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Abstract: 
The advent of coherent matter waves in the form of Bose-Einstein 
condensation, coupled with periodic potentials in the form of optical 
lattices, has established a new area of research on the boundary 
between atomic and condensed matter physics. This essay is a brief 
review of the recent theoretical and experimental progress in the area 
of degenerate Bose gases loaded into optical lattices. 
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1. Introduction 
It has been several years since I developed the interest in optical lattices. After 

taking the class this semester on Emergent States of Matter, I really have a desire to 
learn more things about relationship between the Bose-Einstein condensates (BECs) 
and optical lattices. After reading some publications in this field, I decided to write the 
review article to improve my knowledge on the exciting and thriving subject.  

Observation of the quantization of the energy levels of laser-cooled atoms trapped 
in optical standing waves in 1992 can be viewed as the start of the research in optical 
lattices [1]. In 1995 we saw the first creation of dilute gas BECs [2], which provide a 
source of deBroglie waves with a coherence length equal to the size of the condensate, 
typically 10-100µm. Shortly after the first realization of BECs, a number of research 
groups started investigating the properties of BECs in periodic potentials, often 
preceded and sometimes followed by theoretical efforts. Now BECs in optical lattices 
have matured into an active field of research in its own right [3].  

It is natural to want to know why we study BECs in optical lattices. In general, 
optical lattices offer several advantages: a vast number of potentials can be created 
with almost complete control over the parameters, and the potential can be altered or 
switched off entirely during the experiment. On the other hand, BECs typical values 
are on the order of tens to hundreds of nano-Kelvins for the temperature and up to 
1014 cm-3 or more for the densities. This order of magnitude difference has several 
advantages: First lower temperatures means that a BEC will be in the lowest energy 
levels of the lattice wells without the need for further cooling. Secondly the higher 
densities lead to an increased filling factor of the lattice, which can exceed unity for 
BECs.  

In this paper, we will discuss the theoretical description of a Bose-Einstein 
condensate in periodic potentials. We mainly focus on the physical situation in which 
we deal with a very large number of atoms where we can ignored atom number 
fluctuations and use mean-field method. We also will give a brief description on the 
experimental studies on BECs in optical lattices.  

Because the amount of theoretical and experimental work on this topic is so large 
that I only can give a description on some important ones that I think. For more 
detailed and specialized reviews, please refer to the publications: Morsch et. al., Rev. 
Mod. Phys., 78, 179 (2006) and Bloch et. al., Phys. B 38, S629. (2005) etc.    
 

2. Theory  
The general mathematical description of BEC of a weakly interacting gas has 

already been addressed in different review articles such as Dalfovo et al., Rev. Mod. 
Phys. 71, 463. (1999). in this review we, therefore, concentrate on the results obtained 
for a BEC in periodic potentials. 

The many-body Hamiltonian describing N interacting bosons in an external 
trapping potential Vext,  

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


 3

          (1) 

Where )(x
∧

ψ is a boson field operator for atoms in a given internal atomic state. The 

ground state of the system and its thermodynamic properties can be calculated from 
this Hamiltonian. In general these calculations can get very complicated and, in most 
cases, impracticable. In order to overcome the problem of solving exactly the full  - 3 
-many-body Schrödinger equation, mean-field approaches are commonly developed. 
A detailed derivation can be found in Dalfovo’s article. The generalization of the 
original Bogoliubov description to the physical situation in real experiments is given 
by describing the field operators in the Heisenberg:  

              (2) 

Where ),( txψ  is a complex function defined as the expectation value of the field 

operator and its modulus represents the condensate density.  
If we ignored the depletion of the condensate, the time evolution of the condensate 

wave function at temperature T=0 is obtained by taking the ansatz for the field 
operator and using the Heisenberg equation. Then we can get the Gross-Pitaevskii 
equation for the mean field (see some condensed matter physics text books such as by 
Chaikin), 

(3) 
The description of the propagation of noninteracting matter waves in periodic 

potentials is straightforward once one has found the eigenstates and corresponding 
eigenenergies of the system. If we consider a one dimensional sinusoidal periodic 
potential of the form,  

                 (4) 
With k=π/d, where d is the periodicity of the potential. In the context of ultracold 

atoms in standing light waves, this connection was discussed in the early days of atom 
optics by Wilkens et. al., Phys. Rev. A, 44, 3130 (1991).  

The wave function and the potential in a Fourier series with the reciprocal-lattice 
vector defined:  

            (5) 
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The stationary solutions can be found in a simple way by applying Bloch’s 
theorem. Putting this ansatz for the eigenfunctions into the Schrödinger equation and 
truncating the sum at m=N, then the 2(2N+1)-dimensional system of linear equations, 
(G=2П/d).  

        (6) 
With m=−N, −N+1,….., N−1, N. The eigenenergies and eigenstates depend on the 

potential depth V0 and the quasimomentum q. In the weak potential limit, the 
eigenenergies depend critically on the quasimomentum q. Since the so-called gap 
energy between the nth and (n+1)th band scales with V0

n+1in the weak potential limit 
(Giltner et al., phys. Rev. A 52, 3966, (1995)), it only has appreciable magnitude 
between the lowest and first excited band. In the limit of deep periodic potentials, also 
referred to as the tight-binding limit, the eigenenergies of the low-lying bands are only 
weakly dependent on the quasimomentum. The quasimomentum dependence of the 
lowest band energy was given analytically by Zwerger (J. Opt. B: quantum 
Semiclassical Opt.5,9, (2003)).Typical phenomena studied in this regime only involve 
the lowest band, which is well described by localized wave functions at each site. 
 

When the equation of motion of the condensate wave function is defined via a 
nonlinear Schrödinger equation due to the interaction between the particles, this 
introduces a new energy scale and thus, in contrast to the linear propagation, new 
parameter regimes with associated new phenomena and dynamics for special potential 
parameters are expected. One of the most striking of these is the appearance of 
solitonic propagation and instabilities (i.e., small perturbations of the condensate 
wave function can grow exponentially in time).  
 

The mean-field energy per atom corresponding to a given condensate wave 
function is defined as 

                         (7) 

In the case of periodic potentials, it is more sensible to calculate the on-site 
interaction energy, which measures the strength of the interaction within one period of 
the lattice. The theoretical descriptions for these regimes have several cases: 
Nonlinear energy scale is the smallest; Nonlinear energy scale in the intermediate 
range; Nonlinear energy scale is dominant. For more detail consideration about the 
three cases, please refer to the publications such as Konotop and Salerno Phys. Rev. A, 
65, 021602, (2002); smerzi and Trombettoni, Phys. Rev. A 68, 023613, (2003) and 
choi and Niu, Phys. Rev. Lett. 82, 2022, (1999).  
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3. Experiments 
 

The first BEC/optical lattice experiment to begin to probe beyond single-particle 
physics was carried out at Yale in 2001 [4]. A BEC was adiabatically located into a 
one dimensional optical standing wave and the coherence from site to site was 
analyzed by releasing the atoms from the lattice and looking at the interference 
pattern formed from the array of overlapping wavepackets. A loss of interference 
contrast was observed as the adiabatic loading time was increased. In a 1999 paper, 
the group of Peter Zoller made the suggestion [5] that Bose-Hubbard could be 
realized in 2 and 3D optical lattices. In 2002 in Munich a group [6] reported the 
observation of the superfluid-Mott insulator phase transition in a 3D optical lattice, 
observing the loss of interference as the system reached the insulating state as well as 
gap in the spectrum associated with the insulating state in transport with the 
application of a large gradient.  

 
Optical lattices can easily be constructed in 1-, 2- or 3D geometries. A series of 

recent experiments [7] have been studying 1D Bose gases by confirming them in a 2D 
optical lattice. An experiment at NIST [8] observed a factor of 7 reductions in 
three-body loss in the tubes over that for a 3D gas. Recent work at Penn state [9] 
looking at dipole oscillations of a 1D gas as an optical lattice is turned on.  

 
The most striking effects of the band structure of periodic potentials are the 

occurrence of Bloch oscillations and Landau-Zener tunneling which have been 
observed in ultracold atoms before condensates entered the scene (Dahan et. al., Phys. 
Rev.Lett. 76, 4508 (1996) and Niu et al., Phys. Rev. Lett. 76, 4504. (1996)). Because 
they have shown that Bose-Einstein condensates offered the possibility to investigate 
them more systematically and in different regimes. The first experiment along these 
lines with Bose condensates in optical lattices was carried out by Anderson and 
Kasevich in 1998, sparking considerable interest in both the theoretical and 
experimental communities. 

 
Morsch et al. (Phys. Rev. Lett. 87, 140402. (2001)) carried out experiments in 

linear regime, loading BECs of rubidium atoms into a shallow optical lattice that was 
subsequently accelerated with acceleration a by chirping the frequency difference 
between the lattice beams (Cristiani et al., Phys. Rev. A 65, 063612, 2002). From the 
resulting interference pattern, the condensate group velocity in the frame of reference 
of the lattice could be calculated and plotted against the lattice velocity clearly 
showing the Bloch oscillations. 
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Fig. 1. Bloch oscillations of a condensate in an optical lattice. When the instantaneous 
lattice velocity (indicated on the horizontal axis) is subtracted from the mean velocity 
of the condensate measured in the laboratory frame of reference (a), one clearly sees 
Bloch oscillations in the lattice frame (b). From Cristiani et al., 2002. 

Another phenomenon occurring in an accelerated lattice is Landau-Zener 
tunneling which was observed for ultracold atoms in a lattice (Niu et al., 1996). In the 
experiment by Anderson and Kasevich (1998), a vertically oriented lattice was used, 
with the Earth’s acceleration g driving the atoms. The Landau- Zener tunneling events 
led to atomic “droplets” falling out of the lattice (see Figure 2).  
 

 
Fig. 2. (Color) Coherent “droplets” tunneling out of a condensate held in a vertical 1D 
optical lattice. This effect can be interpreted in terms of the condensate undergoing 
Bloch oscillations under the influence of the gravitational force and part of the 
condensate leaving the lattice due to Landau-Zener tunneling at successive crossings 
of the Brillouin zone edge. Holding times in the lattice are (a) 0, (b) 3, (c) 5, (d) 7, and 
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(e) 10 ms, respectively. In (f), an integrated profile of the absorption image (e) is 
shown together with a theoretical fit (solid line). Taken from Anderson and Kasevich, 
Science 282, 1686 (1998). 

 
When the nonlinear term in the Gross-Pitaevskii equation is not negligible any 

longer, the behavior of a BEC in an accelerated lattice deviates appreciably from the 
linear case (Morsch and Arimondo, 2002 in Dynamics and Thermodynamics of 
Systems with Long-Range Interactions, Berlin, pp. 312–331). In particular, performing 
Landau-Zener tunneling experiments as a function of the nonlinear parameter C, 
Morsch et al. (2001) found that the tunneling probability increased with increasing C. 
This can be explained in the effective potential approximation introduced by Choi and 
Niu (1999) as a decrease in the effective potential depth and hence the band gap at the 
Brillouin zone edge, leading to increased tunneling (see Fig. 3).  

 
 
FIG. 3. Variation of the effective potential with the nonlinear parameter C. The 

square symbols are experimental data points and the solid and dashed lines are the 
theoretical prediction by Choi and Niu (1999) and a best fit with a rescaled 
nonlinearity parameter, respectively. From Morsch et al., Phys. Rev. Lett. 87, 140402, 
(2001). 

 
There are lots of other important experiment work in this field such as 

Instabilities and breakdown of superfluidity; Dispersion management and solitons; 
Chemical potential of a BEC in an optical lattice; Josephson physics in optical lattices; 
Number squeezing and the Mott-insulator transition etc. Because of the limitation of 
the paper, I can not discuss all of them. Please see the references I gave at the end of 
this paper for more detail information.  

 

4. Future directions 
There are many possible topics of interest, most of which have yet to be discovered, 

so I will mention a few to display the richness of this research area. Among the future 
areas of exploration will be a further understanding of the Bose-Hubbard system, 

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


 8

including the development of spectroscopic tools to spatially resolve the number 
distributions in individual lattice sites.  

Optical lattices are inherently disorder-free, making for extremely clean systems, 
but we can expect to see disorder introduced into optical lattices with a degree of 
control unheard of in condensed matter physics. Unlike condensed systems, the 
optical lattice system will have knobs to be able to change the amount of disorder at 
will. We can anticipate many possibilities including the study of localization, the Bose 
glass phase and perhaps a Bose metal phase.   

Because the atom-atom interaction has been the short range van der Waals 
interaction, well described by a simple contact term, we can expect research in 
periodic systems where the scattering length as well as change the interaction from 
repulsive to attractive and long range anisotropic dipole-dipole interactions. So far the 
lattice work has been confined to single spins, but following on a number of spinor 
condensate experiments, we can expect two and three component spinor Bose loaded 
into optical lattices.  
 

5. Conclusion  
In this brief review article, I have shown some theoretical and experimental 

advances in Bose-Einstein condensates in optical lattices. Because of the limit of the 
paper, I just can give a rough description on some important results. Bose-Einstein 
condensates in optical lattices have already spawned several different subfields such 
as nonlinear matter waves, strongly correlated many-particle systems, and quantum 
computation [10]. In the first two categories, the full control over the system’s 
parameters is exploited in several ways. By changing the geometry of the lattice and 
combining, e.g., different atomic species, one can realize many-body Hamiltonians 
that are not easily accessible in condensed matter systems and hence use BECs in 
lattices as a model system in order to test theoretical predictions. In the latter, optical 
lattices are used mainly as a tool for preparing and “engineering” quantum states in a 
controlled way so that they can then be used for the implementation of quantum 
algorithms. 

In the future I intend to do some research on the following areas: by trapping 
atoms in optical lattices to probe the single photon efficiency which is related with my 
current research. Because we want to obtain the high detector efficiency of single 
photons, we should trap the atoms in order to reduce the dark count. I think that 
optical lattice is one of the candidate media [11].    
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