (φ = ±1) with probability described by a constant a. Interac-
tion between the agents is introduced by allowing agents to share information.
This is described by having inactive agents form links with other agents. When
an agent belonging in the cluster becomes active, the cluster then immediately
make the same decision as the active agent. After the decision to act is made
my the cluster, all links within the cluster are then removed. After the decision
to buy or sell is made, all agents in the cluster are again set to the inactive state,
however, agent j (the initiator) has only a probability of (1− a) of becoming
inactive. If agent j becomes inactive, then the agent will establish a link with
other agents and become part of a cluster. The whole process is then repeated.
If agent j stays active however, it will only be a singular decision as agent j in
this case is not part of any cluster.

Applied to the real market, the N agents describe participants in the market.
At any given time step, most participants are inactive because there are no
rumors or information to indicate whether buying or selling is bene�cial. During
inactivity however, Eguiluz suggests that participants may use similar analysis
tools and arrive at similar opinions on the current market situation. Therefore,
when a participant belonging in the group is motivated to act due to a rumor or
other relevent information (insider trading?), other members will immediately
come to the same conclusion and act in the same manner. The reason why all
link are dropped after the cluster becomes active is because any information
and opinion pertaining to that particular market situation will no longer be
relevent anymore.5 Finally, the initiator, agent j, is given a probability (1− a)
of becoming inactive probably because the person is in a position that allows him
to make more informed decisions, possibly legally. A more logical reason though,
is to ensure that as the parameter a is set to 1, that the model approaches a
logical steady state solution.

The most important parameter in this model is the probability of activation
a. Therefore to check that this model behaves as expected, extremum values
for the parameter a should be discussed. If the parameter a is set to 1, then
any time an initiator is chosen, agent j will become active. Also, due to the fact
that agent j possesses a (1− a) probability of becoming inactive, with a = 1, the
agent will never become inactive. The equilibrium state of this market will result
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in all agents acting individually with no group behavior. In the other extreme,
by setting a� 1 participants will have an increasing tendency of forming large
clusters since agent j is almost never active to trigger o� an event which then
breaks the links. Therefore for small values of a, the model describes highly
correlated group behavior. It is then suitable to de�ne a parameter5

h ≡ ‘1

a
− 1 (6)

de�ned to be the herding parameter. For small values of a, we observe
large group behavior and therefore is associated with a large herding param-
eter. When a = 1, no group behavior is observed and therefore we arrive at
a herding parameter of zero. In real life, the herding parameter describes the
rate of information dispersion.5 The faster information is passed around, the
more likely larger and larger groups of people will act according to the same
information while on the other extreme, if nobody talks then everyone may only
act individually.

From �gure 2, we see that the minority games model did not adequately
capture the two-phase phenomena empirically observed by Plerou as shown
in �gure 1. Therefore, as a separate attempt, Zheng tried the EZ herding
model. The distribution for P (Ω,Σ) resulting from the simulation as well as the
empirical data of the German DAX is shown in �gure 4 for comparison.3

Figure 4: EZ model: Probability distribution P (Ω,Σ) for N=10,000 agents,
h=19. DAX(94-97): Empirical data of P (Ω,Σ). Note that the time of t=100 in
the EZ model scales to 10 minutes in real time as is used to generate the DAX
plot.3 Notation used: Ω ≡ Z and Σ ≡ r.

Figure 4 shows that the prediction of the herding model results in the double
peaked probability distribution with increasing values of Σ. This is in agreement
with the empirical data described by the German DAX presented also in �gure
4. Qualitatively however, the shape of the peaks do not agree with the empirical
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data. More speci�cally, for increasing values of Σ, empirically the height of the
peaks decrease while the width broadens out as shown in the DAX plot. The
EZ model however, shows that the peaks sharpen and increase in height as
seen when comparing the probability distribution represented by the squares
and crosses. Zheng suggests that the reason why the scaling with respect to
Σ of the standard EZ herding model is in disagreement with empirical data is
because the herding model only allows for short ranged temporal correlations
while in real market situations the correlations are long ranged. The standard
herding model is short ranged due to the fact that the herding parameter is
held to be a constant throughout the simulation. This however, is not true in
real market situations since the rate of information transmission should vary
depending on the current market situation.3 A way to incorporate varying rates
of transmission is introduced by Zheng in the interacting herding model.

Interacting EZ Herding Model
In the interacting EZ herding model, Zheng suggests that when the market is

very sensitive (when no one knows what is going on and therefore characterized
by small cluster sizes), agents and news agencies are attentive and prompt at
responding to and reporting news regarding the status of the market. However,
when the market is stable and there is less interest in the market, the opposite
happens; people will form large clusters. Using this idea, Zheng proposed that
the probability of activating agent j should equal3

a[s]|t=t′ = b+ cs−δ
∣∣
t=t′−1 (7)

where s(t) is the average size of a cluster at time t, while b, c and δ are
constants. An e�ect of de�ning the probability of activation with respect to the
cluster size of the previous time step is also pertinent. If a large cluster was
activated at t′− 1 then the average cluster size s would drop rapidly due to the
links being dropped. As a result the herding parameter will become big and will
allow for larger clusters to form at t′. If a smaller cluster was activated at t′− 1
then the average cluster size would have a relatively smaller decrease and the
herding parameter will only increase by a small amount. In real situations this
would possibly suggest that large clusters (analysis who use the same program
or receive the same information) will continue to remain active with a high
herding parameter even after the cluster dissolves; on the other hand folks who
buy or sell for idiosyncratic reasons (eg. when they see a shooting star) tend
to be the only ones who act that way and do not usually gain a large following
of investors willing to imitate. Therefore for activation of small clusters, the
impact on the herding parameter is very small. With the addition of what
amounts to long ranged temporal correlations, the interacting herding model is
used to simulate the probability distribution of volume imbalance again and the
results are shown in �gure 5.3
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Figure 5: Interacting EZ herding model for N=10,000 agents, b=0.001, c=0.6
and δ = 1. Notation: Ω ≡ Z and Σ ≡ r.

The problem with the standard EZ herding model is that for increasing val-
ues of Σ, the peaks of P (Ω,Σ) do not scale down properly. For the interacting
herding model, Zheng claims that the problem has been solved. Refering to
�gure 5, we see that compared to the standard herding model, for values in
increasing Σ, the peaks �atten out and decrease in magnitude as suggested by
empirical data. The phase transition from a single peaked probability distribu-
tion to a double peaked distribution is also observed. Therefore qualitatively
the interacting EZ herding model contains all the important phenomena associ-
ated with the two-phase behavior observed empirically by both Plerou and the
German DAX. In �gure 6, Zheng compares the DAX data with the interacting
EZ herding model directly. Although the plots have been rescaled by a constant
factor, the DAX data �ts perfectly with the interactive EZ model. Therefore,
allowing the herding parameter to vary as a function of cluster size was vital
in having the herding model behave similarly to the observed phenomena. The
result is very exciting because it would suggest that there is qualitatively a ro-
bust model to describe the observed phase transition in �nance. The next step
would be to understand the connection between experimental and theoretical
values of Ω,Σ and t in order to make quantitative comparisons between the two
sets of data.
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Figure 6: Interacting EZ herding model for N=10,000 agents, b=0.001, c=0.6,
δ = 1. DAX o�ers experimental data for comparison. Note3: The plots have
been rescaled by constant factors. Notation: Ω ≡ Z and Σ ≡ r.

Conclusion
The observation of two-phase phenomena in �nance sparked great interest

particularly in the physics community to understand this socio-economic be-
havior through classical phase transition methods. In a theoretical stand point,
the probability distribution function suggested by Potters as shown in equation
3 allows for a path integral type formalism understanding of the phenomena;
while the transition from a single valued peak to a double valued peak is re-
meniscent to spontaneous symmetry breaking. Further investigation from the
direction of statistics is also possible as the kurtosis of the distribution describes
the unique shape of the tails and is related to the critical point of the phase tran-
sition Σc. The minority games allows for a possible route of understanding this
phenomena through a very simpli�ed model of �nancial markets. Although the
model was unsuccessful in describing the phenomena, the possibility of removing
the periodic nature of the minority games is worthy for further investigation.
The herding model and ultimately the interacting herding model qualitatively
describes the phenomena observed initially my Plerou. The success of the inter-
acting herding model is very interesting because it suggests that humans really
do tend to act like sheep during decision making. This may be a concept under-
stood ever since grade school, however to be able to simulate the same behavior
with very simple but important considerations (such as varying the herding pa-
rameter with cluster size) is incredibly fascinating. As a practical application,
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understand which phase the market is in and when the market will switch phases
may also be important for �nancial risk management. In the single peak phase,
odds are no matter how reckless one is on buying stock, there is considerably
little risk since there is no net demand to sell or buy and prices as a result, will
be relatively stable. In the double peaked phase, there is considerably more risk
associated as the market is in search of a new equilibrium price. In any case,
the �eld of quantitative �nance and behavior �nance is relatively new; especially
true for new �elds is the possibility to be the �rst in discovering something new
and impactful. The chance of modeling human behavior in a scienti�c way (as
opposed to fortune telling) is no doubt very exciting.
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