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This essay explores the emergence of collective motion within biological systems by modeling them as 
swarms of identical self-propelled particles with biological motivation.  The results show that it is 
indeed possible to simulate cohesive, collective motion similar to that of existing life forms. 

 
 
 
 
 
 
 
 



In nature, the aggregation of organisms in large groups is very common.  
This phenomenon can be seen in numerous life forms ranging from bacteria to 
bison.  Group movement is evolutionarily derived and can benefit an organism in 
two ways.  First, it can aid in locating food.  A large group provides a large 
number of food sensors.  For example, bacteria use chemotaxis, a mechanism 
that directs motion toward higher nutrient gradient, to direct a large group 
towards food.  Swarms not only have numerous food sensors they also have 
many predator sensors.  Safety is the second function of swarming since early 
detection of a predator can help save the entire group from danger.  If a predator 
attacks, an individual has a lower probability of being caught in a group as 
compared to if the individual were alone.  Additionally, when dealing with the 
higher mammals it is often very dangerous for a predator to attack a swarm due 
to the risk of life threatening collisions.  For example, when wildebeest herds 
cross the a river, crocodiles are weary to stay out of their way to avoid getting 
trampled and only prey upon those that are in the periphery of the herd.  Finally, 
swarming can be used to protect those in the group of the greatest value such as 
infants.  Zebras will often travel in herds with the young located at the center 
where it is the most difficult for predators to access. 
 Of course there are some drawbacks to swarming, which is why the 
behavior is not seen in all species.  More organisms means more mouths to feed 
and can be less efficient than spreading out in the search for food.  Also, a large 
group is far easier to spot by predators than an individual, which can make them 
less safe than traveling alone.   

The phenomenon of group motion has recently been studied using 
mathematical models.  A researcher can follow one of two different approaches 
[1].  The first of these approaches is a spatial approach, which considers the size 
of the environment.  There are two types of spatial approaches.  The first is an 
individual based model which generally considers the equation of motion for each 
individual with in the swarm.  Attractive and repulsive forces are factored into the 
Lagrangian framework from each particle.  The second approach is the 
continuum model which looks at the swarm as a whole rather than at the 
members that it is composed of.  This model focuses on the population density.  
The advection-diffusion-reaction equation is often used to model the population 
dynamics for these types of problems. 

Nonspatial approaches analyze swarming by simply analyzing the fission 
and fusion of groups through statistics.  Group dynamics, and environmental 
conditions are just a few of the variables considered.  The main disadvantage of 
nonspatial techniques is that makes assumptions about how groups split and 
merge and do not consider the size of environment being used.  This paper will 
solely focus on spatial approaches to the study of swarming. 
 Clearly this topic is of interest to biologists who study the behavior of the 
organisms that display this type of swarming behavior.  One of the early 
biologists to study this problem was Breeder who used simple math to model the 
movements of schools of fish [2].  Inspired by Coulomb’s law, he created a 
constant attraction term and  a constant repulsion term between the fish.  He 
then varied these parameters to best fit the schooling behavior of four different 



species of fish.  Another interesting biological study aimed to model the 
movement of herding animals in two dimensions [3].  The model proposes a 
hierarchal algorithm, where an individual in the group gathers information on its 
neighbors and will move away from neighbors too close and near distant ones.  
This model ensures cohesion of the group if all members have a homogeneous 
velocity.  The paper also explores heterogeneous groups where the faster 
members often become leaders.  The results find that herding animals will have a 
‘neutral zone’ or an optimal distance from one another.  This type of ‘neutral 
zone’ is then observed confirmed to exist in herding animals.  Although the 
methods are very crude, this model shows the potential for individual based 
models to accurately reflect the motion of organisms in swarms. 
 From a physics standpoint, swarming is of great interest since it is an 
emergent phenomenon of organism alignment and motion without the presence 
of any one leader.  It is fascinating how extremely complex life forms focused on 
self preservation are capable of such massive group movements when they are 
only capable of considering stimuli within a limited distance.  This is indeed one 
of the more impressive products of evolution.  I am personally attracted to the 
topic due to its potential implications within my own field of research.  I study 
molecular motors which do work through their movement within cells.  These 
motors must perform tasks that require group effort and group movements.  Can 
this type of collective movement be modeled and can it even be compared to the 
large scale movements performed by swarms of animals? 

One of the first physicists to investigate this emergence of self-ordered 
motion within systems of self-propelled particles was Tamas Vicsek [4].  In his 
paper he uses a spatial, individual based framework to model the motion of N 
objects constrained to move in a square shaped cell (side length of L) with 
periodic boundary conditions.  All of the particles are moving at a constant 
velocity such that each moves a distance v during each timestamp (∆t).  The 
density ρ is simply defined as N / L2.  At time equals zero each particles is 
randomly placed in the cell and its velocity vector is then randomly orientated at 
an angle of θi where i represents the particle number.  If this were all there was to 
the model, each particle would move in random straight lined paths.  To 
introduce interaction amongst the particles with surrounding particles, the velocity 
vector is determined by averaging the velocity vectors of the nearby particles 
within a certain set radius.  Finally the model factors in a certain amount of noise.  
In the end θi (t+1) = < θ(t) >r + ∆θ represents the angle of the velocity vector of 
particle i at time t+1.  Here ∆θ represents the noise term and it is chosen with 
uniform probability from the interval [-η/2, η/2].    

If v goes to infinity, the particles become completely mixed between two 
states, similar to the mean-field behavior of a ferromagnet.  Looking at the other 
extreme of v equaling zero, the particles are stationary.  Figure 1 shows different 
scenarios of particle movement varying only L and η and keeping all other 
variables constant.  Here we can see that at high density and high noise (a) the 
particles move in a seemly random manner.  After time, we begin to see some 
slight correlation in the movement as shown in c.  For low density and low noise 
(b) group movements emerge.  Finally, high density and low noise (d) show 



correlated movements between particles.  It is this phase transition to ordered 
movement on a macroscopic scale that this paper is interested in identifying.  

 

 

Figure 1.  Here the arrow 
head represents the direction 
of the velocity vector, and 
the trajectory of the particles 
over the last 20 steps is 
shown by the short 
continuous curve.  For these 
simulations N = 300 and the 
density is varied along with 
the noise level.  (a) High 
density and high noise.  (b) 
Low density and low noise.  
(c) High density and high 
noise after a lot of time has 
passed.  (d) High density 
and low noise. 

 
To better understand this transition the average normalized velocity of all 

the particles (va) was calculated to determine net motion of the population.  For 
motion with low density and high noise this velocity is around zero, while for high 
density and low noise the average normalized velocity should be approximately 
one.  Figure 2 shows how this average velocity is affected by changes in noise 
and density.  To analyze this, Vicsek draws upon the similarities between va and 
the order parameter of equilibrium systems near the critical point.  Therefore he 
aims to solve for β and δ in the following relations: 

 

va ~ [ηc(ρ) – η]β   va ~ [ρ – ρc(η)]δ 
 

Here, ηc(ρ), and ρc(η) are the critical values for the noise and density when L 
approaches infinity.  To determine β and δ scaling plots were produced for ln(va) 
vs. ln([ηc(L) – η]/ ηc(L)) and ln(va) vs. ln([ρ – ρc(L)]/ ρc(L)) as shown in Figure 3.   
Values for η and ρ were fixed in a reasonable range while manipulating ηc(L) and 
ρc(L) to make the plots as linear as possible.  The slopes represent β and δ.  
From this form of analysis, β and δ vales were found to be 0.45 ± 0.07 and 0.35 ± 
0.06 respectively.  These are fairly conservative estimates since the scaling plots 
used are especially sensitive to the choice for the critical noise and density 
values.  We might expect that ηc and ρ are analogous to temperature and density 
of spins for a ferromagnet, but for this case we would then expect that β and δ 
would be equal.  Vicsek does not rule out the possibility that this is indeed the 
case for simulations at the thermodynamic limit.  Clearly, there are flaws in this 
particular model, although it is successful in demonstrating the transition from 
disordered motion to cooperative motion using very simple rules and 
mathematics. 
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Figure 2.  (a) The absolute value of the 
average group velocity vs. noise.  Here 
the density is kept constant while the 
cell size and number of particles are 
manipulated.  (b) The absolute value of 
the average group velocity vs. density.  
Here the noise and cell size are kept 
constant. 
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Figure 3.  Logarithmic scaling plots. 
(a) The slope of this graph 
represents the exponent β.  Here 
density is kept constant.  (b) The 
slope of this graph represents the 
exponent δ.  The cell size and noise
are held constant. 
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were varied in his previous paper.  Figure 4 shows snapshots of a system 
regulated by these rules for different temperatures and densities.   
 

              
 

Figure 4.  Snapshots of the triangular lattice system at different ‘temperatures’ 
and densities.  (a) High temperature.  (b) Intermediate temperature.  (c) Low 
temperature.  (d) Intermediate temperature and low density. 

 
 
 
 

Ultimately Vicsek once again wants to find values for β and δ and 
calculates them to be approximately .27 and .5 respectively.  These values for 
the lattice differ from the continuum model.  Additionally, they differ from the q = 6 
Potts model.  The Potts model is a model for interacting spins in crystal lattice.  
This difference is reasonable since the Potts model is concerned with particles 
with stationary spin in a lattice while here the particles are constantly moving, 
occupying new sites in the lattice.  Although very interesting, this particular bit of 
research seems to impose restraints upon particle motion which do not exist in 
nature.   

Vicsek’s first continuum model describes interactions among particles that 
are in close proximity and do not need to stay together as a collective whole.  For 
example, it is accurate in describing the movement of bacteria [6].  Experimental 
confirmation of this involved a film of E. Coli which were labeled with polystyrene 
beads.  These beads were then tracked as the bacteria swim about.  The 
superdiffusive motion observed can be seen as collective motion with features 
similar to those predicted in Vicsek’s model. 

Not surprisingly, Vicsek’s model breaks down when considering the 
cohesion of the population.  For example, if it were applied to a school of fish, 



which exists in open space, the fish along the edge of the school would 
constantly break away and scatter.  After enough time the entire school will have 
dispersed into open space and no longer have any collective motion.  To model 
these types of systems it is important for there to not only be directional 
similarities between the particles, but also cohesive forces along with repulsive 
forces.  For example, our fish must feel attraction to the group so as not to be 
separated from it, but the fish must also feel repulsive forces from the fish 
rubbing up against it in close proximity. 

A model that takes all this into consideration is proposed in a paper by 
Gregoire et. al. [7].  They start under the following assumptions:  the group lacks 
a leader, the environment is very noisy, interactions are only local, and the 
population is not confined.  Gregoire expands upon Vicsek’s model through the 
addition of a Lennard-Jones-type body force (attraction and repulsive force) 
acting between all particles within a certain radius.  Additionally, the velocity 
vectors are still influenced by a noise term and a term averaging the velocity 
vectors within a certain radius.  Finally, the Voronoi tessellation is calculated for 
each particle so that particles are only influenced by the action of the first layer of 
particles surrounding it.  This means that for the high density situation particles 
that are shielded by another yet are still within the critical radius of particle i have 
no influence upon its motion of particle i treating the particles more like cells.  
This is a huge improvement upon Vicsek since in biological situations an 
organism’s senses can be shielded by the presence of another.  In this model α 
is the coefficient controlling the strength the directional influence of nearby 
particles while β controls the strength of attraction/repulsion between particles.  
As shown in figure 5, when you vary α and β the group behavior changes 
drastically.  Higher values of α cause for group movement in one direction, while 
higher values of β increases the cohesiveness of the group.  N is defined as the 
total population and n is the size of the largest cluster. 

   

Figure 5.  Groups of particles 
traveling with different values 
of α and β.  (a) Small α and 
large β for 20 timesteps.  (b) 
Large α and large β in 3 
snapshots separated by 120 
timesteps.   (c) Small α and 
small β for 20 timesteps.  (d) 
Large α and small β for 20 
timesteps.   



The paper views group movement as being in one of three phases.  These 
phases are referred to gas, liquid, and solid in analogy with chemical phase 
transitions.  The gas to liquid phase transition is defined as when the n/N is equal 
to ½.  The liquid to solid transition takes place at high β values when there is 
strong cohesion in the flock.  To truly define this transition a variable referred to 
as the relative diffusion or ∆ is calculated for the entire population.  Low values of 
∆ indicate limited diffusion between adjacent molecules, or a large amount of 
cohesion.  For liquids ∆ ~ 1, while for a solid ∆ ~ 0.  Therefore there fairly 
arbitrarily define the liquid to solid transition as when ∆ = ½.  Clearly the relative 
diffusion varies depending upon where in the swarm you are observing.  
Because of this, the authors decide to divide the group into 4 ‘sectors’.  These 
are referred to as the core, head, tail, and sides. 

Next the paper aims to define ‘collective motion’.  Here the average 
velocity of the group is the variable V.  If α, or the coefficient controlling the 
impact of the velocity vector of nearby particles on particle i, is very large, V ~ 1, 
while when α is small, V ~ 0.  Collective motion is defined as when V = vo/2 
where vo is the magnitude of the velocity of each particle.  Using this system, 
phase diagrams are produced to illustrate these transitions.  These diagrams of β 
vs. α are shown in figure 6.  This figure is for a fixed system size with a set 
density.  The goal is to better understand what occurs in infinite system size, zero 
density limit.  Unfortunately, this type of calculation far exceeded the research 
groups computing power.  Instead several different methods of calculations were 
performed and showed that indeed, cohesive and collective motion is possible in 
these regimes.  One of these methods involved double limit of an arbitrarily large 
flock evolving into infinite space.  

 

 

Figure 6.  Phase diagram of 
β vs. α showing the 
transitions between solid (S), 
moving solid (MS), liquid (L), 
moving liquid (ML), gas (G), 
and moving gas (MG).  Here 
density and cell size are held 
constant. 
 



Certainly this paper is a vast improvement upon Viscek’s paper when 
analyzing group motion in open space.  It shows that cohesive and collective 
motion is possible and categorizes the state of group cohesion into three phases.  
Unfortunately, these transitions seem to be based upon arbitrary boundaries.  
Still, the evolution from disordered motion to cohesive, collective motion has 
been well demonstrated using this model. 
 Clearly, it is impossible to accurately model the group movements of 
complex organisms.  There are far too many variables and environmental factors 
affecting the motion of each individual thus changing the motion of the group as a 
whole.  Despite this impossible barrier, the models proposed above are capable 
of producing seemingly reasonable group behavior.  Although simplified, they 
consider many of the major factors that might influence the motion of an 
organism buried within a large aggregation of similar organisms.  Not only did 
these models mimic group behavior, they were used to explore the transition 
from disordered motion to collective motion.  The research presented in this 
paper reflects huge advancements in understanding the motion of swarms, yet 
there is still much to be done theoretically.   Additionally, experimental research 
of biological organisms in groups is deficient and more research is necessary to 
truly test the validity of the theoretical models produced and the assumptions 
each one makes.  Unfortunately, phase transitions from disordered to collective 
motion are essentially impossible to observe in nature and can only be done 
through computer simulations.  Regardless, the data presented seems to reflect 
many of the group behaviors seen in the many organisms that depend upon 
aggregation for survival. 
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