
Multiple Alignment with Hidden Markov Models

Kalin Vetsigian

November 15, 2001

Multiple alignment of sequences is an important problem in bioinformatics.
For example, multiple alignment of proteins belonging to the same family can
provide valuable information for the common protein structure. Looking at
a multiple alignment one can identify patterns which are not obvious if one
looks at just pairwise alignments between members of the family. Traditional
alignment schemes first choose a scoring matrix and gap penalties and then
use dynamic programming which gives exact result in O(N2) operations for
two sequences of length N. For multiple alignment of K sequences dynamic
programming requires O(NK) operations, which is exponential in K. Therefore
the algorithm is not feasible for multiple alignment of more than a few sequences.
On the other hand, protein families often contain hundreds of sequences. To
avoid the problem various heuristic algorithms were introduced.

However, it is often the case that the solution to a multiple alignment prob-
lem depends strongly on the scoring scheme. This poses the question of how
to choose the most biologically relevant one. Another very important issue is
that the scoring matrices and gap penalties are assumed to be independent
of position along the sequence, while gene families often exhibit regions which
are highly conserved and regions which are highly variable. In order to obtain
the most biologically relevant multiple alignment these differences should be
taken into account. If we want to construct multiple alignments based only
on primary structure information, the variations of scoring matrices and gap
penalties should be deduced from the sequences themselves. Hidden Markov
Models (HMMs) are an implementation of the idea that the scoring parameters
should guide the multiple alignment as much as the alignment should determine
the scoring parameters.

A Hidden Markov Model (HMM), λ, is a stochastic machine for generat-
ing (amino acid) sequences. Different sequences are generated with different
probability. A sequence S is generated with probability P (S|λ). The goal is:
Given an universe, Λ, of HMMs to chose the member, λ∗, which maximizes∏
k=1..K P (Sk|λ∗), where S1, ..., Sk are the sequences we try to align. The pro-

cedure of choosing λ∗ can be thought of as training a HMM using training set
{S1, ..., SK}. This is analogous to neural networks. The hope is that, after the
training, the model have captured the essence of “what it means to be a mem-
ber of this particular protein family”. If so, λ∗ will preferably generate amino
acid sequences which belong to the family, i.e. sequences that exhibit the same

1

structure as all the members of the family. Reversely, one can take a sequence S
and decide whether it belongs to the family based on the value of P (S|λ∗). As
always when one does training (or fitting), the success depends, among other
things, on the relative sizes of the universe Λ (number of adjustable parameters)
and the training data set (number of sequences). The architecture of the HMMs
in Λ should be carefully chosen so that it manages to capture the training data
patterns with as few parameters as possible.

Mathematically, a HMM is defined by specifying: a set of states s = {s1, ..., sn},
an alphabet v = {v1, ...vM}, transition probabilities between the states A =
{aij}, 1 ≤ i, j ≤ n and a set of probability distributions B = {bj(o)}, where
j specifies a state, and o - a letter from the alphabet. The system evolves in
discrete steps. At each step, t, the system is in one of the states in s, say si.
A letter from the alphabet is generated according to bi(o), then a new state is
chosen according to the set of probabilities aij , j = 1..n and the cycle contin-
ues. A HMM can be represented by a graph in which the nodes correspond to
the states, and arrows connect nodes for which there is a non-zero transition
probability.

The concept of HMM described above is very general, and different graph
topologies are used in different applications. For the purposes of multiple align-
ment of sequences Krogh et al. [1] proposed the architecture shown on Figure 1.
The alphabet, v, is the set of 20 amino acids. There are three types of states (not
counting the begin and end states): match (rectangles), insertion (diamonds)
and delete (circles). The delete states are special in that they don’t generate
amino acids. To understand the relevance of this architecture imagine a family
of proteins with different sequences which have a similar 3D structure. While
there are very many sequences capable of creating this structure, the structure
imposes severe constraints on the sequences. For example: the structure might
start with an α-helix about 30 aa long, followed by a group that binds to TT
dimers, followed by about 20 aa with hydrophobic residues, etc. Basically, we
walk along the sequence and enter into different regions in which the probabili-
ties to have different amino acids are different (for example, it is very unlikely
for members of the family to have an amino acid with hydrophilic residue in
the hydrophobic region, or gly and pro are very likely to be present at sharp
bends of the polypeptide chain, etc.). Different columns in the graph, called
modules, correspond to different positions in the 3D structure. Each position
has its own probability distribution, bmi , giving the probabilities for different
amino acids to occur at that position. Each position can be skipped by some
members of the family. This is accounted for by the delete states. There might
also be members of the family that have additional amino acids relative to the
consensus structure. This is allowed by the insertion states.

This type of description is far from complete for it fails to capture the in-
teractions and correlations between amino acids at different positions along the
chain. Even correlations between adjacent amino acids are ignored. In addition,
implicit in the architecture is an exponential distribution of insertion lengths.
This is because there is a constant probability for transition from an insertion
state to itself. Some of this problems can be solved by generalizing the concept

2

i0 i1 i2 i3 i4

 B4

Figure 1: Hidden Markov model topology used in multiple alignment.
There are 4 modules in this example

Figure 2: Example of an alignment of two sequences to a model. The
corresponding alignment is:

A1 A2 A3 - A4 - A5

 - - B1 B2 B3 B4 B5

A1

A2

BEGIN m1 m2 m3 m4 END

d1 d2 d3 d4

BEGIN

A3

B1

B2

A4

B3

A5

B5
END

 A-

3

of state in a HMM. For example, we can allow for states that generate not one
but l letters, where l is drawn from a state specific probability distribution, and
the l letters are drawn from a l−dimensional joint distribution. The number
of modules is chosen in advance and the universe Λ will consist of HMMs with
all possible values of B and A but a fixed graph topology. This constraint can
be relaxed by allowing a dynamical adjustment of the module number during
training. If during training the parameters of the HMM stabilize in such a way
that within a given module the delete state is more likely to be visited than
the match state then the corresponding module is removed. Similarly, if cer-
tain insertion states are visited more often than the corresponding match states,
additional modules should be added at that position.

The sequence of states visited during a single run of the HMM is called
a path through the model. A given sequence of amino acids can be generated
by different paths through the model. Each one is said to represent alignment
of the sequence to the model. Given paths through the model for each of the
sequences S1, ..., SK one can write down the corresponding multiple alignment
in the usual notation. See Figure 2 for an example. If for each sequence we
take the most likely path through the model then we get the optimal multiple
alignment.

The usefulness of HMMs comes from the existence of efficient algorithms
to: (1) score a sequence S given a model λ, i.e. compute P (S|λ), (2) Find an
optimal alignment of a sequence to a model, i.e. find a sequence Q of states that
maximizes P (Q|S, λ), (3) perform the training procedure. The total number of
operations required for multiple alignment is just O(KN2), which is linear in
the number of sequences! In the remaining of the paper these algorithms will
be described in some detail following [2]. The delete states, which are special
for not generating output, will be ignored for simplicity.

Let S = o1, o2, ..., oT be a sequence of amino acids. Let qt denote the state
at time t, with q0 = s0 ≡ BEGIN and qT+1 = sn+1 ≡ END. Define the forward
variable αt(i) ≡ P (o1o2...ot, qt = si|λ). αt(i) is the probability to observe the
(partial) sequence o1o2...ot up to time t ≤ T and state si at time t given the
model λ. αt(i) can be computed recursively by using

αt+1(i) = bi(ot+1)
n∑
j=1

αt(j)aji (1)

with initial condition α1(i) = aoibi(o1) Then the probability to observe S given
λ is P (S|λ) =

∑n
i=1 αT (i)ai,n+1. This formulas are written in a notation ap-

propriate for a general HMM. For the specific topology considered most of the
aij ’s are zero which speeds up the computation relative to the general case. For
later use define the backward variable βt(i) = P (ot+1ot+2...oT |qt = si, λ), giving
the probability for partial observation sequence from t+1 to the end, given that
the state at t is si. Again, this can be computed inductively using the formula

βt(i) =
N∑
j=1

aijbj(ot+1)βt+1(j), (2)

4

with initial condition βT (i) = ai,n+1.
The algorithm for finding the most likely path through the model, called

Viterbi algorithm is also inductive. The goal is to find the path Q∗ = {q∗1 , ..., q∗T }
for which P (Q|S, λ) is maximized. Because of P (Q|S, λ) = P (Q,S|λ)/P (S|λ),
this is equivalent to maximizing P (Q,S|λ). We compute

δt(i) = max
q1,...,qt−1

P (q1, ..., qt−1, qt = si|λ), (3)

starting with δ1(i) = a0ibi(o1), and using the recursion relation δt+1(j) =
bj(ot+1) maxi[δt(i)aij]. Then the probability at the maximum is P ∗ = P (Q∗, S|λ) =
maxi[δT (i)ai,n+1]. To recover Q∗ we must also keep track of the state i that
yielded δt+1. Therefore we store the array ψt+1(j) = argmaxi[δt(i)aij] at each
inductive step. Then we recover Q∗ by tracing back using q∗t = ψt+1(q∗t+1), and
starting with q∗T = argmaxi[δT (i)ai,n+1].

The idea behind the training algorithm is to update aij and bi(o) using

anew
ij =

expected num. of trans. from si to sj given {Sk} and λold

expected num. of trans. from si given {Sk} and λold
(4)

bi(o)new =
expected num. of times in si AND symbol o generated given {Sk} and λold

expected number of times in si given {Sk} and λold
.

To compute these expected values define ξ(k)
t (i, j) = P (qt = si, qt+1 = sj |Sk, λ)

which can be expressed in terms of the forward and backward variables for each
sequence:

ξ
(k)
t (i, j) =

α
(k)
t (i)aijbj(ot+1)β(k)

t+1(j)
P (Sk|λ)

(5)

Then γ(k)
t (i) =

∑
j ξ

(k)
t (i, j) is the probability to be in state si given a sequence

Sk and λ. Now it easy to see that

anew
ij =

∑K
k=1 P (Sk|λ)−1

∑Tk−1
t=1 ξ

(k)
t (i, j)∑K

k=1 P (Sk|λ)−1
∑Tk−1
t=1 γ

(k)
t (i)

(6)

bi(o)new =
∑K
k=1 P (Sk|λ)−1

∑T
t=1 γ

(k)
t (i)δot,o∑K

k=1 P (Sk|λ)−1
∑T
t=1 γ

(k)
t (i)

This training procedure is guaranteed to converge to a local maximum in
the parameter space. The main problem is that in most applications of interest
the optimization surface is very complex and there are very many local maxima
which trap the model and prevent it from reaching a global maximum. A
traditional method to fight with this problem is to repeat the training procedure
with different randomly chosen initial parameters, and then select the best local
maximum found.

5

References

[1] Krogh, A., Brown, M., Mian S., Sjolander, K. & Haussler, D., Hidden
Markov Models in computational biology: Applications to protein model-
ing. J. of Mol. Biol. 235, 1501-1531 (1994)

[2] Rabiner, L., A Tutorial on Hidden Markov Models and Selected Applica-
tions in Speech Recognition. Proc. IEEE 77, 257-285 (1989).

6

