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The duration of interaction events in a society is a fundamental
measure of its collective nature and potentially reflects variabil-
ity in individual behavior. Here we performed a high-throughput
measurement of trophallaxis and face-to-face event durations
experienced by a colony of honeybees over their entire lifetimes.
The interaction time distribution is heavy-tailed, as previously
reported for human face-to-face interactions. We developed a
theory of pair interactions that takes into account individual vari-
ability and predicts the scaling behavior for both bee and extant
human datasets. The individual variability of worker honeybees
was nonzero but less than that of humans, possibly reflecting
their greater genetic relatedness. Our work shows how individ-
ual differences can lead to universal patterns of behavior that
transcend species and specific mechanisms for social interactions.

social network | individuality | heavy-tailed distribution

How individuals in a community interact with each other gives
rise to collective emergent properties of the community (1–

5). It reflects the individuals’ personal preference, social roles,
the external environment, and other numerous factors applica-
ble to specific context. The distribution of interevent times, or
waiting time between two consecutive events, for temporal social
networks has been much studied because of its relation to infor-
mation or disease spreading (3, 4). It has been shown that the
heavy tail in the interevent time distribution is due to a decision-
based queuing process, in which some tasks are more prioritized
than others (6, 7). In contrast, the distribution of contact dura-
tion, instead of the interevent time, and its connection to the
nature of social interactions have not been studied as much.

We have measured the duration of interactions among thou-
sands of honeybees (Apis mellifera) in a hive, well-known euso-
cial insects that are easy to experimentally manipulate. Among
many possible modes of honeybee social interaction, we focused
on trophallaxis, which is mouth-to-mouth liquid food transfer.
Trophallaxis occurs not only for feeding but also for communica-
tion (8, 9), making it a model system to study social interactions
and collective effects (10, 11). To measure the interaction time,
all of the honeybees in a colony were fitted with a barcode (12). A
high-resolution machine vision camera imaged them at the rate
of one frame per second. Then a customized algorithm detected
each interaction event by analyzing the images and identified
each bee, its position, and its orientation (12) (Materials and
Methods).

Note that all of the honeybee data used in this work were orig-
inally generated by the authors for separate studies not for the
purpose of testing our theory discussed in this paper or even to
acquire the data needed for the theory. We used all of the data
available to us, which were the trophallaxis social network data
acquired in 2013 and analyzed in ref. 12 (1164 2013, 1140 2013,
1138 2013, 1174 2013, and 1170 2013, which are trials 1 to 5 in
ref. 12) and the trophallaxis social network data acquired in 2016
from colonies with partial treatment with Juvenile Hormone ana-
logue (13, 14) (789 JHA 2016 and 757 JHA 2016) (see Materials
and Methods for more detail on the colony preparation). Our
theory works for all of them, which indicates its robustness.

Fig. 1A shows that the distribution of honeybee interaction
duration is heavy tailed. The exponents of the power law are –2.4,
–2.3, –2.2, –2.2, –2.2, –2.7, –2.0, and –2.0 for each dataset
listed in the legend from the top (1164 2013) to the bottom
(757 JHA 2016). If every bee were the same and every inter-
action happened by chance, one might naively expect to see a
peaked distribution such as a Gaussian. However, the observed
heavy-tailed distribution suggests heterogeneity or variability
among the population.

In order to improve the statistical power of our analysis,
we also examined F2F events, where honeybees were close
and oriented toward each other but not actually engaging in
trophallaxis (15). F2F events occur about an order of magnitude
more frequently than trophallaxis. F2F events include unde-
tected trophallaxis and possible antennation, but the nature of
the honeybee interaction during F2F is not as well defined as
trophallaxis. Nevertheless, being F2F is a necessary but not suffi-
cient condition for trophallaxis, so as long as the distance apart is
not larger than the length of a honeybee, it would be expected
that F2F events scale similarly to trophallaxis events. Indeed,
coarse data for temporal networks retain some statistics of the
actual interaction including heavy-tailedness of the contact dura-
tion distribution (16) (also confirmed by our results in Fig. 1A;
see 1166 F2F 2013).

In our work, the detection of trophallaxis events is esti-
mated using a two-step filtering process because we are not
able to observe directly fluid transfer through the proboscis. Our
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Fig. 1. (A) Duration of trophallaxis as well as F2F events that are not
detected as trophallaxis follows a heavy-tailed distribution. The first num-
ber in the dataset name represents the number of observed honeybees in
each colony, while the last number represents the year the experiment was
performed. Note that the number of individuals in the last two datasets is
actually smaller than what was originally observed (676 and 639 instead of
789 and 757, respectively) because we analyzed the data after applying an
additional filter to exclude the time series during which the colonies were
perturbed by the treatment of JHA, but we decided to keep the name of the
datasets. The numbers of interactions used to make the plot are 302,221,
205,787, 191,795, 259,923, 329,170, 1,207,778, 136,529, and 115,965 in the
order the datasets are listed in the legend. (B) Human face-to-face (F2F)
interaction in various settings exhibits a heavy-tailed distribution. The num-
bers of interactions used are 10,677, 19,774, 14,037, 32,425, 9,865, 77,520,
26,039, 4,591, and 33,750 in the order the datasets are listed in the legend.
In both A and B, error bars indicate the SE. In B, lower error bars for bins
with count 1 could not be drawn in logarithmic scale because it extends
to 0.

detection scheme is not subject to tracking error generated by
bees that are misoriented or have other individual variations in
visibility. Our method, described in detail in our earlier work

(12), first selects bee pairs of close enough distance and orienta-
tion toward each other. Then we apply a second filter, selecting
the bee pairs that are physically connected by proboscis through
image processing. Through this second filter, we can filter out the
pairs with inaccurate tracking of position or orientation because
those pairs would not be connected by the proboscis. Even if
there were innately poorly tracked bees, the multiple layers of
filtering minimize the detection error on the trophallaxis events.
There is quantitative evidence that there is minimal tracking
error impact on our results, even without the second filter. The
F2F dataset concerns bee pairs that satisfy only the geomet-
ric constraint regarding distance and orientation but are not
detected as being connected by the proboscis. This dataset has
not filtered out the pairs with inaccurate position and orienta-
tion through the second filter. However, as shown below, this
F2F dataset gives the same power law and scaling laws as the
trophallaxis datasets. In other words, the statistics of the data
are retained regardless of whether the data have gone through
the second filter, which is consistent with the notion that inac-
curacy due to positional tracking error was already negligible
after the first filter. Our earlier work (12) showed by subsam-
pling of the trophallaxis interaction data at different sampling
rates that the statistics of the trophallaxis interaction are robust
against subsampling and false negatives, with the statistics of
the times between trophallaxis events being robust to detection
errors. This strongly suggests that the statistics of the duration of
the trophallaxis events will also be robust.

We compared the honeybee data with human data recorded
by the SocioPatterns collaboration (16–24) to explore whether
there are universal patterns of social interaction. Fig. 1B shows
that human F2F interaction time in various settings also exhibits
a heavy-tailed distribution. The exponents of the power law are
–2.4, –2.7, –2.9, –3.4, –2.7, –3.6, –2.5, –2.9, and –2.6 for each
dataset listed in the legend from the top (Highschool 2011) to
the bottom (Workplace 2015). Such similarity across different
systems indicates an unexpected universality governing the inter-
action in social systems and suggests that a minimal model (25)
should be able to capture the salient features of the interactions.

To construct such a minimal model, we treat the social bond
between bees as an effective particle. We focus on bees here,
but the model is also applicable to humans. The bond is the
edge in the usual network representation of social interactions.
This effective particle has two states representing an interact-
ing pair and a noninteracting pair. The particle jumps from one
state to the other with a fixed rate ω in the reaction coordi-
nate, as depicted in Fig. 2. Although jumping happens in both
directions, we focus on the jumping from the interacting state
to the noninteracting state because the interaction time is the
waiting time for the first jump in that direction. The distribu-
tion of the first jump time f (t ,ω) is obtained by multiplying the
probability not to jump at each time step until time t with the
probability density to jump at time t . The first part, the probabil-
ity not to jump until t , is (1−ωdt)t/dt , where dt is the interval
for a time step. Taking the limit of infinitesimal time steps yields
limdt→0(1−ωdt)t/dt = e−ωt . The distribution of the first jump
time is then given by f (t ,ω)=ωe−ωt .

Some pairs tend to have longer interactions than others, and
this is reflected in their value of ω. To take into account this vari-
ability or heterogeneity within the community, we integrate the
jump time distribution for a fixed ω over the distribution of rates
p(ω). To determine p(ω), we use the Kramers theory for escape
over a potential barrier (26): the distribution of ω is related to
the distribution of energy barrier heights E through ω=ω0e

−E

where ω0 is a constant (26). Here we use a dimensionless energy
scale E , which is already normalized with possible fluctuations.

We propose that the barrier height distribution p(E) fol-
lows the extreme value distribution for maxima. As illustrated
in Fig. 2, a given bee has multiple candidate partners with which
to interact. Each possible pair is associated with a certain barrier
height. The pair with the highest barrier would spend more time
together because it is more difficult for the particle to escape.
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Fig. 2. Schematic picture for the theory of interaction durations. The
dotted circular area indicates the neighborhood of the center bee. The
neighbors, or the potential partners, inside the circle are connected with
the center bee by a bond. The bond between two bees is represented by
a particle in the reaction coordinate. This particle has two states represent-
ing an interacting pair and a noninteracting pair, and it changes its state
by jumping over the energy barrier E with rate ω. Among the neighbors,
the center bee is assumed to primarily interact with a bee with the highest
barrier because they form the stablest pair.

This partner is thus interpreted as the most likeable and ends up
forming a pair. Then the observed energy barrier E is the maxi-
mum among the neighbors. The distribution of the maximum is
taken to be the Fisher–Tippett–Gumbel distribution for maxima
(27, 28), which is appropriate if the parent distribution for bar-
rier heights is localized, as seems reasonable. Then we express
p(E)= (α+1)e−(α+1)Ee−e−(α+1)E

whereα is an undetermined
parameter. For large E , p(E)∼ e−(α+1)E . We take the large E
limit because the heavy-tailed behavior is observed at large t .
Using ω=ω0e

−E , we find that p(ω)∼ωα for small ω, equiva-
lent to large E . Combining this p(ω) with the exponential pair
interaction time distribution, we get

f (t)=

∫
dωp(ω)f (ω, t)∼ t−(2+α) [1]

as the interaction time distribution for the population. The
power law form suggests that the assumption about the par-
ent distribution for barrier heights is valid. More details of this
calculation are provided in SI Appendix. The quantity α in the
exponent connects the community interaction time distribution
f (t) with the distribution of barrier heights p(E).

We remark that a similar derivation for the heavy-tailed time
distribution as shown in Eq. 1 arises in the theory for defect
jumping (29) and a model of traps (30, 31) in glass. However,
the interpretation of p(E) in social interactions is different from
the analogue in disordered materials. Atoms in a glass succes-
sively hop over multiple energy barriers in a rough potential
landscape, so the integration over p(E) is an average over the
energy barriers experienced by one atom. On the other hand,
our particles for the bond between a pair jump over one energy
barrier to change their state. Thus, the integration over p(E) is
an ensemble average over the population.

Next we turn to verifications of the predictions of this the-
ory. The simple theory predicts an exponential pair interaction
time distribution. The quantile–quantile plots for pair interaction
times (Fig. S1) suggest that the pair interaction time distribu-
tions for both honeybees and humans are better expressed by
hyperexponential distributions, which are weighted sums of two
exponential distributions. The theory is not affected by this addi-
tive modification, as discussed in SI Appendix. There are so many
pairs in each colony that it is not practical to show the goodness
of hyperexponential fit for each pair separately. Therefore, we
devised a data collapse to show the fit of all pairs in one figure.
Only the pairs that yield more than seven points of evaluation
for the empirical cumulative distribution function (ECDF) were
considered. The cumulative distribution function (CDF) for a
hyperexponential function is Y (t)= 1− ge−ω1t − (1− g)e−ω2t ,
where g is the weight and ω1 and ω2 are the rates for each
exponential. We define a new variable z ≡ω1t and rewrite the
CDF as F (z , g ,ω1,ω2)≡ (1/g)

(
1−Y − (1− g)e−(ω2/ω1)z

)
=

e−z , where Y is ECDF. Then the x axis only depends on one
variable z . If the data are well fitted by this functional form, plot-
ting F (z , g ,ω1,ω2) against e−z should produce a cloud of data
points aligning with the y = x reference line.

Fig. 3 A and B show that most honeybee and human pair inter-
action times are well fitted to hyperexponential distributions.
Fig. 3 A and B, Insets, show the fit of a pair to provide some
intuition of the fitting process. The fitted CDF tends to deviate
more at small e−z , or large t , because the CDF value of the fit-
ting function approaches 1 for t→∞, while the ECDF value is 1
at the longest observed interaction time.

A second prediction from the model is the exponential bar-
rier height distribution. Although E is not a directly measurable
variable, the relation ω=ω0e

−E enables us to indirectly mea-
sure p(E) because the mean pair time associated with an energy
barrier is τ =1/ω. The relation p(E)∼ e−(α+1)E implies that
p(τ)∼ τ−(2+α) for large τ , which has the same exponent as f (t)
in Eq. 1. Therefore, comparing the exponent of the tail of f (t)
and p(τ) provides a test of the theory, in particular, the proposed
functional form of p(E).

Fig. 3 C and D demonstrate the same scaling between the tail
of f (t) and p(τ) for 1164 2013 and Primaryschool, respectively.
The comparison of scaling for seven other honeybee datasets and
eight other human datasets is shown in SI Appendix, Fig. S4. Here
τ is obtained from fitting parameters ω, not from averaging of
pair interaction times, because τ is the mean pair interaction
time associated with a single energy barrier (SI Appendix). If
we retain the full form for p(E), i.e., including the superexpo-
nential term in the Fisher–Tippett–Gumbel distribution, p(τ) is
expected to have a peak at small τ , which may explain the peak
in Fig. 3C.

One might think that the identical scaling between f (t) and
p(τ) is a consequence of the so-called stable law (32) because
τ is an average of t for pairs. Then, depending on the tail
of f (t), the distribution of τ would be given either by the
central limit theorem, i.e., a Gaussian, or by a power law
with the same exponent as f (t). However, this is not correct,
as explained in SI Appendix, because the parent distribution
of p(τ) is not f (t) but instead is the pair interaction time
distribution f (ω, t).

31756 | www.pnas.org/cgi/doi/10.1073/pnas.2002013117 Choi et al.
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Fig. 3. (A) Pair interaction time distributions for honeybee pairs are fitted to hyperexponential functions and collapsed together. The numbers of pairs used
to generate the plot are 197, 99, 328, 443, 561, 1,806, 46, and 20 in the order the datasets are listed in the legend. The pair interaction time distributions of
these pairs were fitted. (Inset) Fitting ECDF of pair interaction times of a pair from 1164 2013. (B) The same plot as A but with human pairs. The numbers
of pairs used are 37, 82, 59, 58, 39, 143, 98, 15, and 171 in the order the datasets are listed in the legend. (Inset) Fitting ECDF of pair interaction times of a
pair from Highschool 2011. (C) Comparison between the scaling of interaction time distribution and mean pair interaction time distribution for 1164 2013.
(D) The same plot as C but for Primaryschool. The number of mean pair interaction times used is the same as the number of pairs used for fitting, which is
listed in A and B. The number of interaction times used is the same as what is listed in Fig. 1. Error bars indicate the SE, and lower error bars for bins with
count 1 could not be drawn in logarithmic scale because it extends to 0.

The two energy barriers suggested by the hyperexponen-
tial pair interaction time distribution imply a multidimensional
potential landscape of the reaction coordinate. Our model
does not limit the number of barriers, allowing the pair inter-
action time distribution in principle to be an arbitrary sum∑

i giωie
−ωi t , but the weight of further barriers seems to be too

small to contribute to the dynamics. It is evident that different
pairs are characterized by different barrier heights, but whether
it is a specific pair or a specific individual that determines the
barrier height cannot be determined by the analysis so far.

To explore the effect of individuality in social interactions, we
calculated the Gini coefficient (33) for 1) the total interaction
time spent by each individual, 2) the total number of interactions
each individual had, and 3) the total number of partners with
which each individual interacted. Widely used to express inequal-
ity in economics, the Gini coefficients have recently been used to
quantify inequality in the activity level of eusocial insects (34, 35).
Fig. 4 shows a graphical representation of the results, known as
the Lorenz plot (36), for the total interaction time spent by bees

and humans. The Lorenz plots for other variables are shown in
SI Appendix, Fig. S5.

To read these results, note that in a Lorenz plot the greater
the deviation from the y = x reference line, the closer the Gini
coefficient to unity, thus indicating a greater level of inequal-
ity. More inequality in our data means a greater contribution by
individuals to the dynamics, signifying the effect of individuality.
Fig. 4A shows that the Gini coefficients for honeybees are in
the range 0.2 to 0.3, whereas for humans they are in the range
0.3 to 0.5. Thus, although individual bees are distinct, they are
not as different from each other as humans are (Fig. 4B). The
Lorenz plots and Gini coefficients for the total number of inter-
actions and total number of partners provided in Fig. S5 show the
same trend. The reduced individuality in honeybees compared to
humans might be due to the average coefficient of relatedness
being r =0.75 among workers of the same colony as the queen
was inseminated with a single male in these experiments, but
further study is needed to verify this conjecture. Since the inter-
action time is a shared value between a pair, it is nontrivial to

Choi et al. PNAS | December 15, 2020 | vol. 117 | no. 50 | 31757
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B

A

Fig. 4. Lorenz plots of the total time spent for interaction by honeybees
and humans. (A) Gini coefficients of bees are as follows: 1164 2013, 0.2373;
1140 2013, 0.2111; 1138 2013, 0.3013; 1174 2013, 0.2760; 1170 2013,
0.2698; 1166 F2F 2013, 0.2089; 789 JHA 2016, 0.1941; and 757 JHA 2016,
0.1727. The numbers of data points used in the plot are the same as
the numbers of individuals in each dataset, which are 1,164, 1,140, 1,138,
1,174, 1,170, 1,166, 676, and 639. (B) Gini coefficients of humans are as fol-
lows: Highschool 2011, 0.4333; Highschool 2012, 0.4879; Hospital, 0.5488;
Household, 0.5012; Hypertext, 0.4576; Primaryschool, 0.2799; SFHH, 0.4937;
Workplace 2013, 0.4493; and Workplace 2015, 0.3753. The numbers of
individuals used are 126, 180, 75, 75, 113, 242, 403, 92, and 217.

completely separate the contribution of individuals. The effect of
individuality in social interactions is therefore an open question
but one that we have provided the tools to explore. Nevertheless,
along with earlier studies of possible chemosensory mechanisms
for individual identification (37), our results provide confirma-

tion and quantification of the conjecture from recent work on
the personality of honeybee workers as described in ref. 38 that
some individuals are more likely to be interactive and engaged in
food sharing, while others are less so.

The recently discovered heterogeneous food distribution in
the Camponotus sanctus ant colony (39) may suggest individual
variations in workers of this other well-known eusocial insect.
Although the ratio of transferred food volume to maximal trans-
ferable volume during trophallaxis when the donor is a forager
is measured to follow the same exponential distribution with the
same parameter as the case when the donor is a nonforager (39),
it does not necessarily mean the lack of individuality in ants
because the individual variations may have been averaged out
as the data of many pairs were analyzed collectively. If the data
were analyzed for each pair, individual variations may have been
observed. It is not the scope of our work, but it would be possi-
ble to study the effect of individuality on the food mixing due to
trophallaxis of eusocial insects.

We have shown that high-resolution tracking can yield detailed
multiscale information about the interactions and behavior of
individuals within a community. Our results suggest that individ-
ual differences can lead to patterns of behavior that are universal
and transcend species, context, and specific mechanisms for
social interactions.

Materials and Methods
Animals. This All experiments took place at the University of Illinois Bee
Research Facility, Urbana, Illinois. Experiments for 1164 2013, 1140 2013,
1138 2013, 1174 2013, and 1170 2013 were performed from July to Octo-
ber 2013. Dataset 1166 F2F 2013 was obtained from the same colony as
1164 2013. Each experiment started with a colony of 1,200 one-day-old
adult worker honeybees (A. mellifera), but the activities of 1,164, 1,140,
1,138, 1,174, 1,170, and 1,166 bees were detected. Datasets 789 JHA 2016
and 757 JHA 2016 were collected in September and October 2016. Each
experiment in 2016 started with a colony of 800 one-day-old adult worker
honeybees, but the activities of 789 and 757 bees were detected. After fil-
tering out the period of perturbation caused by the treatment of JHA, we
detected the activities of 676 and 639 bees. The details of the experiments
in 2013 are described in ref. 12, and here we portray the experiments in
2016 (13). The identification of each honeybee and the detection of trophal-
laxis were done in the same way as the 2013 experiments (12). The datasets
from the 2016 experiments were collected as a part of a different study (13),
but no difference with regard to the scaling law exposed in the paper was
detected.

To minimize the effects of genetic variation on behavioral analyses, all
experiments used adult worker bees from colonies headed by queens that
had each been instrumentally inseminated with semen from a single drone.
Due to haplodiploidy, this results in an average coefficient of relatedness of
0.75. Honeycomb frames containing pupae were removed from colonies 1
to 2 d prior to the beginning of each experiment and maintained in a dark
incubator at 34◦C and 50% relative humidity (13).

Observation Hive Construction and Monitoring. Eight hundred 0- to 24-h-old
adult workers were cold anaesthetized and tagged (12). The bees were
then placed with a barcoded, naturally mated queen into a glass-walled
observation hive containing a single one-sided honeycomb frame. Colonies
were provided with 300 g of honey and 30 g of artificial bee bread (nine
parts honey, nine parts ground pollen, and two parts water). To prevent
bees from spreading the honey onto the glass observation window, cells
containing honey were covered in wax foundation scented with 5 mL of
strawberry or orange food extract (McCormick & Company Inc.) to estab-
lish hive identity, thereby facilitating homing during orientation flights and
foraging and preventing intracolony conflict during pharmacological treat-
ments (Juvenile Hormone Analogue Treatments). Observation hives were
housed in a dark room heated to 32◦C and maintained at 50% humidity.
Images were captured at a rate of one frame per second over the course
of the entire experiment; infrared lighting illuminated the colony during
periods of image capture from both the front and rear of the hive (via
a blacklight) (12). Starting on the second night, the colony entrance was
opened to allow the bees access to the exterior environment (12). The glass
window of the observation hive was changed twice daily (ca. 9 AM and 8
PM) to prevent debris from obscuring the colony, but the hives were oth-
erwise left undisturbed except during pharmacological treatments (Juvenile
Hormone Analogue Treatments).

31758 | www.pnas.org/cgi/doi/10.1073/pnas.2002013117 Choi et al.
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The barcode and trophallaxis identification was performed as detailed
in ref. 12. During the trophallaxis detection, potential interaction partners
were first selected according to the geometric constraint. First, the distance
between the most anterior point of each bee’s body on the anteroposterior
axis was measured, and a bee pair was selected if the distance was between
3.4 and 6.9 mm. Then the selected pair was considered as the potential
interaction partners if the angle between each bee’s barcode orientation
vector was between 90◦ and 180◦. Among the potential partners, the pairs
physically connected by the proboscis were detected as doing trophallaxis.
On the other hand, the pairs satisfying the geometric constraint but not
being connected by the proboscis were classified as F2F. The analyzed F2F
dataset used close parameters of the geometric constraint. Identical param-
eters were used in trophallaxis detection for the 2013 experiment (12), and
the more detailed description of the detection procedure is in ref. 12.

Juvenile Hormone Analogue Treatments. After 5 d of observation, colonies
were dismantled, and the bees were placed in Plexiglas cages. The glass
observation window was replaced with a transfer glass with removable
portholes that could be centered over each sector, and the colony was
placed in an area lit by a far-red LED light (Smart Vision Lights). Since
far-red wavelengths are barely perceptible to bees, this allowed them to
be transferred individually to the Plexiglas cage via forceps without risk
of escape. Bees were then cold anaesthetized in groups of three and ran-
domly assigned to one of three treatments: a Juvenile Hormone analogue
(JHA) treatment, an acetone vehicle treatment, and a cold-anaesthetized
sham treatment (13). Bees in the JHA group were treated topically with
the JHA methoprene [200 ng per bee, a dose that is known to induce
precocious foraging in bees (40)] dissolved in 1 µL of acetone and admin-
istered to the abdomen. The vehicle group was treated with 1 µL of
acetone administered to the abdomen, and the sham treatment group was
cold anaesthetized but otherwise untreated. The bees were also painted

with a color code (Testor’s Corporation) designating their treatment and
photographed, allowing their barcode identification to be linked to their
treatment (13). After all of the bees in a colony recovered from anaestheti-
zation, they were returned to their observation hive. Because the colony was
physically disturbed, trophallaxis observations from the day of the experi-
ment were not used in any downstream analyses. Monitoring of the colony
continued for 7 d after the JHA treatments, after which the colony was dis-
assembled. More details on the JHA treatment and related experiments are
in ref. 13.

Code Availability
The custom software to produce printable barcode images, detect bar-
codes in digital images, and detect trophallaxis is available at https://github.
com/gernat/btools. The MATLAB codes used to analyze the data are
available at https://github.com/schoi8/heavytail scaling. The MATLAB code
used to calculate the Gini coefficients and to generate the Lorenz plots
is available at https://www.mathworks.com/matlabcentral/fileexchange/
28080-gini-coefficient-and-the-lorentz-curve.

Data Availability. The honeybee interaction datasets from the 2013
experiments (12) analyzed in this study are available at http://www.
beemonitoring.igb.illinois.edu. The F2F dataset is available at the Illinois
Data Bank with the identifier https://doi.org/10.13012/B2IDB-4021786 V1.
The honeybee interaction datasets from the 2016 experiments (13) analyzed
in this study are available at the Illinois Data Bank with the identi-
fier https://doi.org/10.13012/B2IDB-2712449 V1. The human F2F interaction
datasets from the SocioPatterns Collaboration are available at http://www.
sociopatterns.org/datasets/.
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28. E. J. Gumbel, Les valeurs extrêmes des distributions statistiques. Ann. Inst. Henri
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Supporting Information Text11

1. Quantile-quantile plots of the pair interaction time distribution12

Our model predicts the pair interaction time distribution to be exponential. We have generated the quantile-quantile (QQ)13

plots of pair interaction times of honeybees and humans to verify the prediction. If the data followed the proposed probability14

density, a QQ plot would show a linear line. QQ plot was meant to be a preliminary test to examine the probability density15

of the pair interaction times, so only a few pairs from each dataset have been tested. The pair with the most number of16

interactions from each dataset has been chosen to be demonstrated here for clearer examination of the distribution.17

As shown in Fig. S1, although some pair interaction times appear to be exponential, there are data that deviate for long18

times. The deviation is always upward, which implies that it is not due to statistical fluctuations but is instead a systematic19

effect. The upward deviation indicates that the actual probability density decays more slowly than the proposed one. However,20

even the deviating data align well with the reference line for short times. The deviating region at long times also looks linear21

although it does not lie on the reference line. The linearity suggests that the deviating region is exponential as well, but with22

a slower decaying rate than the short time region. A weighted sum of two exponential distributions, sometimes known as a23

hyperexponential distribution, exhibits the same behavior. Its limiting behavior at small values of the argument is the faster24

decaying of the two summed exponentials whilst its limiting behavior at large values is the other one. Therefore, we deduce25

that the pair interaction time distribution is hyperexponential, and is well approximated by just two terms.26

2. Calculation of the interaction time distribution.27

As discussed in the main text, the probability density of the rates is p(ω) ∼ ωα. Integrating the pair interaction time distribution28

over the rates gives29

f(t) =
∫ ε

0
dωp(ω)f(ω, t) =

∫ ε

0
dωωα+1e−ωt = t−(2+α)γ(2 + α, εt) [S1]30

where γ(a, z) ≡
∫ z

0 t
a−1e−tdt is the incomplete gamma function. Since p(ω) ∼ ωα is for small ω limit, the integration is31

performed up to a finite value ε. γ(a, z) approaches a constant Γ(a) ≡
∫∞

0 ta−1e−tdt as z →∞ (a is fixed in our case), which32

means that equation S1 would become f(t) ∼ t−(2+α) for large εt. γ(a, z) starts to saturate to a constant value at z of order33

1. Therefore, the large εt condition translates into t > 1/ε. We assume ε to be small, but it is the largest value of ω in34

the population (equation S1). So the condition t > 1/ε is satisfied for most t, and we observe the heavy-tailed distribution35

f(t) ∼ t−(2+α).36

The pair interaction time distribution turns out to be better represented by a hyperexponential distribution than an37

exponential distribution. However, this modification does not affect the final result f(t) ∼ t−(2+α). Now the pair interaction38

time distribution is fpair(t) = gω1e
−ω1t + (1− g)ω2e

−ω2t where g is a weight on one of the two exponential terms. Since we39

now have two rates ω1 and ω2 with relation ω1 > ω2, the integration becomes40

f(t) =
∫ ε

0
dω1p(ω1)

∫ ω1

0
dω2p(ω2)

{
gω1e

−ω1t + (1− g)ω2e
−ω2t

}
. [S2]41

The first term is calculated as42 ∫ ε

0
dω1ω

α
1

g

α+ 1ω
α+2
1 e−ω1t = g

α+ 1 t
−(3+2α)γ(3 + 2α, εt) ∼ t−(3+2α). [S3]43

The last asymptotic relation is for large t. Here “large t” means t > 1/ε as stated in the previous paragraph. The first integral44

of the second term gives us (1− g)t−(2+α)γ(2 + α, ω1t). Then the second term is calculated as45

(1− g)t−(2+α)
∫ ε

0
dω1ω

α
1 γ(2 + α, ω1t) ∼ t−(2+α) [S4]46

for large t because γ(2 + α, ω1t) is essentially a constant for that limit. Therefore, the interaction time distribution for the47

whole population becomes48

f(t) ∼ At−(3+2α) +Bt−(2+α) ∼ t−(2+α) [S5]49

where A and B are constants. As shown in equation S5, the scaling of f(t) does not change even after the modification of the50

pair interaction time distribution.51

Although we observe only two energy barriers, hence a hyperexponential pair interaction time distribution, the theory in52

principle could allow the pair interaction time distribution to be an arbitrary sum of exponential distributions
∑

i
giωie

−ωit.53

The same calculation as above gives f(t) ∼ t−(2+α) in this case as well.54
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Fig. S1. Quantile-quantile plots of the most frequently-interacting pair from each honeybee and human dataset. If the data followed the proposed distribution, the data points
would lie on the dashed reference line.
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Fig. S2. Histogram of R2 of fitting of the pair interaction time distribution to hyperexponential distribution for all honeybee and human datasets. For all figures, error bars
indicate the standard error.
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3. Fitting of the pair interaction time distribution to the hyperexponential distribution.55

We have fitted the empirical cumulative distribution function (ECDF) of the pair interaction times to the cumulative distribution56

function (CDF) of a hyperexponential distribution Fpair(t) = 1− ge−ω1t − (1− g)e−ω2t. Fig. S2 shows the histogram of R2
57

values of the fitting. It is not a single value but a distribution of values because fitting has been done to each pair and R2 has58

been collected from each pair.59

As shown in Fig. S2, most values of R2 are close to 1, which means that the pair interaction time distributions are well60

represented by a hyperexponential distribution.61

Fig. S3 shows the histogram of weight g on the first exponential term in the hyperexponential distribution. Again it shows62

not a single value but a distribution of values because the fitting has been done for each pair.63

The peak near 1 in Fig. S3a-f shows that one of the two exponential terms has a much higher weight than the other in64

these datasets. On the other hand, other datasets show more uniform distributions, signifying that both exponential terms,65

or both energy barriers, have non-negligible effect on many pairs. The broad distributions in Fig. S3i-q suggest that the66

multi-dimensionality of the potential landscape of social interaction is more prominent in humans than in honeybees. Yet, as67

shown in Fig. S3g and h, honeybee colonies with partial JHA treatment exhibit similar distributions of weights as humans.68

Despite the robust heavy tail in the interaction time distribution, Fig. S3 shows that the presence of honeybees with JHA69

treatment does influence the social interaction of honeybees. The precise way that it affects the honeybee social interactions70

needs further study and is beyond the scope of this work.71

4. Exponential barrier height distribution.72

Our model predicts that the barrier height distribution is the extreme value distribution for maxima. However, since the73

heavy tail at large time is dominated by high energy barriers, we take the large barrier height limit and obtain the exponential74

distribution p(E) ∼ e−(α+1)E where E is the energy barrier height in units of an effective energy scale that depends on details75

of social interactions that are outside the level of description of the present theory and α is some parameter. Using Kramers’76

rate formula ω = ω0e
−E where ω0 is some constant, we express the mean pair interaction time distribution as p(τ) ∼ τ−(2+α).77

It has the same scaling as the interaction time distribution f(t) ∼ t−(2+α). So by comparing the exponent of f(t) and p(τ), we78

verify the exponential energy barrier height distribution.79

Fig. S4 shows the scaling of the probability densities of interaction time f(t), mean pair interaction time from fitting p(τij)80

and mean pair interaction time from averaging p(τi) for all honeybee and human datasets. Here the index i labels a pair,81

and the index j labels an energy barrier. τij is the mean escape time for each energy barrier and is obtained from fitting of82

the pair interaction time distribution. With this index notation, CDF of a hyperexponential distribution to which we have83

fitted ECDF of the pair interaction time distribution is written as Fi(t) = 1− gi1e−ωi1t − gi2e−ωi2t where gij is the weight84

with gi2 = 1− gi1 and ωij is the rate of each exponential term. These gi1, ωi1 and ωi2 are fitting parameters. We obtain two85

mean pair interaction times τi1 and τi2 for each pair i by taking the reciprocal of ωi1 and ωi2 respectively. On the other hand,86

τi is average of all interaction times for a pair. So τi = 1
ni1+ni2

(∑ni1
k=1 ti1k +

∑ni2
k=1 ti2k

)
where tijk is the interaction time,87

the index k labels each interaction event, and nij is the number of interactions associated with each energy barrier j. In this88

notation, the mean pair interaction time from fitting is τij = 1
nij

∑nij

k=1 tijk. So the relation between τij and τi is written as89

τi =
∑

j
gijτij where the weight is gij ≡ nij/

∑
j
nij .90

In Fig. S4, data points that extend to very large values (such as of order of 1014 seconds) were omitted because they are91

an artifact from fitting. These outliers correspond to one or two pairs out of all analyzed pairs in the colony. The artifact92

arises because the pair interaction time distribution for some pairs is better described by an exponential distribution than a93

hyperexponential distribution. In such a case, ωi2 takes a very small value close to 0 because 1− gi1e−ωi1t − (1− gi1)e−ωi2t →94

gi1(1 − e−ωi1t) for ωi2 → 0. Then taking the value of gi1 close to 1 gives us 1 − e−ωi1t which is CDF of an exponential95

distribution. ωi2 → 0 corresponds to τi2 → ∞, which explains the large τij ’s in some datasets. The pair interaction time96

distributions that yield such large τij indeed have gij values close to 1 and are fitted well to exponential distributions.97

For all datasets, p(τij) exhibits the same scaling as f(t), verifying the exponential distribution of energy barriers. On the98

other hand, as shown in Fig. S4l and n, p(τi) doesn’t show the same scaling for some datasets, and this feature is discussed in99

the next section.100

5. The mean pair interaction time distribution and the stable law.101

In this section, we discuss the difference between the two kinds of mean pair interaction time distributions p(τij) and p(τi) to102

emphasize that p(τij) is the right distribution to use. τij represents the mean time needed to jump over an energy barrier103

j, while τi is the average of the whole pair interaction times. So the quantity associated with the energy barrier E through104

ω = ω0e
−E is τij . It would be more accurate to write the Kramers rate formula as ωij = ω0e

−Eij according to this notation. τi105

is the normalized linear sum of τij ’s.106

It is very tempting to use τi instead of τij because simply averaging the pair interaction times is much easier than fitting107

the pair interaction time distributions. Fig. S4 shows whether it matters which mean pair interaction time we use; while p(τi)108

has the same scaling as p(τij) and thus as the population interaction time distribution f(t) for most datasets, it is not the case109

for Household (Fig. S4l) and Primaryschool (Fig. S4n). The deviation of p(τi) is clearer in Primaryschool (Fig. S4n) because110

of better statistics associated with the larger dataset. These two particular datasets differ from the rest by having f(t) that111
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Fig. S3. Histogram of weight g in hyperexponential fitting of the pair interaction time distribution for all honeybee and human datasets. g can only be between 0.5 and 1. For all
figures, error bars indicate the standard error.
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Fig. S4. Comparison of scaling between the interaction time distribution and the mean pair interaction time distributions for all honeybee and human datasets. The probability
densities of mean pair interaction times obtained by different methods are separately plotted. From a to q, the number of mean pair interaction times from averaging used to
generate the plot is 200723, 143571, 129653, 174317, 212685, 472914, 88441, 76810, 1710, 2220, 1139, 891, 2196, 8316, 9889, 754, 4273, which is the same as the number
of detected pairs. The number of mean pair interaction times from fitting used is 197, 99, 328, 443, 561, 1806, 46, 20, 37, 82, 59, 58, 39, 143, 98, 15, 171, which is the same as
the number of pairs used for fitting. For all figures, error bars indicate the standard error. Some error bars are not visible because they are smaller than the marker size. Lower
error bars for bins of count 1 could not be drawn on a logarithmic scale.
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decays faster than t−3; the exponent of f(t) of Household is -3.4 and that of Primaryschool is -3.6. The other datasets have112

f(t) with exponents from -2 to -3, with specific values are provided in the main text.113

Now we explain why the value of the exponent of f(t) is relevant to whether or not p(τi) has the same scaling as p(τij)114

by using the so-called stable law (S1), sometimes referred to as the generalized central limit theorem. A probability density115

is said to be stable if a linear combination of independent and identically distributed (i.i.d.) random variables drawn from116

this probability density is also a random variable from the same probability density up to location and scale parameters. The117

normal distribution is a well-known example of a stable distribution. The stable law states that the probability density of118

normalized sums of i.i.d. random variables converges to a stable distribution (S1), and specifies the conditions that determine119

the appropriate stable distribution. In our case, the random variables are simply the pair interaction times.120

We are interested in a set of random variables, drawn from an empirical probability distribution that we will call the parent121

or source distribution. We wish to know what will be the probability distribution for a linear combination of these variables. If122

the parent distribution is stable, then the stable law will imply that the linear combination is also distributed according to the123

same distribution. If not then it will be distributed according to a different distribution.124

The distribution of the linear combination of random variables depends on the asymptotic behavior of the parent distribution.125

If the parent distribution f(x) has the asymptotic behavior f(x) ∼ x−(α+1) with α ≥ 2 for large x, the distribution of the126

sums converges to a normal distribution. This result is the central limit theorem. On the other hand, if 0 < α < 2, the parent127

distribution itself is stable, so the limit distribution of the sums converges to the parent distribution x−(α+1).128

In our case, the parent distribution is p(τij), and the distribution of the normalized sums is p(τi). The datasets with the129

same scaling of p(τij), p(τi) and f(t) all have f(t) with exponents from -2 to -3. According to the theory in the main text, f(t)130

and p(τij) always have the same exponents, which is verified by all the datasets in Fig. S4; thus p(τij) has exponents in the131

range from -2 to -3. It can be re-written as p(τij) ∼ τ
−(α+1)
ij with 1 < α < 2. Indeed, we see that α is in the range where132

p(τij) is stable, and so we expect the same scaling between p(τi) and p(τij), assuming that the variables are indeed i.i.d. In133

conclusion, f(t) has the same scaling as p(τij) due to our theory, while p(τij) and p(τi) have the same scaling because p(τij) is134

the parent distribution of p(τi). Thus all three variables have the same scaling when α+ 1 is in the range from -2 to -3.135

On the other hand, Household (Fig. S4l) and Primaryschool (Fig. S4n) have f(t), and thus p(τij), with exponents -3.4136

and -3.6 respectively. These exponents correspond to α + 1. For these datasets, α > 2, showing that p(τij) is not a stable137

distribution. Therefore, the stable law predicts that p(τi) does not have the same scaling as p(τij) and f(t). The deviation of138

p(τi) from the other two distributions in Fig. S4l and n is consistent with this prediction.139

Although the stable law predicts that the probability density of the normalized sum of i.i.d. random variables that are140

not stable converges to a Gaussian, p(τi) is not Gaussian as shown in Fig. S4l and n. It is not Gaussian because the number141

of summed τij is only two, as there are two energy barriers for each pair. The convergence to a Gaussian only occurs if the142

number of summands is large (e.g. more than 10). In addition, even if the number of summands were large, burstiness of143

temporal social networks of honeybees and humans suggests that τij could be not i.i.d. Then p(τi) would be expected to exhibit144

an exponential tail rather than a Gaussian tail, because the distribution of the normalized sum of correlated random variables145

converges to the Fisher-Tippett-Gumbel distribution, which has an exponential tail (S2).146

In summary, f(t) and p(τij) always have the same scaling, as predicted by our theory. However, as demonstrated in Fig.147

S4l and n, p(τi) may or may not have the same scaling as f(t) depending on the exponent that characterizes the asymptotic148

behavior of f(t), in accord with the stable law. This observation shows that we cannot ignore the fact that there are two energy149

barriers per pair, and we indeed need to obtain the mean pair interaction times by fitting the pair interaction time distribution150

to the hyperexponential function.151

Note that the stable law does not hold between f(t) and p(τij) although they have the same exponent. τij is a normalized152

sum of pair interaction times associated with one energy barrier whose probability density is exponential. So the parent153

distribution for τij is not f(t). Furthermore, each τij has its own parent distribution labeled by indices i and j, which is an154

exponential distribution with different parameter values. The stable law concerns the normalized sum of random variables from155

the same probability density. Therefore, one cannot predict the form of p(τij) from f(t).156

Conversely, our theory is only able to predict the form of f(t) from p(τij) precisely because f(t) is not the parent distribution157

for τij and so the stable law does not hold between them. As a result, the scaling of p(τij) is purely determined by p(Eij).158

6. Lorenz plots.159

Heterogeneity or variability in the population is represented by the barrier height distribution in our model. However, the160

model does not dictate whether the barrier height is determined by a specific pair or a particular individual, which poses the161

question about the individuality in social interaction. To explore the effect of individuality in a way that is independent of our162

theory, we have calculated the Gini coefficients (S3) for the total number of interactions and the total number of partners in163

addition to the total interaction time shown in the main text. We have chosen the Gini coefficient to quantify the different164

degree of dominance in social interactions by each individual because we are analyzing interaction times, which are shared165

between a pair, and thus it is nontrivial to decouple individual contribution.166

Fig. S5 shows the Lorenz plots (S4) for the total number of interactions and the total number of partners of honeybees167

and humans. The larger deviation from the reference line in Fig. S5b and d than in Fig. S5a and c respectively indicates that168

individual differences are larger in human communities than honeybee communities. However, Fig. S5a and c still show a169

deviation from the straight line, signifying that honeybee individuals are different. This result still does not tell us how much170

individuality contributes to social interaction. Given that the energy barrier is a pairwise property, we can only tell that the171
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Fig. S5. Lorenz plots for total number of interactions and total number of partners for honeybees and humans. a, Gini coefficients for total number of interactions of honeybees
are following. 1164_2013: 0.2125, 1140_2013: 0.1823, 1138_2013: 0.2526, 1174_2013: 0.2462, 1170_2013: 0.2362, 1166_F2F_2013: 0.1949, 789_JHA_2016: 0.1609,
757_JHA_2016: 0.1667. b, Gini coefficients for total number of interactions of humans are following. Highschool_2011: 0.3509, Highschool_2012: 0.4361, Hospital: 0.5293,
Household: 0.4992, Hypertext: 0.4089, Primaryschool: 0.2595, SFHH: 0.4410, Workplace_2013: 0.4011, Workplace_2015: 0.3426. c, Gini coefficients for total number of
partners of honeybees are following. 1164_2013: 0.1758, 1140_2013: 0.1619, 1138_2013: 0.2222, 1174_2013: 0.2081, 1170_2013: 0.1897, 1166_F2F_2016: 0.0916,
789_JHA_2016: 0.1284, 757_JHA_2016: 0.1301. d, Gini coefficients for total number of partners of humans are following. Highschool_2011: 0.2612, Highschool_2012:
0.2538, Hospital: 0.2828, Household: 0.2498, Hypertext: 0.2643, Primaryschool: 0.2215, SFHH: 0.3474, Workplace_2013: 0.2537, Workplace_2015: 0.2243.
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pairwise heterogeneity is essential for the heavy tail to appear in the interaction time distribution, as demonstrated in this172

report, but whether the pairwise heterogeneity is purely a property of a pair independent of individuals forming the pair is still173

open for further study.174
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