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Abstract: Although conventional computers are capable of performing many tasks at 
rates far exceeding human capabilities their abilities in solving certain classes of com-
plex problems are still dwarfed by the massively parallel human brain. This motivated 
the advent of artificial neural networks in which a large number of equivalent compo-
nents communicate using weighted connections attempt to mimic these properties of 
the brain. Computational properties such as stable memories, ability to generalize, and 
error robustness emerge from the simple network. The spontaneous appearance and 
various applications of these properties are discussed in this paper. 



Introduction:

 Computers are prevalent in society; and for good reason. Many tasks that would 
be excessively tedious or practically impossible for the human brain to deal with are 
quite tidily handled by these machines. Processing a large quantity of data, retrieving a 
record from a large database, or factoring a large number are just a few examples of 
these sorts of problems. But consider another set of problems, something like 
recognizing a face in a crowd[1], and you immediately recognize that conventional 
computer architecture pales in comparison to the massively parallel human brain. Since 
the brain is itself just a massive network of relatively simple neurons, it may be possible 
to apply these principles to computers and create an Artificial Neural Network (ANN). 
This paper discusses the emergent computational properties of these ANNs focussing 
stable memory, ability to generalize and robustness against errors. It also discusses 
how these properties emerge from simple networks of elementary components. 

Biological Brain:

 The fundamental unit of the human nervous system is the neuron. Figure 1 (a) is 
a schematic of a neuron that is intended to give the reader a sense of how the signals 
are processed in a biological system. The essential components, in terms of signal 
processing, of the neuron are the dendrites, axon, and synapses. The dendrites receive 
electrical impulses from neighbouring neurons, this is the signal that is to be processed. 
It is passed through the cell body to the axon. The axon carries the signal away and to 
dendrites of neighbouring neurons through the synapses. The synapse is a microscopic 
gap that is illustrated in further detail in Figure 1 (b).  The signal that transfers through 
the axon is transferred through the synapse to the accepting dendrite by a 
neurotransmitter.

 The strength of the signal transmitted depends on several factors. Firstly, the 
strength of the incoming signal is proportional to the amount of neurotransmitter emitted 
into the synapse, and thus after diffusing across the gap, determines the strength of the 
signal received at the dendrite. Secondly, the accepting dendrite has a threshold to 
determine whether a signal is accepted or not, this is often modeled as a binary 
threshold with no signal transmitted below a certain minimum bias and full signal 
transmitted above this bias. Thirdly, since each neuron has a multiplicity of dendrites, it 
can be sending and receiving many signals simultaneously. These signals will either 
encourage or discourage the neuron to turn on and propagate the signal[2]. 

Analogy to Artificial Neuron:

 The ANN is comprised of nodes with weighted connections. In the simplest 
model, the Perceptron, all the nodes feed forward in layers[2]. Most modern networks 



feature connections back through layers, so it is possible for every node to be able to 
send and receive signals from every other node.  Figure 2 shows a schematic of the 
perceptron to illustrate how these connections work. Once this diagram is understood, it 
is relatively easy to generalize and visualize how more complicated networks are 
constructed. We will understand this diagram in analogy to the biological neuron 
described above. 

 

Figure 1. a) Schematic of the biological neuron.
b) Schematic of the synapse, illustrating the method of 
transmitting signals between neurons. (From [2])

 Each node represents a single neuron itself, with the connections between nodes 
acting in analogy to the axons and dendrites, the weights applied to the connections 
acting like the synaptic gap and a threshold gate in the node acting like the threshold on 
the accepting dendrite. The capabilities of both the biological neuron and the artificial 
neuron hinge on the ability to modify the weights of the connections [3]. 



 It is important to note that each node is a very simple element. It performs the 
elementary task of taking several inputs and producing an output based on whether or 
not a certain threshold is met after integrating over the inputs. But when connected in a 
massively parallel network, ranging from hundreds to tens of thousands of nodes, and 
trained using specific rules, certain computational properties emerge out of the network. 
These properties include but are not limited to stable memories including robustness 
against error[2], and the ability to generalize[3]. 

Figure 2. A schematic of the “Perceptron”, 
a common node in artificial neural net-
works. (From [2])

Stable Memories with Robustness Against Error:

 A computational experiment to demonstrate how stable memories persist in 
biologicial neural networks was performed by J.J. Hopfield in 1982 [3]. This experiment 
also has the added benefit of demonstrating the emergence of stable memories in 
ANNs. His model consisted of a network of N = 30 and N = 100 nodes. Each neuron 
has a value assigned to it, Vi = 0 or 1. At a fixed mean rate, but randomly in time, the 
neuron then adjusts its value according to:
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("not firing") and Vi = 1 ("firing at maximum rate"). When neu-
ron i has a connection made to it from neuron j, the strength
of connection is defined as Tij. (Nonconnected neurons have Tij

0.) The instantaneous state ofthe system is specified by listing
the N values of Vi, so it is represented by a binary word of N
bits.
The state changes in time according to the following algo-

rithm. For each neuron i there is a fixed threshold U,. Each
neuron i readjusts its state randomly in time but with a mean
attempt rate W, setting

Vi °1
< Ui

]Vi0if IT.,V.
joi

Thus, each neuron randomly and asynchronously evaluates
whether it is above or below threshold and readjusts accord-
ingly. (Unless otherwise stated, we choose Ui = 0.)

Although this model has superficial similarities to the Per-
ceptron (13, 14) the essential differences are responsible for the
new results. First, Perceptrons were modeled chiefly with
neural connections in a "forward" direction A -> B -* C -- D.
The analysis of networks with strong backward coupling

proved intractable. All our interesting results arise

as consequences of the strong back-coupling. Second, Percep-
tron studies usually made a random net ofneurons deal directly
with a real physical world and did not ask the questions essential
to finding the more abstract emergent computational proper-
ties. Finally, Perceptron modeling required synchronous neu-
rons like a conventional digital computer. There is no evidence
for such global synchrony and, given the delays of nerve signal
propagation, there would be no way to use global synchrony
effectively. Chiefly computational properties which can exist
in spite of asynchrony have interesting implications in biology.

The information storage algorithm
Suppose we wish to store the set of states V8, s = 1 n. We
use the storage prescription (15, 16)

Tij= (2V - 1)(2Vj - 1) [2]
S

but with Tii = 0. From this definition

Tijjs =E (2V,- 1) I VJ(2Vj-1) Hjs. [3]

The mean value of the bracketed term in Eq. 3 is 0 unless s
- s', for which the mean is N/2. This pseudoorthogonality
yields

> TiVs (Hs') (2Vs' - 1) N/2
i

[4]

and is positive if VW' = 1 and negative if Vf' = 0. Except for the
noise coming from the s # s' terms, the stored state would al-
ways be stable under our processing algorithm.

Such matrices T,. have been used in theories of linear asso-
ciative nets (15-19) to produce an output pattern from a paired
input stimulus, S1 -* 01. A second association S2 -° 02 can be
simultaneously stored in the same network. But the confusing
simulus 0.6 Si + 0.4 S2 will produce a generally meaningless
mixed output 0.6 01 + 0.4 02 Our model, in contrast, will use
its strong nonlinearity to make choices, produce categories, and
regenerate information and, with high probability, will generate
the output 01 from such a confusing mixed stimulus.
A linear associative net must be connected in a complex way

with an external nonlinear logic processor in order to yield true

computation (20, 21). Complex circuitry is easy to plan but more
difficult to discuss in evolutionary terms. In contrast, our model
obtains its emergent computational properties from simple
properties of many cells rather than circuitry.
The biological interpretation of the model
Most neurons are capable of generating a train of action poten-
tials-propagating pulses ofelectrochemical activity-when the
average potential across their membrane is held well above its
normal resting value. The mean rate at which action potentials
are generated is a smooth function of the mean membrane po-
tential, having the general form shown in Fig. 1.
The biological information sent to other neurons often lies

in a short-time average of the firing rate (22). When this is so,
one can neglect the details of individual action potentials and
regard Fig. 1 as a smooth input-output relationship. [Parallel
pathways carrying the same information would enhance the
ability of the system to extract a short-term average firing rate
(23, 24).]
A study of emergent collective effects and spontaneous com-

putation must necessarily focus on the nonlinearity of the in-
put-output relationship. The essence of computation is nonlin-
ear logical operations. The particle interactions that produce
true collective effects in particle dynamics come from a nonlin-
ear dependence of forces on positions of the particles. Whereas
linear associative networks have emphasized the linear central
region (14-19) of Fig. 1, we will replace the input-output re-
lationship by the dot-dash step. Those neurons whose operation
is dominantly linear merely provide a pathway of communica-
tion between nonlinear neurons. Thus, we consider a network
of "on or off" neurons, granting that some of the interconnec-
tions may be by way of neurons operating in the linear regime.

Delays in synaptic transmission (of partially stochastic char-
acter) and in the transmission of impulses along axons and den-
drites produce a delay between the input of a neuron and the
generation of an effective output. All such delays have been
modeled by a single parameter, the stochastic mean processing
time 1/W.

The input to a particular neuron arises from the current leaks
of the synapses to that neuron, which influence the cell mean
potential. The synapses are activated by arriving action poten-
tials. The input signal to a cell i can be taken to be

[5]I Tijvj

where Tij represents the effectiveness of a synapse. Fig. 1 thus

/

Q ~~~~~~~~~/
0 ,

P° I I'

0 a)-jaz-Present Model

W t --Linear Modeling
w

.'C

E -0.1 / 0

Membrane Potential (Volts) or "Input"

FIG. 1. Firing rate versus membrane voltage for a typical neuron
(solid line), dropping to 0 for large negative potentials and saturating
for positive potentials. The broken lines show approximations used in
modeling.

Biophysics: Hopfield

(1)

Where Tij is the connection weight between nodes i and j. The storage of a set of state 
vectors Vs, where s = 1..n is accomplished by setting the weights according to the 
following algorithm:
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ron i has a connection made to it from neuron j, the strength
of connection is defined as Tij. (Nonconnected neurons have Tij
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The state changes in time according to the following algo-

rithm. For each neuron i there is a fixed threshold U,. Each
neuron i readjusts its state randomly in time but with a mean
attempt rate W, setting
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< Ui

]Vi0if IT.,V.
joi

Thus, each neuron randomly and asynchronously evaluates
whether it is above or below threshold and readjusts accord-
ingly. (Unless otherwise stated, we choose Ui = 0.)
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The analysis of networks with strong backward coupling

proved intractable. All our interesting results arise
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rons like a conventional digital computer. There is no evidence
for such global synchrony and, given the delays of nerve signal
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> TiVs (Hs') (2Vs' - 1) N/2
i

[4]

and is positive if VW' = 1 and negative if Vf' = 0. Except for the
noise coming from the s # s' terms, the stored state would al-
ways be stable under our processing algorithm.

Such matrices T,. have been used in theories of linear asso-
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tials-propagating pulses ofelectrochemical activity-when the
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normal resting value. The mean rate at which action potentials
are generated is a smooth function of the mean membrane po-
tential, having the general form shown in Fig. 1.
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in a short-time average of the firing rate (22). When this is so,
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pathways carrying the same information would enhance the
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A study of emergent collective effects and spontaneous com-

putation must necessarily focus on the nonlinearity of the in-
put-output relationship. The essence of computation is nonlin-
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(2)

 This defines the weights of the connections between the neurons. Assigning a 
random initial state, the network will then evolve according to the dynamics described 
above. There are three possible outcomes based on the input. Firstly, the system could 
settle into a single stable state. Secondly, the system could cycle between a couple of 
the stable states. Lastly, the system could wander chaotically in a small sample of state 
space. 

 To test the memory capabilities of the system, a random set of state vectors Vs 
were assigned and the connection weights were computed according to the above 
equation.  Then each nominal state vector was assigned as an initial condition of the 
ANN and the network was allowed to evolve until it was stationary. For n=5 initial 
memories in a N=100 node network, almost every memory establishes a stable state 
that is perfectly recallable. As the number of memories to be stored increases, the 
number of memories that establishes a stable state decreases and the error rate 
increases. This is shown in the following figure:
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FIG. 2. The probability distribution of the occurrence of errors in
the location of the stable states obtained from nominally assigned
memories.

be true for all large N. The information storage at a given level
ofaccuracy can be increased by a factor of 2 by ajudicious choice
of individual neuron thresholds. This choice is equivalent to

using variables ip = ±1, Tij = 1,,u4,4j, and a threshold level
of 0.

Given some arbitrary starting state, what is the resulting final
state (or statistically, states)? To study this, evolutions from ran-

domly chosen initial states were tabulated for N = 30 and n

= 5. From the (inessential) symmetry of the algorithm, if
(101110 ) is an assigned stable state, (010001 .) is also stable.
Therefore, the matrices had 10 nominal stable states. Approx-
imately 85% of the trials ended in assigned memories, and 10%
ended in stable states ofno obvious meaning. An ambiguous 5%
landed in stable states very near assigned memories. There was

a range of a factor of 20 of the likelihood of finding these 10
states.
The algorithm leads to memories near the starting state. For

N = 30, n = 5, partially random starting states were generated
by random modification of known memories. The probability
that the final state was that closest to the initial state was studied
as a function of the distance between the initial state and the
nearest memory state. For distance c 5, the nearest state was
reached more than 90% of the time. Beyond that distance, the
probability fell off smoothly, dropping to a level of 0.2 (2 times
random chance) for a distance of 12.

The phase space flow is apparently dominated by attractors

which are the nominally assigned memories, each ofwhich dom-
inates a substantial region around it. The flow is not entirely
deterministic, and the system responds to an ambiguous start-
ing state by a statistical choice between the memory states it
most resembles.
Were it desired to use such a system in an Si-based content-

addressable memory, the algorithm should be used and modi-
fied to hold the known bits of information while letting the oth-
ers adjust.

The model was studied by using a "clipped" Tij, replacing T4,
in Eq. 3 by ± 1, the algebraic sign of Tij. The purposes were to
examine the necessity ofa linear synapse supposition (by making
a highly nonlinear one) and to examine the efficiency of storage.
Only N(N/2) bits of information can possibly be stored in this
symmetric matrix. Experimentally, for N = 100, n = 9, the level
of errors was similar to that for the ordinary algorithm at n =
12. The signal-to-noise ratio can be evaluated analytically for
this clipped algorithm and is reduced by a factor of (2/r)1"2 com-
pared with the unclipped case. For a fixed error probability, the
number of memories must be reduced by 2/ir.

With the 4 algorithm and the clipped Tij, both analysis and
modeling showed that the maximal information stored for N
= 100 occurred at about n = 13. Some errors were present, and
the Shannon information stored corresponded to about N(N/
8) bits.
New memories can be continually added to Ti.. The addition

ofnew memories beyond the capacity overloads the system and
makes all memory states irretrievable unless there is a provision
for forgetting old memories (16, 27, 28).

The saturation of the possible size of Tij will itself cause for-
getting. Let the possible values of TY be 0, ± 1, ±2, ±3, and
Tt, be freely incremented within this range. If Tij = 3, a next

increment of +1 would be ignored and a next increment of
-1 would reduce Tij to 2. When Ty, is so constructed, only the
recent memory states are retained, with a slightly increased
noise level. Memories from the distant past are no longer stable.
How far into the past are states remembered depends on the
digitizing depth of T., and 0, , ±3 is an appropriate level for
N = 100. Other schemes can be used to keep too many mem-
ories from being simultaneously written, but this particular one
is attractive because it requires no delicate balances and is a

consequence of natural hardware.
Real neurons need not make synapses both of i -- j and j
i. Particular synapses are restricted to one sign ofoutput. We

therefore asked whether Tij = Tjj is important. Simulations were
carried out with only one ij connection: if T- $0, T.i = 0. The
probability of making errors increased, but the algorithm con-
tinued to generate stable minima. A Gaussian noise description
of the error rate shows that the signal-to-noise ratio for given
n and N should be decreased by the factor 1/F2, and the sim-
ulations were consistent with such a factor. This same analysis
shows that the system generally fails in a "soft" fashion, with
signal-to-noise ratio and error rate increasing slowly as more
synapses fail.

Memories too close to each other are confused and tend to
merge. For N = 100, a pair ofrandom memories should be sep-
arated by 50 ± 5 Hamming units. The case N = 100, n = 8,
was studied with seven random memories and the eighth made
up a Hamming distance of only 30, 20, or 10 from one of the
other seven memories. At a distance of 30, both similar mem-
ories were usually stable. At a distance of 20, the minima were
usually distinct but displaced. At a distance of 10, the minima
were often fused.
The algorithm categorizes initial states according to the sim-

ilarity to memory states. With a threshold of 0, the system be-
haves as a forced categorizer.
The state 00000 ... is always stable. For a threshold of 0, this

stable state is much higher in energy than the stored memory
states and very seldom occurs. Adding a uniform threshold in
the algorithm is equivalent to raising the effective energy of the
stored memories compared to the 0000 state, and 0000 also
becomes a likely stable state. The 0000 state is then generated
by any initial state that does not resemble adequately closely
one of the assigned memories and represents positive recog-
nition that the starting state is not familiar.

Biophysics: Hopfield

Figure 3. The probability distribution of errors between 
the stable states and the nominal memories.(From [3])

 Once these memories are stored as stable states in the system, it is now 
possible to retrieve them using partial subsets of the memory, even containing errors. 
Define a state vector X might have fewer elements than the system has nodes, and 
thus fewer elements than the vectors stored as memories in the network. Recalling that 
the stable memories are defined as Vs, then some X = Va + δ defines a partial 
knowledge of the entry we wish to retrieve.  Then δ represents some deviation from the 
desired record, it could be a lack of information, an error in the entry, or both. If δ is 
sufficiently small, the system will evolve to the stable state Va that we wished to retrieve. 

 The ability to store memory in this way emerged as a collective property of the 
many simple elements with very little network structure, and the ability to store more 
memories will increase as the system size increases. Hopfield estimates that the 
number of states that can be stored before serious error in recall is 0.15N for sufficiently  
large N. Beyond the emergence of the ability to store information, some other collective 
properties show some presence in this experiment. 



Generalization:

 Another collective property of the ANNs is generalization. Instead of training a 
network by giving it a state vector to store, it is possible to create an input-output map
[4]. These map ANNs are usually described in layers. In this case we have an input 
layer which takes a multidimensional state vector then hidden layers which contain the 
weighted connections and an output layer from which an output state vector can be 
read. So the network can be described as a map M from the input vector X to the output 
vector V. 

 The ANN must be trained to produce a map M that is as close as possible to the 
desired map MD. This is again accomplished by modifying the weighted connections 
between nodes. However, in this case, since we don’t necessarily know what 
information we wish to store in the ANN (this is why the middle layer is described as 
hidden) we need another way to determine the couplings. How this is accomplished is 
by providing an input vector for which we know what the output vector should be. Given 
the input X, the map M provides and output V, and the dissimilarity between V and the 
desired output VD gives us a dissimilarity or generalization error between M and MD. 
The couplings are then modified to minimize this generalization error [4]. This process is 
repeated, with the number of example input vectors playing the role of time in the 
dynamical evolution of the map. 

 One example of ANNs being used for generalization is in high energy physics. In 
the simplest data analyses events are selected based on some hard criteria cuts, that is 
if a particle is reconstructed to have a certain set of kinematic parameters even if all the 
parameters but one are well within their desired ranges, the one that could fall just 
slightly outside the predetermined cut will cause the event be thrown away, reducing the 
statistical power of the sample.  If we can train an ANN to recognize likely good 
candidate events, and reject likely background events we can, in some cases, 
significantly increase the effective statistical[5] size of the sample. 

 The network is trained using Monte Carlo simulations of signal and background 
events. The output can be as simple as a value between 0 and 1 which indicates the 
probability that the event is a signal event. The plot below (Figure 4) shows an example 
of output from a trained neural network being used to select events. Figure 4 (b) is the 
output from Monte Carlo signal events while Figure 4 (a) is from data. You can see from 
the data that the sample is mostly background events, making this a good example of a 
sample that would benefit from this method of signal extraction. 



0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

FIG. 24. Initial training of the neural network (NN0). The
network output is shown for (a) data, and (b) herwig tt̄
Monte Carlo for mt=180 GeV/c2.

training a neural network using the first ten kinematic
variables. These variables tended to be more highly cor-
related than the remaining three (see Sec. VI). Based
on studies using our training samples, we chose to have
20 hidden nodes and one network output, and used the
back-propagation learning algorithm in jetnet [29]. The
output of this neural network and the remaining three pa-
rameters were used as inputs to a second neural network.
Here, we chose eight hidden nodes and one network out-
put.

Events used to train the two neural networks were se-
lected as follows. A simpler initial network (NN0), us-
ing a subset of seven kinematic parameters (excluding
ET1

/HT , ET5,6
, and

〈

η2
〉

), was trained using all events.
The output of this network, for both data and herwig tt̄
Monte Carlo, is shown in Fig. 24. Figure 24 shows that
the tt̄ signal tends to peak at values of neural network
output near 1 (the “signal region”), whereas the back-
ground events peak near 0 (the “background region”).
For the final training samples, we selected data and tt̄
Monte Carlo events having NN0 > 0.3. This neural net-
work was used only for choosing the best training sam-
ples, and was not employed in the final analysis (i.e.,
all events were reanalyzed). Removing events that were
very unlikely tt̄ candidates (NN0 < 0.3) improved the ef-
ficiency of the training and increased network sensitivity
to background events that more closely mimic tt̄ event
characteristics, thereby improving signal-to-background
discrimination in the final analysis.

Training of the two neural networks used in the final
analysis proceeded as follows. The first neural network
(NN1) was trained on the ten kinematic variables us-
ing the training sets, as described above. The output of
NN1, and the remaining three variables were then used

FIG. 25. The distributions in final neural network (NN2)
output for (a) data (diamonds) and expected background (his-
togram) and (b) herwig tt̄ signal for mt=180 GeV/c2.

as inputs to the second neural network (NN2). NN2 was
trained using tagged herwig tt̄ Monte Carlo events and
“fake” tagged data, also described in Sec. VII.D.

F. Cross section using neural network fits

The tt̄ cross section, integrated over all values of neural
network output, is determined from the distributions in
the output of the final neural network. Any excess of the
tagged data over the modeled background distribution
is attributed to tt̄ production. This excess, integrated
over all values of neural network output, is independent
of the neural network, and depends only on the accuracy
of the modeling of the background by the tag rate func-
tion. If the location of any excess appears in the region
of tt̄ signal (in neural network output) it would make
these events likely tt̄ candidates. The final neural net-
work (NN2) distributions for the data and the expected
background are shown in Fig. 25(a), and for herwig tt̄
events in Fig. 25(b). The normalization of the tt̄ signal
is described below. These distributions demonstrate a
strong discrimination between signal and background.

We extract the cross section from a fit to the data of the
sum of the neural network output distributions expected
for the tt̄ signal and for QCD multijet background. Be-
cause the shapes of the tt̄ and QCD network output dis-
tributions differ significantly, the relative amounts of each
can be disentangled. The generated herwig tt̄ events
were arbitrarily normalized assuming σtt̄ = 6.4 pb at each
top quark mass. This value needs to be factored out in
normalizing Fig. 25(b). The data of Fig. 25(a) are fitted
using χ2 minimization to the hypothesis:

Nexpected = Abkg N i
bkg +

σtt̄

6.4 pb
N i

tt̄, (7.5)

where N i
bkg is the expected number of background events

in the ith bin, and N i
tt̄ is the expected signal in this bin.

22

Figure 4. Neural Network Output for 
a) Data, b) Monte Carlo for a high 
energy experiment. (From [5])

Other Classes Of Problems:

 There are many other classes of problems at which ANNs perform exceptionally 
well. Pattern classification is performed using unknown data on a network that has been 
trained to recognize properties that characterize a class[1],[2]. Clustering assigns input 
patterns with similar inter-correlations to the same classes[1],[2]. Function 
approximation[1],[2],[7] is also well suited to ANNs, in fact multilayer ANNs are 
described as universal approximators[2],[6] with the ability to approximate any function 
to arbitrary degree of accuracy. They are also robust forecasters given a time series[1],
[2]. Some ANNs are also more efficient than other mathematical tools at optimizing 
nonlinear systems[1],[2],[7]. 

Collective Behaviour of the System:

 All of these impressive properties of the network are a direct result of the 
massive parallelism[2]. The nodes of the ANN are simple elements that perform 
elementary functions. The connections between them provide very little structure[1], and 
are not necessarily important to the behaviour of the system. The computational 
properties are only mildly sensitive to the model used to construct the network[3]. 



To illustrate how these properties arise we look again to our first example. Consider the 
system described by Hopfield [3] with connections between neurons described by 
equation 2.  Further make the constraint that Tij = Tji, that is that the matrix defining the 
connections is symmetric. Then define:
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becomes an input-output relationship for a neuron.
Little, Shaw, and Roney (8, 25, 26) have developed ideas on

the collective functioning ofneural nets based on "on/off" neu-
rons and synchronous processing. However, in their model the
relative timing of action potential spikes was central and re-
sulted in reverberating action potential trains. Our model and
theirs have limited formal similarity, although there may be
connections at a deeper level.

Most modeling of neural learning networks has been based
on synapses ofa general type described by Hebb (27) and Eccles
(28). The essential ingredient is the modification of T; by cor-
relations like

AT41 = [Vi(t)Vj(t)]average [6]

where the average is some appropriate calculation over past
history. Decay in time and effects of[Vi(t)]avg or [Vj(t)]avg are also
allowed. Model networks with such synapses (16, 20, 21) can
construct the associative T., of Eq. 2. We will therefore initially
assume that such a Ty1 has been produced by previous experi-
ence (or inheritance). The Hebbian property need not reside
in single synapses; small groups of cells which produce such a
net effect would suffice.
The network of cells we describe performs an abstract cal-

culation and, for applications, the inputs should be appropri-
ately coded. In visual processing, for example, feature extrac-
tion should previously have been done. The present modeling
might then be related to how an entity or Gestalt is remembered
or categorized on the basis of inputs representing a collection
of its features.

Studies of the collective behaviors of the model
The model has stable limit points. Consider the special case T
= Tji, and define

E =-2 TijVjVj [7]
ioj

AE due to AV1 is given by

AE = -AVi Tij Vj [8]
joi'

Thus, the algorithm for altering Vi causes E to be a monotoni-
cally decreasing function. State changes will continue until a
least (local) E is reached. This case is isomorphic with an Ising
model. Tij provides the role ofthe exchange coupling, and there
is also an external local field at each site. When T.j is symmetric
but has a random character (the spin glass) there are known to
be many (locally) stable states (29).

Monte Carlo calculations were made on systems of N = 30
and N = 100, to examine the effect of removing the T.1 = T.
restriction. Each element of T., was chosen as a random number
between -1 and 1. The neural architecture of typical cortical
regions (30, 31) and also of simple ganglia of invertebrates (32)
suggests the importance of 100-10,000 cells with intense mu-
tual interconnections in elementary processing, so our scale of
N is slightly small.

The dynamics algorithm was initiated from randomly chosen
initial starting configurations. For N = 30 the system never
displayed an ergodic wandering through state space. Within a
time of about 4/W it settled into limiting behaviors, the com-
monest being a stable state. When 50 trials were examined for
a particular such random matrix, all would result in one of two
or three end states. A few stable states thus collect the flow from
most of the initial state space. A simple cycle also occurred oc-
casionally-for example, . A -* B -- A -- B

The third behavior seen was chaotic wandering in a small
region of state space. The Hamming distance between two bi-
nary states A and B is defined as the number ofplaces in which
the digits are different. The chaotic wandering occurred within
a short Hamming distance ofone particular state. Statistics were
done on the probability pi of the occurrence of a state in a time
of wandering around this minimum, and an entropic measure
of the available states M was taken

[9]

A value ofM = 25 was found forN = 30. Theflow in phase space
produced by this model algorithm has the properties necessary
for a physical content-addressable memory whether or not T
is symmetric.

Simulations with N = 100 were much slower and not quan-
titatively pursued. They showed qualitative similarity to N =
30.
Why should stable limit points or regions persist when Tij

# Tjj? If the algorithm at some time changes Vi from 0 to 1 or
vice versa, the change of the energy defined in Eq. 7 can be
split into two terms, one ofwhich is always negative. The second
is identical if Ty1 is symmetric and is "stochastic" with mean 0
if Tij and Tji are randomly chosen. The algorithm for Tij # Tj,
therefore changes E in a fashion similar to the way E would
change in time for a symmetric Tij but with an algorithm cor-
responding to a finite temperature.

About 0.15 N states can be simultaneously remembered be-
fore error in recall is severe. Computer modeling of memory
storage according to Eq. 2 was carried out for N = 30 and N
= 100. n random memory states were chosen and the corre-
sponding T.9 was generated. If a nervous system preprocessed
signals for efficient storage, the preprocessed information
would appear random (e.g., the coding sequences ofDNA have
a random character). The random memory vectors thus simulate
efficiently encoded real information, as well as representing our
ignorance. The system was started at each assigned nominal
memory state, and the state was allowed to evolve until
stationary.

Typical results are shown in Fig. 2. The statistics are averages
over both the states in a given matrix and different matrices.
With n = 5, the assigned memory states are almost always stable
(and exactly recallable). For n = 15, about half ofthe nominally
remembered states evolved to stable states with less than 5 er-
rors, but the rest evolved to states quite different from the start-
ing points.

These results can be understood from an analysis ofthe effect
ofthe noise terms. In Eq. 3, H' is the "effective field" on neuron
i when the state of the system is s', one of the nominal memory
states. The expectation value of this sum, Eq. 4, is ±N/2 as
appropriate. The s # s' summation in Eq. 2 contributes no
mean, but has a rms noise of [(n - 1)N/2]'2- a. For nN large,
this noise is approximately Gaussian and the probability of an
error in a single particular bit of a particular memory will be

P = 1 e-x2/2a2 dx.
2 N/2

[10]

For the case n = 10, N = 100, P = 0.0091, the probability that
a state had no errors in its 100 bits should be about eC0O9' 0.40.
In the simulation of Fig. 2, the experimental number was 0.6.
The theoretical scaling of n with N at fixed P was demon-

strated in the simulations going between N = 30 and N = 100.
The experimental results of half the memories being well re-
tained at n = 0.15 N and the rest badly retained is expected to
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In M= -2 pi In pi.

(3)

Hopfield observes that for a change in the state vector δVi, we observe the following 
change in E:
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would appear random (e.g., the coding sequences ofDNA have
a random character). The random memory vectors thus simulate
efficiently encoded real information, as well as representing our
ignorance. The system was started at each assigned nominal
memory state, and the state was allowed to evolve until
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(and exactly recallable). For n = 15, about half ofthe nominally
remembered states evolved to stable states with less than 5 er-
rors, but the rest evolved to states quite different from the start-
ing points.

These results can be understood from an analysis ofthe effect
ofthe noise terms. In Eq. 3, H' is the "effective field" on neuron
i when the state of the system is s', one of the nominal memory
states. The expectation value of this sum, Eq. 4, is ±N/2 as
appropriate. The s # s' summation in Eq. 2 contributes no
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 Further, we can see that the algorithm for modifying V makes E a monotonically 
decreasing function[3]. So we see that the system can be taken in analogy to an Ising 
spin model system. In fact, the two problems are isomorphic[3]. If we describe E as the 
“energy” of the system, Hopfield networks operate by minimizing the energy. So we see 
that this simple example of a ANN is analogous to a familiar physical model that also 
exhibits spontaneous emergence. 

 Also recall that this entire system is, at its core, modeled upon the biological 
neuron and their networks found inside the nervous systems of intelligent beings. We 
can see that certain traits of thought seem to begin to manifest themselves [2], including 
the stable memories, ability to generalize and robustness against error. Taking the fact 
that these properties are a direct result of the massive parallelism and then considering 
that most modern ANNs are systems with 105 nodes, making from 5 to 100 connections 
per node, where the human nervous system contains upwards of 1011 neurons and 
between 100 and 10000 connections per neuron [2], perhaps this implies that even 
more sophisticated computational abilities emerge as the size of the network increases 
by several orders of magnitude. 

Summary

 Although I only briefly described them, it is important to note that there are many 
computational properties that ANNs exhibit. The emergence of stable memories 
including robustness against error and the ability to generalize were focussed upon in 
this paper because they are the most relatable to the human conscious, and easiest to 
demonstrate that these networks go well beyond the computational ability of their simple 



elements. But what is really important is that these networks demonstrate an ability to 
learn. In a conventional computer constructed of simple logic gates may seem equally 
impressive, but the difference there is that the logic is coded by the person who 
designed the hardware or software. In an ANN, the logic is “learned” by the network and 
an input-output map is constructed that is out of the hands of the designer[2]. 

 This paper barely scratched the surface of the incredibly rich field of research 
into Artificial Neural Networks. There are many different models to base the nodes and 
their connections on, many of which weren’t even mentioned in the scope of this paper. 
And while some are better suited to specific classes of problems than others, this is 
largely irrelevant to the spontaneous emergence of the computational abilities we 
observe. The underlying dynamics are not near as important as the large number of 
nodes in these networks and this is why we describe this system as emergent.
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