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Abstract

Phenomenology of Fractional Quantum Hall Effect(FQHE), espe-
cially charge fractization and quantization of Hall conductance, is pre-
sented here in a brief manner. Focus is concentrated on Extended
Hamiltonian Theory(EHT) approach to FQHE. Natural appearance of
fractional charge of composite particles, quantized Hall conductance
in the expanded Hilbert space introduced in EHT is explored at mean
field level. The effect of charge localization is also briefly discussed
which accounts for the existence of Hall conductance plateau.

1 Introduction

That systems with interactions would quite often display bizarre and sur-
prising effects under extreme external conditions is no news for modern con-
densed matter physicists. A great number of those effects account for the
emergent properties of systems under the breaking of an intrinsic symmetry
(spontaneous symmetry breaking). Fractional Quantum Hall Effect(FQHE),
which is essentially the collective behavior of interacting electrons in low di-
mension and high external fields, counts as one typical example among many
others. It shows that, electrons with interactions in low dimensions (D=2),
when acting in concert, can respond to external magnetic field in a man-
ner of composite particles with a charge even “smaller” than the individual
electron charge. By balancing between interactions with external magnetic
field and interactions within the system(Coulombic), the factorization of
charge in two-dimensional electron systems (2DES) forms not only single
phenomenon but actually a hierarchical series, characterized generally by
the filling proportion of the Lowest Landau Level(LLL) of the electrons, or
filling factorν = p/(2ps + 1), (p = 1, 2, · · · , s = 0, 1, · · · ).

To understand the fractional charge and quantized Hall conductance of
2DES, various theoretical models have been developed over the past two
decades. Most of which fall into two branches. Wave-function approach:

1



Laughlin and later Jain[4] successfully constructed the ground state wave
functions of a 2DES in a perpendicularly directed external magnetic field in
first quantization form for a series of filling factors, which are now known
as Laughlin factors ν = 1/(2s + 1) and Jain filling factors ν = p/(2p + 1).
The fractional charge of collective electrons turned out to be a requirement
on the trial wave function constrained by gauge invariance of the electron
Hamiltonian, so does the quantum Hall conductance[4]; Chern-Simon Field
approach: Starting from macroscopic Hamiltonian of 2DES, Zhang, Hans-
son and Kivelson[8] took a different route to FQHE by introducing an extra
“virtual” gauge field into the Hamiltonian, and virtually eliminated the ef-
fect of the external fields by transforming the Hamiltonian into one that
describes no longer a system of strongly interacting electrons, but a sys-
tem of Chern-Simon(CS) particles(fermions or bosons)which sees virtually
no external field and interacts only weakly among themselves.Those CS par-
ticles can be viewed pictorially as attaching certain numbers(depending on
the filling factor)of magnetic flux quanta (φ0 = 2π~

e ) to each electron in
original system (known as “flux attaching”). Each flux carries a fractional
charge e∗ = e/(2p+1) and thus gives rise to the fractional charge of the CS
particles. Different as they are in many aspects, both theoretical branches
clarified one physical picture in common, that fractional charge present in
FQHE originates from a new composite particle created by excitations of
electrons in LLL.

Extended Hamiltonian Theory (EHT), developed by Murthy and Shankar[6][5][7],
grasped this idea of composite particle (CP). Essentially an extension of con-
ventional Chern-Simon Field Theory, EHT introduces, instead of one gauge
field, a canonical pair of fields into the electron Hamiltonian. The carefully
chosen fields enlarge the electron Hilbert space to one that includes not only
electron states but also oscillatory modes from the introduced fields. By
proposing extra constraints on the introduced fields that it doesn’t reflect
“real physical effect”, Murthy and Shankar was able to transform the original
electron system into a pair of decoupled systems: one belongs to the com-
posite particle and one the introduced virtual fields. Relations between the
fractional charge of composite particles present in either Laughlin’s theory
or Chern-Simons field theory and the charge of the oscillatory modes arise
naturally as well. My report focuses just on the buildup of EHT approach
and the birth of these relations. In section II, a digress into the experimental
discovery of FQHE and fractional charge is conducted. Section III concen-
trates on the buildup of EHT approach and derivation of FQHE from it
at mean field level. Charge Localization, another indispensable factor that
accounts for the appearance of Hall conductance plateau over finite variance
of magnetic field, will be briefly explained at the end of the section.
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2 Experimental Observation

• ν = 1/3 FQHE

FQHE was first experimentally observed by Stormer et.al [1] in 1981.
Stormer and his coworkers formulated a 2DES at the interface of two
semiconductors:GaAs and AlGaAs. Conducting electrons congregate
at GaAs side of the interface and form a thin layer with µm thickness,
a result of the matching of lattice structure and constants between
two materials and a slightly different surface electron energies (GaAs
has energy level about 300meV lower than AlGaAs). The sample is
prepared by modulation doping with an elaborate low electron density
and high electron mobility [1] and then exposed to Hall measurement
of the resistivity tensor of the specimen. A typical result is shown in
(Figure 1).

Figure 1: Experimental Observation of 1/3 FQHE: ρxy Hall resistivity, ρxx Magnetore-
sistivity. The sample is modulated doped GaAs/AlGaAs[1]

Regular quantum Hall conductance plateaus appear at integral filling
factors (ν = 1, 2, 3, · · · ), as predicted by Integral Quantum Hall Ef-
fect(IQHE), which was well awared of at that time in 2DES in magnetic
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field. A remarkable deviation from IQHE occurs at B = 15T , where
Hall resistivity data forms another plateau, rather than a straight line
predicted by IQHE. Stormer et.al identified this new plateau with
fractional filling factor ν = 1/3. Hall resistivity was measured three
times high as that of IQHE at ν = 1, indicating the appearance of a
fractional charge q = φ0/(6π~/e2) = e/3 .

• Observation of e/3 fractional charge and FQHE at other fill-
ing factors

Enormous experiments following Stormer on Hall measurement of 2DES
sample disclosed FQHE at other non-integral filling factors. Figure 2
shows a typical sample of FQHE at various rational fraction filling
factors[4].

Figure 2: Typical IQHE and FQHE at various filling factors, quoted from [3]

The prediction of appearance of fractional charge by Stormer in exper-
iment and later on by Laughlin in his trial wave function for ν = 1/3
FQHE was also convinced by following experiments of various meth-
ods. Shot-noise measurements by Saminadayar et al. are one of the
most widely cited. Saminadayar and his collaborators successfully
measured the shot noise associated with tunnelling in the fractional
quantum Hall regime of a 2DES sample with filling factor ν = 1/3 [2],
the experimental proof is illustrated in Figure 3.

Despite the difference in the filling factor of various FQHE, the gen-
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Figure 3: Tunneling noise of 2DES sample at ν = 1/3; Schottky formula of shot noise
predicts S = 2qIB , where q is the charge of the current carrier. Experimental data reveals
the desired linear relationship, but the slope is 1/3 as expected if the carrier is electron,
indicating the carrier charge is only a fraction of electron charge[2]

eral phenomenon inherits several generic characteristics: (i) the filling
factors are all rational number of form

ν = p/(2ps + 1), (p = 1, 2, · · · , s = 0, 1, · · · , (1)

and the corresponding fractional charge to appear is of form e∗ =
e/(2ps+1); (ii) FQHE happens with the signature of a constant quan-
tized Hall resistivity ( ratio of the electric potential transverse the
current over the current )

ρxy = ν−1h/e2, (2)

over a finite variance of magnetic field and a nearly vanishing magne-
toresistivity (ρxx ' 0, inverse ratio of current over potential along the
current) at the turning point of Hall conductance plateau. Any the-
ory of FQHE must correctly reproduce these basic features, and EHT
accomplishes this in a natural way, which we turn to explore now.

3 Theoretical Hamiltonian Model

In our construction of Extended Hamiltonian Theory, we confine the strength
of magnetic field exactly at the value required by filling factor ν, i.e.B =
2πn/(eν), where n is the number density of electrons in the 2DES. Also,
we confine ourselves for simplicity to the case when ν = p/(2p + 1) < 1,
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i.e. all the electrons are filled up in the lowest Landau level(LLL) of the
system and assumption that their spins are all uniformly polarized is hence
implied. We would also take a bold step to ignore Coulombic interactions
between electrons in the derivation. Over-simplified as it may seem, it will
be clear soon that EHT, even without introduction of interactions, has al-
ready incorporated basic features of FQHE. Introduction of interactions will
refine our detailed results such as Chern-Simon wave function ψCS , but the
derivation would no longer be intuitive and concise. A brief discussion of the
effect of interactions will be included at the end for completeness. Natural
units (~ = c = 1)are applied except stated otherwise. A “cyclotron length”
l0 = (eB)−1/2 is also defined in natural units, which will show up extensively
in our derivation.

We start by writing down the Chern-Simon Hamiltonian(density) with-
out interaction in second quantized form.

HCS = ψ†CS

| − i∇+ eA∗ + a|2
2m

ψCS (3)

where ψCS is the Chern-Simon wave function describing the composite par-
ticle of electron attached with magnetic flux quanta. a is the Chern-Simon
gauge field that satisfies the constraint

∇× a
2πl

= ψ†CSψCS = ψ†eψe = ρ

(One could well start with electron Hamiltonian and get (3) by Chern-Simon
approach, we bypass this derivation here for concision, standard reference
can be found in [6] and [8])
The effect of the gauge field is to cancel the magnetic field on the average,
so that for example at filling factors ν = 1/(2p + 1), Chern-Simon particle
sees an effective zero-field A∗ ' 0
Using the constraints on a, we transform (3) symbolically as

HCS = ψ†CS

| − i∇+ eA∗ + (∇×)−12πlρ|2
2m

ψCS (4)

EHT enlarges the electron Hilbert Space in the following fashion: in mo-
mentum space, for each electron momentum q, EHT associate a canonical
pair of vector fields

P(q) = iq̂P (q), a(q) = −iẑ × q̂a(q)

and canonical commutator between the two fields,

[a(q), P (q′)] = (2π)2δ(q + q′) (5)
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where the Dirac function is evaluated in two dimensions. Hamiltonian (4)
is totally equivalent to

HCS = ψ†CS

| − i∇+ eA∗ + a + (∇×)−12πlρ|2
2m

ψCS (6)

provided that we restrain

a(q)|physical〉 = 0

, or
[a,H] = 0

This enables us to find simultaneous eigenvalues of H and a, and that cor-
responds to a = 0 solves the original problem. To set up further equivalence
between this EHT model and original Chern-Simon model, EHT introduces
a projection operator that connects the wavefunctions of these two models:

℘ =
∫

dxda|x a〉〈x a|δ(a)
δ(0)

(7)

The physical meaning of (7) is clear if one consider its action on a wave func-
tion of the expanded Hilbert Space Ψ(x, a) (x labels the position quantum
number of the original particle while a labels the non-physical field degrees
of freedom)

Ψ℘(x, a) = ℘Ψ(x, a) =
δ(a)
δ(0)

Ψ(x, a) =
δ(a)
δ(0)

Ψ(x, 0) =
δ(a)
δ(0)

ΨCS(x) (8)

EHT then introduces a unitary transformation to get rid of the “inverse of
curl” term shown in (6),

U = exp[
∫

d2qiP (−q)
2πl

q
ρ(q)] (9)

under which the Hamiltonian transforms into

H =
1

2m
ψ†CP (−i∇+ eA∗ + a + 2πlP)2ψCP (10)

ψCS(x) = ψCP exp[
∫

d2qiP (−q)
2πl

q
e−iqx] (11)

0 = (a− 2πlρ

q
)|physical〉 (12)

Eq.(12) is just the constraint 0 = a(q)|physical〉 written in terms of trans-
formed a field.

7



Expand Eq.(10)(drop the subscript CP henceforth), we get

H =
1

2m
|(−i∇+ eA∗)ψ|2 +

n

2m
(a2 + 4π2l2P 2)

+(a + 2πlP ) · 1
2m

ψ†(−i
︷︸︸︷
∇ +eA∗)ψ

+
δ(ψ†ψ)

2m
(a + 2πlP)2

= H0 + H1 + H2 (13)

where ρ = ψ†ψ = 〈ψ†ψ〉 + δ(ψ†ψ) = n + δ(ψ†ψ), n stands for the average
density of the composite particles(which is just the average electron density),
and δ(ψ†ψ) its fluctuation. Also, we define

A
︷︸︸︷
∇ B = A∇B − (∇A)B

Now we are finally prepared to get to the “final representation” applied in
EHT. the second term in the first line of (13), or H0, resembles the ordinary
Hamiltonian of quantum oscillators, with natural frequency ω0 = 2πln

m , and
therefore can be written in second quantized form by introducing ladder
operators, and the ψ operator can be replaced by creation and annihila-
tion operators of composite particles in momentum space. We’ll set fill-
ing factor explicitly as ν = p/(2p + 1) such that ω0 = 2p

2p+1
eB
m = 2p

2p+1ωc,
B∗ = B/(2p + 1)(by attaching 2p + 1 flux quanta to each electron). And
we ignore contribution from last term in (13) since we’re working at mean
field level, no fluctuation is considered to the leading order. Putting pieces
together, (13) can be reformulated as

H =
∑

j

Π2
j

2m
+

∫
d2qD†(q)D(q)ω0+

√
2π

m

∫
d2q(c†(q)D(q)+D†(q)c(q)) ≡ T+Hosc+H1

(14)
where

Π = P + eA∗

D(q) =
1√
(8π)

[a(q) + 4πiP (q)]

c(q) = q̂−
∑

j

Πj+e−iqxj

Π± = Πx ± iΠy

[D(q), D†(q′)] = (2π)2δ(q − q′)
[Π−,Π+] = −2eB∗ = −2eB/(2p + 1)

[c(q), c†(q′)] = 2eB∗n(2π)2δ(q − q′), [c(q), c(q′)] = [c†(q), c†(q′)] = 0
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Now H1 still appears as a coupling between the composite particle field and
the introduced fields.To lift this coupling, [6] conducts a further unitary
transformation,

U(λ0) = eiSλ0 = exp[
√

2π

4πn
λ0

∫
d2q(c†(q)D(q)−D†(q)c(q))] (15)

with λ to be cleverly chosen as solution to tan(λ0/
√

2p) = 1√
2p

= µ and the
final representation of the EHT Hamiltonian reads as

HFR =
∑

j

Πj−Πj+

2m
+

∑

j

eB∗

2m
− 1

2mn

∑

i,j

∫
d2qΠj−e−iq(xi−xj)Πj++

∫
d2qD†(q)D(q)

eB

m

(16)
Eq.(16) concludes the Hamiltonian for EHT approach, and the problem of
electron systems in FQHE has been equivalently mapped to a systems of
composite particles (in present case, composite fermions since odd number
of flux quanta are attached to each electron to form the composite particle[3])
and a decoupled field of oscillators. The wave function of this Hamiltonian,
when projected to the subspace where the oscillator quantum number is
freezed at ground state(analogy to a = 0 in (8)), accounts correctly for the
wave function of the physical composite fermions, and therefore the wave
function of electron system in FQHE, at least at a mean field level. (One
can actually build up Laughlin wave function solely from (13), which turns
out to be more direct than working with (16)[6]). Note, however, the de-
coupling transformation (15) yields a third term in composite particle part
of EHT Hamiltonian in (16), this can be shown to give rise to the desired
renormalization of electron mass to the mass of the composite particle[6].
Now let’s examine how the fractional charge and quantized Hall conductance
are embedded in (16).
Electron Charge Density: Using techniques analogous to the Heisenberg
equation of motion for operators and take S present in Eq.(15) as the “ef-
fective Hamiltonian operator”, one gets the equation connecting the charge
density before and after transformation as

d ρ(q, λ)
λ

=
q√
8π

(D(q, λ) + D†(q, λ)) (17)

where ρ(q, λ) = e−iSλρ(q)eiSλ and one sees immediately that ρ(q, 0) is the
charge density before transformation to the final representation, and ρ(q, λ0)
is the charge density desired in the final representation. Eq.(17) can be
integrated as

ρ(q, 0) = ρ(q, λ0)+
q√
8π

(
sinµλ0

µ
(D(q)+D†(−q))−

√
2π

4πnµ2
(1−cosµλ0)(c(q)+c†(q)))

(18)
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Similar treatment with operator a(q) brings about another relation as

qa(q, 0)
4π

=
q√
8π

(cosµλ0(D(q)+D†(−q))−
√

2π

4πnµ
sinµλ0(c(q)+c†(q))) (19)

(all the operators in Eq.(18)(19) are before unitary transformation)
Why bother writing down those lengthy expressions? The reason lies in that
due to constraint condition ρ(q, 0) = qa(q,0)

4π as stated earlier, any combina-
tion

γρ(q, 0) + (1− γ)
qa(q, 0)

4π
(20)

is physically equivalent and acceptable as a charge density operator of EHT
Hamiltonian (16). EHT excludes this degeneracy of choice of γ by requiring
that the charge density should satisfy magnetic translation algebra, proposed
by Girvin, Jach and GMP[6], whose details are beyond our interest. What
this algebra brings about is a unique choice of γ in (20) as γ = 1/(2p + 1)
for the filling factor we’re considering. And the charge density under this
choice is, by working out explicitly expression for c(q),

ρ(q, 0) =
q√
8π

cosµλ0(D(q)+D†(−q))+
1

2p + 1

∑

j

e−iqxj−il20
∑

j

(q×Πj)e−iqxj

(21)
The first term counts for the virtual charge of the oscillatory field, the third
term is a dipolar term indicating possible nonzero dipole of the composite
fermions in our system, and the second term, in great analogy to electron
charge density ρe(q) = e

∑
j e−iqxj for N charged particles sitting at {xj}|Nj=1,

is our desired CHARGE of the composite fermion, and the fractional charge
e∗ = e/(2p + 1) is readily observed.
Quantized Hall Conductance: To find the Hall conductance ,we apply
similar technique as in (18)(19) here to find the current operator

J(q, 0) =
∑

j

(
Πj

m
e−iqxj +

n

m

√
8π(̂q)D(q)) (22)

in final representation. Carry out the equation of motion for J(q, λ), we
have

J(q, 0) =
q̂eBcosµλ0√

2πm2
D(q) (23)

Remarkably, the current is carried entirely by the oscillator! The cancel-
lation of particle contribution to current leads eventually to a surprisingly
simple derivation of the Hall conductance.
We recall that physical state of the EHT Hamiltonian has no contribution
from the oscillatory field, i.e. it must be in the ground state of the oscillator
part of the Hamiltonian. Calculation of Hall conductance σxy) in this case
amounts to calculate the ground state average of D(q) when the oscillator is
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coupled with an external electric field. the coupling term is no surprise of the
form − ∫

d2xeρ(x)Φ(x) = − ∫
d2qeρ(−q)Φ(q). We apply Eq.(21) for ρ(−q)

and concentrate only on the oscillatory part of ρ, since no contribution of
the current is from composite fermions, and get

Hosc =
∫

d2qeB/mD†(q)D(q)− e

∫
d2qρ(−q)Φ(q)

=
∫

d2qeB/mD†(q)D(q)− e

∫
d2qΦ(q)

q√
8π

cosµλ0(D(q) + D†(−q))

=
∫

d2q
eB

m
[D†(q)− qmcosµλ0√

8πB
Φ(−q)] · [D(q)− qmcosµλ0√

8πB
Φ(q)]

+
∫

d2q
eBq2cos2µλ0

8πm
Φ(−q)Φ(q) (24)

last term in (24) is just a constant and can be ignored, the first term indicates
no more than a shift in the zero of D(q), and therefore,

〈D(q)〉 =
qmcosµλ0√

8πB
Φ(q)

the electric current in momentum space of the physical state is thus

〈(−e)J(q)〉 = (−e)
q̂eBcosµλ0√

2πm2
〈D(q)〉 = −e2ν

h
qΦ(q) = −e2ν

h
E(q) (25)

Eq.(25) yields no doubt the correct Hall conductance σxy = e2ν
h (in consis-

tency with Eq.(2)).
Charge localization and Hall conductance plateau: Point feature of
FQHE in 2DES, namely fractional charge and quantization of Hall conduc-
tance, has been explored to details using EHT. Yet the existence of Hall
conductance plateau involves more factors than what we have discussed
here. It is believed[3][4] that existence of such a plateau is attributed solely
to the complexity of the interaction of the electron system, in the presence
of IMPURITIES in 2DES. The effect of impurities, which is inevitable in
real 2DES sample, is to couple to the electron system a fluctuating or ran-
dom potential. The influence of the potential can be formulated briefly as
follows: due to random potential or potential fluctuation in the 2DES, the
sharply seperated Landau levels of the electron system, or of the composite
particle system are broadened into Landau bands. Yet the new energy levels
generated by the broadening correspond mostly to localized particle states
(the so-called Anderson Localization effect[3]) and does not contribute to
long distance conducting property of the 2DES. Hence the excess of com-
posite particles(fermions or bosons) created by slightly increasing magnetic
field from its filling factor value are correlated and localized with the impu-
rities in the sample in FQHE (In IQHE, it is the excess of electrons that are
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localized.), making no contribution to the conductivity of the system, and
the Hall conductance remains constant at its quantized value, until the vari-
ation in the magnetic field is big enough for system to overcome energy gaps
between FQHE at different filling factors and transit to FQHE at another
preferred quantized state.

4 Summary and Conclusion

The construction of Extended Hamiltonian Theory, as an extension of con-
ventional Chern-Simon field theory approach is reviewed at a non-interacting,
mean field level. Features of FQHE such as fractional charge of the compos-
ite particle and quantized Hall conductance is verified using EHT Hamil-
tonian. Electron system in EHT is essentially expanded into two decou-
pled systems, one describing the physical composite particles which emerges
through flux attachment process of electrons, the other non-physical oscil-
lator Hamiltonian which has no explicit affect on real physical states, reg-
ulating the particle part of EHT Hamiltonian only implicitly. real FQHE
involves not only correlations within electrons but also between electrons
and impurities in the sample, which accounts heavily for the localization of
low-excitation levels of electrons or composite particles(fermions or bosons)
and the plateau of Hall conductance over a finite variance of magnetic field.
Coulombic interactions of electrons, which is bypassed in the article, actually
accounts for the renormalization of electron mass at low excited composite
particle Landau level (beyond LLL), and the compressibility property of the
2DES system[6][7][8]. In general, FQHE emerges in electron systems with
broken translational symmetry (low dimension and impurities) as a result
of collective behavior of electrons. The fractional charge phenomenon and
the success of gauge field theory approach in understanding FQHE implies
surprisingly that “fractional quantum number and powerful gauge forces be-
tween these particles can arise spontaneously as emergent phenomena”, as
quoted Laughlin[4].
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