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The phases of liquid crystals

In 1888, while cooling liquid cholesteric benzoate, Reinitzer [8] reported a very brief
bright blue-violet reflection right below the clearing point, which typically defines the
transition between the clear isotropic phase and the more turbid liquid-crystalline phase.
It wasn't until the mid 1970s that this sighting, as well as many others, was identified to
be a new thermodynamically stable phase of certain liquid crystals, aptly named the blue
phase (Figure 1).

    
Figure 1. Various "artistic" shots of the first two blue phases (on the left is BPII, the others
are undocumented).

Liquid crystals encompass a whole class of substances that exhibit a slew of interesting
mesophases, intermediate between the isotropic liquid and the solid crystal. Typically,
they are compounds that have very elongated (or more generally anisotropic) molecules
that favor strong molecular ordering at low temperatures. The liquid crystalline phases
are “liquid” in the sense that the translational symmetry of the centers of mass of their
constituent molecules is (mostly) continuous, but they exhibit some crystal-like
properties, such as long-range orientational ordering, and in the case of the smectic phase,
translational positional ordering in one of the three dimensions. Traditionally, liquid
crystals are most readily associated with the smectic and nematic phases, the latter ones
becoming the “helical phase” for the case of cholesteric liquid crystals (which have chiral
molecules of which a either the left- or right-handed species is predominant over the
other). Since the discovery of the blue phases, however, it has become apparent that



chiral liquid crystals can have much more complicated and diverse phase diagrams than
their nematic counterparts.

The traditional phase diagram for cholesteric liquid crystals has typically been “smectic-
helical-isotropic”, in that order, as the temperature is raised. The blue phases are observed
in a very narrow (~1K) temperature range between the isotropic and helical phase of
cholesteric liquid crystals. Three such phases have been observed, and are all separated
by first order transitions: the colorful BPI and BPII and the misty blue BPIII ("blue fog"),
respectively in the order at which they appear as the liquid crystal is heated. BPI and BPII
both have long-range orientational order which has a 3D cubic symmetry, while the BPIII
is isotropic and is only present in very chiral compounds. In addition to these, there are
also several twisted grain boundary phases [9] between the smectic and the helical
phases, in which blocks with smectic ordering are slightly rotated with respect to one
another, along a line that is parallel to the smectic layers of all the blocks (creating
dislocations between the layers in neighboring blocks). Very recently, there has also been
experimental evidence for a smectic blue phase (just like the normal blue phases, but with
a smectic-like translational symmetry of the molecular mean positions where the smectic
“sheets” are not perfect planes, but instead are hypothetically rotated about an axis, as in
a screw) [7] in compounds that lack a helical phase (i.e. the smectic blue phases occur
directly between the smectic and isotropic phases).

The currently accepted phase diagram for the blue phases as a function of temperature
and chirality is shown in Figure 2 (the chirality is varied by adjusting the relative
concentrations of left- vs. right-handed molecules). From it, it can be seen that liquid
crystals with very low chirality do not exhibit any blue phases. As the chirality is slowly
increased, BPI, BPII and finally BPIII come into existence, but BPII then disappears for
very chiral substances. Recently, a critical point has been discovered between the BPIII
and isotropic phases [5], establishing with certainty that BPIII has the same symmetry as
the isotropic liquid.  The overall shape of this phase diagram so far seems to be universal,
and does not seem to depend on the specificity of the chemical interactions [14].

Figure 2. Diagrammatic phase diagram for the 3 blue phases as a function of chirality and
temperature (taken from [1]).



Properties of the Blue-Phase.

The blue phases have long been thought to be a metastable incarnation of the helical
phase. The reason for this is that they are present only in a very narrow temperature range
close to the clearing point of cholesteric liquid crystals and in addition the blue phases
can often supercool into the helical phase. Because many of the properties of the blue
phases are only slightly different from those of the neighboring helical and/or isotropic
phases (with notable exceptions, however), it can be hard at times to tell them apart. For
example, at the helical to BPI transition, there is a discontinuous change in the specific
volume, but it is of the order of 0.01%. Careful measurements of the specific heat across
the transitions provided the first definite evidence that there were indeed a series of
distinct stable phases between the helical and isotropic phases of cholesteric liquid
crystals. Figure 3 clearly shows the existence of three phases and that the transitions
between them are first order, as evidenced by the existence of latent heats (the spikes on
the graph).

Figure 3. Specific heat as a function of temperature, showing the boundary between the
helical, blue and isotropic phases as well as the first order nature of the transitions between
them.

The most striking feature of the blue phases is probably their splendid visual appearance
(as illustrated in Figure 1). Unlike the more bland smectic, nematic and isotropic phase,
the blue phases often come as a display of many colorful platelets, or as in the case of
BPIII, as a foggy bluish substance. As we will see later, the blue phases BPI and BPII
have 3D orientational ordering with periods of up to 500nm. Because of this huge period
of the order of the wavelength of visible light, blue phases can Bragg-scatter light in the
visible range, causing a given color to be seen at a given angle. If the blue phase contains
many domains that are oriented differently, the color of the light seen by a given
observer, at a given angle, will be different for each domain, creating a mosaic of color.
In this sense, the microscopic properties of the blue phases (such as the domain size, and
periodic lattice spacing, etc., properties which are usually gotten by X-ray measurements)
can be directly inferred from measurements using the naked eye!



As beautiful as they may be, the blue phases also have many other unique and extremely
interesting properties. Many of these reflect the dual nature of the BP mesophases: they
are in some sense both liquid and fully crystalline. Perhaps the most remarkable of these
properties is the fact that liquid crystals in the BPI and BPII phases exhibit a non-
vanishing static shear modulus (although very small, of order 106 less than for normal
solids) [4] (Figure 4 show the temperature dependence of a low-frequency shear
modulus). This is extremely surprising because the blue phases are completely liquid
(from a positional symmetry point of view) and this is the first “liquid” to be discovered
that has any resistance to shear. Shear causes an energetically unfavorable modification
of the 3D periodic orientational structure of the blue phase, which could be stabilized by
a periodic network of singularities (as suggested by theory) which would prevent its
reordering. The discontinuities in the elasticity graph of Figure 4 also lent additional
credibility to the fact that the blue phases were distinct, thermodynamically stable phases.

Figure 4. (a) Shear elasticity G (at 52Hz) of the blue, cholesteric (helical), and isotropic
phases of cholesteryl nonanoate as a function of temperature [4].

[MISSING PICTURE/
TO BE SCANNED]

Figure 5. Viscosity vs. temperature near the clearing point of cholesteryl –nonanoate/-
chloride mixtures at a concentration ratio that exhibits (full line) and does not exhibit
(dotted line) a blue phase [11].



Additionally, the blue phases have been measured to display a strikingly large viscosity.
Anomalous viscosities near the clearing point have been observed for a very long time.
Measurements of the viscosity[11] for a mixture of substances with concentrations ratios
that do and do not exhibit a blue phase show that the presence of a blue phase is
correlated with an up to 106-fold increase in the viscosity over that of the neighbouring
helical phase (Figure 5). The mixture that did not have a blue phase did not exhibit the
high viscosity. This phenomenon lends further weight to the possibility of a 3D extended
ordered structure in the blue phase,

As a very surprising culmination of the evidence supporting a 3D periodic structure of the
first two blue phases, single crystals of BPI floating in the isotropic liquid have been
grown that macroscopically exhibit the internal structure of that blue phase [1]. The
single crystals show very clear faces (for a “liquid”), and the shape of the crystal would
indicate a cubic symmetry.

Figure 6. Micrograph of crystals (0.1-0.2mm) of BPI floating in the isotropic phase [1].

Theory

In order to claim that we have a successful theory of the blue phase, we must find a
logical explanation that accounts for the observations stated above. We must be able to
find an energetically favorable structure that is only stable very close to the clearing point
for cholesteric liquid crystals. Furthermore, from this structure must naturally arise a
periodicity with a very large unit cell, since experiment overwhelmingly seems to support
this, even though the liquid crystal remains “liquid,” in that it can be poured. Finally, we
can use to our advantage the fact that it seems that we are only dealing with first order
transitions, to, on one hand, help us select the right range of constants in our Landau free
energy, and on the other, to justify that we can ignore fluctuations and assume that mean
field theory will give us a physically relevant answer.



The first two blue phases are well described by current theoretical tools, whereas BPIII is
still poorly understood. The structures of BPI and BPII can be derived using the same
Landau-Ginzburg free energy that is used to describe the more common phases of liquid
crystals; these theoretical steps are reviewed in [10,13]. From these analyses, it emerges
that the blue phases occur when there is a high level of frustration between locally and
globally favored structures. In these cases, the “compromise” structures cannot always be
easily extended to all space, and thus we get can get networks of defects that separate
isolated stable regions. These networks can lead to quite intricate structure that are
periodic at a large length scale, such as seen in the BPI and BPII phases. The detailed
theory behind the blue phases can be quite involved, but at the most basic level, it is quite
informative. I will thus attempt to summarize the important lines from an “intuitive”
point of view, and omit most of the mathematical derivations and proofs.

Following the review of Wright and Mermin [13], we will examine the blue phases by
using the Landau free energy arising from the low order expansion in powers of the
dielectric anisotropy tensor Qij, which is just a function of the dielectric tensor eij that is
defined to vanish in the isotropic phase (Qij=eij-1/3 tr(e)dij). The general Landau energy f,
in this case, (to be used as a general reference for reading the rest of this paper) is:
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where, a, b and c > 0 (given that we will only consider transitions that are first order), and
Ko and K1 are the elastic coefficients of bending of the liquid crystal, and po is the pitch
that the liquid crystal would have in the helical phase at the given temperature. (In the
helical phase, the molecules within a given plane all have the same orientation parallel to
that plane, but because of chiral interactions, the alignment of the planes above and below
are slightly rotated. The axis perpendicular to those plane (and to the alignment in
general) is called the pitch axis, and the length scale at which the system is exactly
periodic along this axis is the pitch). The cross-terms that contain the curl term are only
present in cholesteric substances.

The need for non-uniform phases (as opposed to smectic, nematic, helical) can be readily
seen by examining the structures that minimize the bulk and gradient free energy
respectively. It can be shown [13], that the bulk free energy is minimized by a Q that has
two degenerate eigenvalues. If one thinks about the local dielectric tensor in a material
with aligned elongated polar molecules, it is obvious that the dielectric tensor will have
different eigenvalues in the direction along the director (along which the molecules
point), and in the directions orthogonal to it. A pair of degenerate eigenvalues implies on
a microscopic (but not necessarily “molecular”) scale, that the directions orthogonal to



the director are indistinguishable from a dielectric point of view. This configuration is
called the uniaxial helix, which is the natural configuration for rod-shaped molecules. On
the other hand, the gradient free energy is minimized by a Q with three very distinct
eigenvalues. This is the biaxial helix, which is the configuration for a compound which
locally has a different geometry in all three directions (e.g.: an irregular rectangular prism
or, alternatively, small rectangular “platelets”). The “axiality” of the order parameter
need not reflect the symmetries of the individual molecules, since the order parameter
reflects local average orientation, and biaxial particles can give rise to uniaxial ordering
and vice-versa. A biaxial Q reflects molecular orientation about two axes, and when this
is the case, one cannot express the free energy in terms of the director alone, since the
director only contains orientational information along one axis. Biaxiality plays an
important role in the blue phases, and they can only be explained by the given form of f
when one goes beyond the implicit uniaxial approximation which is standard in basic
liquid crystal theories.

In the limit of non-chiral nematics, the pitch is infinite, and we can see from fgradient that
the positive-definite gradient free energy then only depends on spatial derivatives of Q.
Thus the only constraint arising from the gradient terms is that Q be uniform while fbulk
selects for uniaxiality; this gives us the nematic phase. Typical liquid cholesteric liquid
crystals have rather large pitches, and a common starting point of many theories of the
blue phase, is to consider them to be slight perturbations of the helical phase in which the
uniaxial order parameter is permitted to have a slight degree of biaxiality. This new order
parameter is always more stable than the uniaxial one for cholesterics, however when the
biaxiality is slight, and the temperature is low enough, its effects are negligible and the
resulting phase can be considered to be to an excellent approximation, the “helical” one.
This is not the case, however, when we approach the clearing point.

Meiboom et al. [6] discovered that the local free energy of most cholesterics could be
reduced by a “double twist” structure in which the director twists simultaneously about
two independent directions (see Figure 7). Such a structure cannot not be stably extended
across all space, and its presence would necessarily require energetically unfavorable
disclinations (which is a singularity of the orientational ordering) between separate
double twist regions. Meiboom et al. noted, however, that as the liquid crystal approaches
the isotropic transition, the energy cost of disclinations lowers, and that sufficiently close
to the transition, a network of double twist structures stitched together by disclinations
might be globally more stable than the helical phase.

Figure 7. “Double twist” structure of the director. The director rotates when moving along
both the pitch axis and the direction perpendicular to it. The arrangement is symmetrical
around a central axis.



The double twist cylinder shown in Figure 7 can be perfectly extended along its
symmetry axis, but in the radial direction, it must have a finite average extent, since the
double twist cannot be extended over all space. Because of this, we will consider that the
double twist structures will be locally preserved in long cylindrical regions (Figure 9a).,
which are then arranged in periodical arrays. Regions of energetically favored double
twist structure must inevitably be complemented by compromised areas that are less
ideally oriented, and have strong variations in tr(Q), which are penalized by the bulk free
energy (because of deviations from the optimal tr(Q)). As the radius of the tubular
regions is increased, the variations in tr(Q) must become sharper, and the chosen radius is
the one at which the gradient energy of the interstitial regions becomes larger than that of
the helical phase, had it been present. It turns out, that this radius is roughly equal to the
pitch of the material (had it been in the helical phase) [13].

For materials with a large pitch, it is thus possible to create structures that have
orientational order that is periodic over great distances (in this case 100-5000Å). It turns
out that it is not possible to arrange double twist cylinders in a 3D array without
introducing some disclinations (for an example, see Figure 9b). The actual arrangement
of the cylinders that is chosen by the system results from a compromise between picking
the structure that maximizes the volume of the liquid crystal that is in the favored double
twist structure, while minimizing the amount and size of the disclinations between the
cylinders. Depending on the temperature, these energetic considerations give rise to the
experimentally observed simple cubic symmetrical structures for BPI, and bcc
symmetrical structures for BPII (Figure 9).

a)    b) 
Figure 8. (a) A cylindrical region of double twist structure (which is stable up to a certain
maximum radius). (b) Intersection of three double twist cylinders with an interstitial
disclination.



d)        e)
Figure 9. Arrangement of double twist cylinders as they are believed to exist in (c) BPI and
(d) BPII.

Discussion

Aside from being a curiosity of nature, the blue phase proves to be quite an interesting
system for studying the properties of systems oriented molecules. Before their discovery,
it seemed as though the Landau theory of liquid crystals was complete. It was only
because of this novel phase that the liquid crystal community went back to the theory and
reconsidered the approximations that had been made (such as the uniaxial helix form of
the order parameter Q). A careful reexamination of the same free energy revealed that
many previously overlooked phases were possible, and indeed predicted, by it.

In this regard, the blue phases are extremely interesting because they permit us to test
thermal phase transition models that are much more complicated than what is usually
seen. The stable structure is a compromise between many competing interactions that
lead to frustration giving rise to a fundamentally non-uniform phase in regions of great
stability coexist with regions of very unfavorable gradients and defects, but that is still
globally the most stable phase. Most importantly, though, is that these structure arise in
localized regions of parameter space of the same simple free energy that described the
much simpler phases. The techniques and insights gathered from the analysis of the blue
phase give us a much greater understanding of the energetics of liquid crystals, and have
permitted such developments as the theoretical predictions of new liquid crystalline
phases (such as the twisted grain boundary phase, to name one example).

Bibliography

1 P.E. Cladis, P. Pieranski and M. Joanicot, “Elasticity of blue phase I of liquid-
crystals,” Physical Review Letters 52, 542-545, 1984

2 J. Englert, H. Stark, L. Longa and H.-R. Trebin, “Influence of fluctuations on the
phase diagram of chiral nematic liquid crystals,” Physical Review E 61, 2759-2769,
2000

3 P.G. de Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press,
Oxford, 1993

4 R.N. Kleiman, D.J. Bishop, R. Pindak and P. Taborek, “Shear modulus and specific
heat of the liquid crystal blue phases,” Physical Review Letters 53, 2137-2140, 1984



5 Z. Kutnjakm C.W. Garland, J.L. Passmore and P.J. Collings, “Supercritical
conversion of the third blue phase to the isotropic phase in a highly chiral liquid
crystal,” Physical Review Letters 74, 4859-4863, 1995

6 S. Meiboom, J.P. Sethna, W.P. Anderson and W.F. Brinkman, “Theory of the blue
phase of cholesteric liquid crystals”, Physical Review Letters 46, 1216-1219, 1981

7 B. Pansu, E. Grelet, M.H. Li and H.T. Nguyen, “Hexagonal symmetry for smectic
blue phases,” Physical Review E 62, 658-666, 2000

8 (F.!Reinitzer, Monatshefte fur Chemie 9, 421-41, 1888)
9 predicted: S.R. Renn and T.C. Lubensky, “Abrikosov dislocation lattice in a model of

the cholesteric-to-smectic-A transition,” Physical Review A 38, 2132-2149, 1988;
observed: J.W. Goodby, M.A. Waugh, et al., Nature 337, 449, 1989

10 T.!Seideman, “The liquid-crystalline blue phase,” Reports on Progress in Physics 53,
659-705, 1990

11 H. Stegemeyer and P. Pollman, Molecular Crystals and Liquid Crystals 82, 123-129
12 J. Thoen, “Adiabatic scanning calorimetric results for the blue phase of cholesteryl

nonanoate,” Physical Review A 37, 1754-1759, 1988
13 D.C. Wright and N.D. Mermin, “Crystalline liquids: the blue phase,” Reviews of

Modern physics 61, 385--432, 1989
14 D.K. Yang and P.P. Crooker, “Chiral-racemic phase diagrams of blue-phase liquid

crystals,” Physical Review A 35, 4419-4423


