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Abstract

In this essay I will justify the applicability of 1-d physics to real systems like optical lattices,
carbon nanotubes, and Hall effect setups. More specifically, I will introduce the idea of bosonization
to help understand the phenomenon of fractional statistics.



1. Introduction

Condensed matter physics has been successful in explaining and predicting
effects in bulk matter (crystals, liquids, glasses, rubbers, etc.). Additionally,
it has been very useful to follow developments for more imaginative numbers
of dimensions. 2-dimensional phenomena for example have been the topic
of much research, and have been summed under the domain of surface and
interface physics. Recent discoveries have uncovered curious opportunities
to explore physics for 1-dimensional systems. The examples of the fractional
quantum Hall effect (FQHE) edge states, carbon nanotubes, and 1-D optical
lattices will be introduced in this essay, alongside with a calculation that
predicts the emergence of the collective phenomena of fractional charge and
statistics.

At first, let us attempt to justify the applicability of 1-D physics to our
actual 3-D world. Bulk matter can be understood in terms of 3-D physics,
and 2-D physics explains surface and interface effects. It is then believable
that phenomena restricted to the edges of the bulk would be a suitable
domain for a 1-D description. It turns out that this is the case for FQHE
edge excitations. FQHE is a two-dimensional phenomenon of excitations
that can be understood roughly as small rotating domains. Domains in
contact with the boundary of the region will then propagate along the edges.
In another example we can consider dilute atomic gases suspended in an
optical lattice. The geometry shown below has an experimentally achievable
geometry [1] and is inherently one-dimensional.

Figure 1: Schematic of an array of 1-D optical lattices.

2. One Specific Example
To provide space for a more detailed study, look at the electronic structure



of carbon nanotubes. The dimensionality of excitations in nanotubes is due
to the band structure of graphene. One way to see this is to compute the
electronic dispersion that arises from the atomic p-level of carbon in the
graphene sheet. The crystal lattice has a hexagonal structure, which means
that there are two atoms per unit cell. If we choose the cell to have side a
and orientation along the y-axis, then we can approximate the multiparticle
electron state using the single atomic eigenfunctions 1),
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The two different wavefunctions correspond to symmetric and antisymmet-
ric combinations of the atomic wavefunctions in the unit cell. The sum is
taken over all Bravais lattice points. In the tight binding approximation
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where the terms ¢ are only the closest neighbors, and the constant ¢ is a
measure of the overlap of neighboring wavefunctions.
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There are six terms in each summation corresponding to the six principal
directions in the lattice. Writing out the sums and contracting the field
operators with the bras and the kets will give J-functions for r; and 7.
Keeping only nearest neighbors and simplifying takes us to [7]
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Notice that the symmetric and antisymmetric combinations give rise to two
different bands that are plotted below.

Figure 2: (Left) Symmetric configuration band. (Right) Antisymmetric configuration band.

The two manifolds touch in six distinct points in the first Brilloin zone. In
the ground state p-electrons inhabit the lower band and the upper band is
empty. If a graphene sheet is seamed in a way that the axial direction of the
tube corresponds to a direction that includes two of the points of contact,
then the nanotube will be conducting. Also, if the conduction electrons
inhabit only the area near those contact points, then the momentum of the
electrons is constrained in strictly one dimension. This statement validates
a 1-D approach to the problem.

3. Bosonization

With this concrete example we can move on to introduce a theory that can
handle the interactions of electrons in one dimension. One peculiarity of
1D is large strength of the iteractions. In a handwaving sort of argument
we can claim that a particle cannot avoid a collision with an oncoming
particle, because there is no space to step aside. Interactions are by no
means small, so they cannot be treated as a perturbation around a free
theory. One way to attack this problem is a substitution of variables called
bosonization, which is directly applicable to FQHE edge states and carbon
nanotubes. As a consequence of this technique we will see the emergence
of a quasiparticle with an exotic commutation relation. For this first part



of the development follow Ref.[2], Chapter 3.

Begin with the character of the single electron dispersion relation. Starting
with (4) it is straightforward to show that for small energies the conducting
electron dispersion relation is linear. This is also visible from Fig.1: the
two bands are very near cones at the points of contact. We can write down
the following free Hamiltonian:
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L and R stand for right- and left-moving particles; e, = —1, eg = 1. The
electronic density fluctuation p can be written in terms of a superposition
of particle-hole excitations:
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The essence of bosonization is rewriting the Hamiltonian in terms of a
particle-hole pair (phonon). The pair consists of two fermions and is there-
fore a boson. Define the bosonic operators:

bl:(um) 2Oy
by = (er) > epi(-) ™)

where O is the Heavyside step function. Take the commutator of the boson
operator with the Hamiltonian.
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The Hamiltonian

Hfree = Z UF'p’bpr (9)
p

satisfies the above commutator. Therefore, if we assume that the boson
operators generate a complete basis, then this must be the right way to
express the Hamiltonian in b and bf. The importance of this expression is
the fact that the free Hamiltonian is quadratic (not quartic, as one might
expect) in the density fluctuations.

Consider the interacting part:
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In momentum space,
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So both H e and H;, are quadratic in the bosonic operators. Next, in-
troduce the fields ¢(z) and 6(z) defined by the equations
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Note p = p, + pr, so Eq.(9) and Eq.(11) promise that we can expand H sy,

in terms of dpdd, (90)?, and (0¢)?. However, inversion symmetry tells us
that the Hamiltonian stays invariant under x — —x. We have
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Now, since 0,0 changes signs and 0,¢ doesn’t, then the Hamiltonian can
be completely described by the expression
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g is a dimensionless parameter, and v is a velocity, and both quantities
depend on the interaction strength. Going back to the left- and right-
moving density description,
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we obtain the expression
H = %(n%ﬁLn%) (17)

This innocent-looking diagonalized form implies that irrelevant of the in-
teraction strength, we can rewrite the Hamiltonian in terms of free field
excitations. These excitations have linear dispersion and a velocity depend-
ing on the electron interaction strength. Introduce the quasiparticle fields
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In this form the Hamiltonian can be interpreted as the sum of kinetic ener-
gies of right- and left-moving noninteracting quasiparticles. Each of these
particles is a superposition of strongly interacting electrons, but at this level



we can disregard the underlying structure and only deal with the effective
Hamiltonian.

One important aspect of the quasiparticle is its commutation relation, which
becomes apparent in this statement [3]:
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where we have used the Baker-Hausdorfl formula and the commutator
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We have assumed that 6 and ¢ commute with themselves. The last line will
not be justified completely here, but can be seen to make sense: in (12) we
see that 0,¢ gives the total density amplitude, and (18) associates 6 with
the phase. Amplitude and phase are then canonically conjugate:

6(x), 6(a')] = 5-sgn(z ) (22)
Now (20) tells us something very interesting. Commuting the quasiparti-
cle ¢ field results in picking up a general phase €™, which is referred to
as fractional or braiding statistics. The fact that none of the underlying
components has this property confirms that the quasiparticle is essentially
a collective phenomenon.

. Experimental verification

Various interference experiments have been proposed to observe braiding
statistics [4]. Experimental data has been found to be compatible with
the theory on several occasions. However, only recently there has been
conclusive evidence for experimental confirmation [5]. In that setup the
authors litographically define an interferomteter that uses tunneling of edge
states to a 2-D quantum Hall effect potential hill. The hill is of a size small
enough that it acts as a quantum dot. That enables the measurement of
interference fringes as tunneling conductance oscillations as a function of
the magnetic flux through the dot. These fringes meet the predictions for
collective particles of fractional statistics.

One of the main reasons to pursue experimental advance in measuring braid-
ing statistics is the notion that such states could be used for quantum in-
formation processing.
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Figure 3: Quasiparticle interferometer device. Tunneling occurs at the saddle points in the twoconstric-

5. Conclusion

In this essay we have introduced the idea of 1-D physics, and we have
defended its applicability to phenomena in carbon nanotubes. We have also
introduced some ideas from the bosonisation technique, only as much as to
justify the existence of one trait (fractional statistics) of emergent behavior.
The discussion is by no means complete or rigorous, but intends to provide
some flavor for the rich phenomenology of 1-D. We complete the circle with
an example for an experimental measurement of that phenomenon.
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