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Hidden Markov models are a sophisticated and flexible statistical tool for the study of 
protein models. Using HMMs to analyze proteins is part of a new scientific field called 
bioinformatics, based on the relationship between computer science, statistics and 
molecular biology. Because of large government-sponsored projects like the Human 
Genome Project in the United States, there has been an exponential increase in the 
quantity of data available about proteins, DNA, and RNA. Traditional lab methods of 
studying the structure and function of these molecules are no longer able to keep up with 
the rate of new information. As a result, molecular biologists have turned to statistical 
methods capable of analyzing large amounts of data, and to computer programs which 
implement these methods 
 
Hidden Markov models (HMMs) offer a more systematic approach to estimating model 
parameters. The HMM is a dynamic kind of statistical profile. Like an ordinary profile, it 
is built by analyzing the distribution of amino acids in a training set of related proteins. 
However, an HMM has a more complex topology than a profile. It can be visualized as a 
finite state machine. 
 
Finite state machines typically move through a series of states and produce some kind of 
output either when the machine has reached a particular state or when it is moving from 
state to state. The HMM generates a protein sequence by emitting amino acids as it 
progresses through a series of states. Each state has a table of amino acid emission 
probabilities similar to those described in a profile model. There are also transition 
probabilities for moving from state to state. < please refer to Figure 1 > 
 
Figure 1 shows one topology for a hidden Markov model. Although other topologies are 
used, the one shown is very popular in protein sequence analysis. Note that there are 
three kinds of states represented by three different shapes. The squares are called match 
states, and the amino acids emitted from them form the conserved primary structure of a 
protein. These amino acids are the same as those in the common ancestor or, if not, are 
the result of substitutions. The diamond shapes are insert states and emit amino acids 
which result from insertions. The circles are special, silent states known as delete states 
and model deletions. Transitions from state to state progress from left to right through the 
model, with the exception of the self-loops on the diamond insertion states. The self-
loops allow deletions of any length to fit the model, regardless of the length of other 
sequences in the family. 
 
Any sequence can be represented by a path in the model. The probability of any 
sequence, given the model, is computed by multiplying the emission and transition 
probabilities along the path. In order to avoid floating point errors etc during 
computations, its best to transform the probabilities to their logarithms. The resulting 
score is called the raw score of the sequence, given the HMM.  



 
It might be the case that there may be many paths for going from one sequence to 
another. Then we would have to add up the probabilities of each path. A brute force 
calculation of this problem is computationally unfeasible, except in the case of very short 
sequences. Two good alternatives are to calculate the sum over all paths inductively using 
the forward algorithm, or to calculate the most probable path through the model using the 
Viterbi algorithm. Both algorithms are described below 
 
The Viterbi model tries to first find out the most probable path and then the probability of 
the sequence given the HMM model is computed by multiplying all probabilities along 
the path. What the algorithm basically does is that at every stage in its journey, it tries to 
figure out the most probable path leading from a particular amino acid�s emission to 
another�s.  It selects the most probable path to go from one amino acid emission to 
another amino acid emission after having compared the probability scores corresponding 
of each path. The algorithm does the above every time it wants to go from one amino acid 
to another. The resultant path that stretches along the whole sequence of amino acids is 
said to be the most probable path.  
 
The algorithm employs a matrix. The columns of the matrix are indexed by the states in 
the model, and the rows are indexed by the sequence. Deletion states are not shown, 
since, by definition, they have a zero probability of emitting an amino acid. The elements 
of the matrix are initialized to zero. Then the scheme which has been described in general 
terms in the above paragraph is used to get a matrix with zeroes in all positions except for 
the ones that correspond to the most probable path. From the final matrix, we can not 
only read out the most probable path but also by multiplying the non-zero entries in the 
matrix, and taking the log, we can calculate the raw score.   
 
In the forward algorithm, the strategy is to sum over all path inductively and after that 
decide which is the most probable path and what its raw score is. Therefore, what this 
algorithm does is that at every stage it tries to sum over the probabilities of all the paths 
leading from one amino acid emission to another amino emission < instead of taking the 
max as the Viterbi algorithm did >. It does this recursively for each leap from one amino 
acid emission to another. Therefore, at the end of the day, we end up with the summed 
over probability of generating the required sequence of amino acids.  
 
In conclusion, we note that the Viterbi algorithm tells us only the most probable path and 
its raw score while the forward algorithm investigates the entire phase space with regard 
to possible paths and gives us the total probability of generating the string of amino acid 
emissions. The Viterbi algorithm is more economical in terms of computation and is 
therefore faster because it investigates only a part of the phase space corresponding to the 
possible paths. 
 
The making of an HMM  
Another tricky problem is how to create an HMM in the first place. It is necessary to 
estimate the amino acid emission distributions in each state and all state-to-state 
transition probabilities from a set of related training sequences. 



 
 If the state paths for all the training sequences are known, the emission and transition 
probabilities in the model can be calculated by computing their expected value. This is 
done by observing the number of times each transmission or emission occurs in the 
training set and dividing by the sum of all the transmission probabilities or all the 
emission probabilities. 
 
If the state paths are unknown, finding the best model given the training set is an 
optimization problem which has no closed form solution. It must be solved by iterative 
methods. 
 
The algorithms used to do this are closely related to the scoring algorithms described 
above. The goal is to find model parameters which maximize the probability of all 
sequences in the training set. In other words, the desired model is a model against which 
all the sequences in the training set will have the best possible scores.  < This is however 
not a consistent thing to do because it will completely depend on the suitability of the 
training sequence. There would be no real justification for choosing a particular training 
set other than it gives the answers we are looking for and it will give rise to a guessing 
game > 
 
The parameters are re-estimated after every iteration by computing a score for each 
training sequence against the previous set of model parameters. 
 
Let us now describe two algorithms for the above �  
The Baum-Welch algorithm is a variation of the forward algorithm described earlier. It 
begins with a reasonable guess for an initial model and then calculates a score for each 
sequence in the training set over all possible paths through this model . During the next 
iteration, a new set of expected emission and transition probabilities is calculated, as 
described above for the case when state paths are known. The updated parameters replace 
those in the initial model, and the training sequences are scored against the new model. 
The process is repeated until model convergence, meaning there is very little change in 
parameters between iterations. 
 
The Viterbi algorithm is less computationally expensive than Baum-Welch. As described 
in the previous section, it computes the sequence scores over the most likely path rather 
than over the sum of all paths and therefore saves in computation and is faster but since it 
doesn�t investigate the entire phase space, it is not as rigorous.  
 
However, there is no guarantee that a model built with either algorithm has parameters 
which maximize the probability of the training set. As in many iterative methods, 
convergence indicates only that a local maximum has been found. Several heuristic 
methods have been developed to deal with this problem. One approach is to start with 
several initial models and proceed to build several models in parallel. When the models 
converge at several different local optimums, the probability of each model given the 
training set is computed, and the model with the highest probability wins. Another 
approach is to add noise, or random data, into the mix at each iteration of the model 
building process. Typically, an annealing schedule is used. The schedule controls the 



amount of noise added during each iteration. Less and less noise is added as iterations 
proceed. The decrease is either linear or exponential. The effect is to delay the 
convergence of the model. When the model finally does converge, it is more likely to 
have found a good approximation to the global maximum. 
 
Sequence Weighting 
 
The selection of a suitable training set is very important when it comes to building a good 
HMM. If there is a small group of sequences in the training set which are highly similar, 
the model will overspecialize to the small group. To prevent this, sequence weighting is 
done in which sequences which do not belong to the highly similar group are given a 
greater weight, and therefore a greater importance. In order to do this one way is to first 
construct an alignment tree for the different sequences from which we can read off the 
sequences which don�t belong to the highly similar groups and therefore should be given 
greater weight. But in order to build this tree we would have to use some other method of 
sequence alignment.  
 
There is a way to do things so that we don�t have to use a different alignment technique 
for constructing the tree. This approach is called the maximum discrimination weighting. 
In this method, weights are estimated iteratively while the model is being built. After 
each iteration in the model building process, the sequences in the training set are scored 
against the current model. Weights are assigned to each sequence, with poorly scoring 
sequences receiving the highest valued weights. During the next iteration, these 
sequences get more importance than sequences which had good scores during the 
previous round. The process repeats until the model converges 
 
A third scheme of weighting is based on trying to make the statistical spread in the model 
as uniform as possible. There are also other schemes. It is not possible to say which is the 
best possible scheme. The scheme that we choose has to be specific to the model and the 
group of proteins we want to investigate.  
 
Uses of HMMs 
 
HMMs are used for classifying sequences. The method is to build to build an HMM with 
a training set of known members of the class, and then to compute the score of all 
sequences in the database. HMMs are also used to create a  multiple alignment from a 
group of unaligned sequences.  
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Figure 1. A possible hidden Markov model for the protein ACCY. The protein is 
represented as a sequence of probabilities. The numbers in the boxes show the 
probability that an amino acid occurs in a particular state, and the numbers next 
to the directed arcs show probabilities which connect the states. The probability 

of ACCY is shown as a highlighted path through the model.  

 


