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Abstract

Conventional motif-finding algorithms are optimized for either good
soundness or completeness. Good soundness is achieved when the output
lists only a few motifs that are very likely to represent binding sites. On
the other hand, there are algorithms which are designed to give a complete
list of possible binding sites. The downside of this is that the list will also
contain typically hundreds of small variations of strong motifs, which are
not considered to be motifs in their own right. Thus a real, weak motif
will be found way down on the list. Here I want to report a new method of
post-processing the output of an algorithm that gives a complete list. The
algorithm was invented by Blanchette and Sinha[1] and clears the motif
list from the artifacts of strong motifs, shrinking it to a small number of
motifs that are very likely to represent the IUPAC ambiguity code1 of
binding sites.

For pedagogical reasons I chose to display most of the calculations in [1] to
clarify how Bayesian statistics comes into the game, but also to point out the
approximations that where used to transform this into an algorithm that can
be programmed into a computer.

Artifacts and explanations

Let me pin down what an artifact is. Consider a strong motif ACGCCW, which
occurs 80 times in a given sequence. Some motif-finder will report this code first
place on its list of motifs. Now, let us look at a the motif ACGCCA. We would
expect to find it, say, 10 times in an arbitrary sequence. Yet in the sequence
we look at it will be found to be a second strong motif with an occurrence of
maybe 40 times. Well, keeping in mind that ACGCCW is the ambiguity code
of the actual binding site the high rate of occurrence of the sequence ACGCCA
is no longer surprising - it can be ‘explained’. This is the characteristic of an

1The IUPAC ambiguity code consists of 15 characters rather than {A, C, T, G} only,
taking into account that the nucleotide sequence of a binding site can have small variations.
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artifact. Here this comes from the fact that the last character is specified in the
definition of site. If we could only quantify how well ‘explained’ (the occurrence
of) a sequence is, we would be able to identify the artifacts and cross them out
on our list of motifs leaving only the ‘best explanators’. The goal of this paper
is to sketch an algorithm for the ‘best explanators problem’.

Nucleotide frequencies and scoring scheme

We will need a scoring system to measure the over-representation of a motif
given the fact that other motifs are known to be part of the sequence. To get a
feeling for what the task is about, it is helpful to look at a more simple problem
first. Here we score according to the nucleotide frequencies only and ignore the
presence other motifs[2]. The over-representation of a nucleotide sequence is
the difference between the expected and the observed oligonucleotide frequency.
The expected oligonucleotide frequency can be calculated using a Markov chain
model. For words of length k, we can choose a subword length (or Markov
order) m between 1 and k− 2, e.g. for k = 6 and m = 3, we could calculate the
expected frequency of GATAAC to be

Fexp(GATAAG) =
Fobs(GATA)× Fobs(ATAA)× Fobs(TAAG)

Fobs(ATA)× Fobs(TAA)
.

We still have to multiply this with the number of possible word positions:

occexp(w) = Fexp(w)×
S∑

i=1

(Li − k + 1).

Here Li is the length of the ith sequence and S is the total number of sequences.
An appropriate scoring scheme is given by the Z-score statistics, which as-

sumes a normal distribution for the over-representation of an oligonucleotide
sequence. For this problem we calculate the Z-score to be

Z =
occobs(w)− occexp(w)

stdevest(w)
,

stdevest(w) =
√

varest(w),

where w is the oligonucleotide sequence (or word), occobs(w) is the observed
number of occurrences of the word w, and stdevest(w) is an estimate for the
standard deviation of occurrences of w. The estimated variance varest(w) is
given by

varest(w) = occexp[2Kov − 1− (2w − 1)× occexp],

with some self-overlap coefficients Kov (see Pevzner et al. [3]). After choosing a
threshold value, which will depend on the expected word size, the Z-score value
can be used to measure the over-representation of an oligonucleotide sequence.
It turns out that a reasonable threshold value for word size 6 is 3.4, cf. van
Helden et al. (2000) [2].
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Conditional probabilities and occurrences

To adapt the above scheme to our problem, we have to obtain expressions for
the conditional expectation value and variance of the occurrences of a motif in a
random sequence, given the occurrences of other motifs. Let the input sequence
s be of length l, then Em shall be the binary vector of length l associated with
a motif m. Then annotate the occurrence of m in s by

∀i = 1 . . . l, Em
i =

{
1, if motif m starts at position i in s

0, otherwise.

The probability of some motif m to occur at position i, given a set of positions
where motifs e1, . . . , eζ occur, takes the form

℘[Em
i = 1|

∧

j=1...l

∧

k:E
ek
j =1

Eek
j = 1] =

℘[Em
i = 1 ∧ (

∧
j=1...l

∧
k:E

ek
j =1 Eek

j = 1)]

℘[
∧

j=1...l

∧
k:E

ek
j =1 Eek

j = 1]
.

We calculate the probabilities in the numerator and denominator starting with
a sequence T = NNNN. . . NNN. Next we write motifs mp(p = 1, . . . , r) at
position ip in T thus specializing the symbols in T . Specialization means to
put in T the most general symbol that can be found at this position in both T
and mp. If no specialization is possible, the probability will be zero. Otherwise
the probability is the probability of the sequence T as obtained from a Markov
process. Similarly the probability pi of a motif to be found at position i taken
into account the presence and absence of the motifs e1, . . . , eζ is

pi = ℘[Em
i = 1|(

∧

j=1...l
k:E

ek
j =1

Eek
j = 1) ∧ (

∧

j=1...l
k:E

ek
j =0

Eek
j = 0)].

Here we can make an observation. Let a and b be two positions in the sequence.
If the distance ab is larger than say a constant c1 we have good reason to assume
that there is no effect of the occurrence of motif ma at a on a possible occurrence
of motif mb at b. The same can be inferred on absences of motifs with a constant
c2. Note that the constants c1 and c2 are not the same. (In fact we can reason
that c2 should be much smaller than c1. Just remind yourself when some motif
m starts at position n the probability for our motif to start at n + 1 will be
zero, whereas if we state a ‘non-occurrence’ of m at n, we do not expect that
this has a major influence on the probability of an occurrence of our motif at
n + 1.) Thus pi is

pi ≈ ℘[Em
i = 1|(

∧

j:|j−i|≤c1

k:E
ek
j =1

Eek
j = 1) ∧ (

∧

j:|j−i|≤c2

k:E
ek
j =0

Eek
j = 0)].
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Making use of Bayes’ theorem this becomes

1− ℘[
∨

j:|j−i|≤c2

k:E
ek
j =0

Eek
j = 1|(∧j:|j−i|≤c1

k:E
ek
j =1

Eek
j = 1) ∧ (Em

i = 1)]

1− ℘ [
∨

j:|j−i|≤c2

k:E
ek
j =0

Eek
j = 1|(∧j:|j−i|≤c1

k:E
ek
j =1

Eek
j = 1)× ℘ [Em

i = 1|∧j:|j−i|≤c1

k:E
ek
j =1

Eek
j = 1]

,

which can be brought into the form

℘[
∨

j:|j−i|≤c2

k:E
ek
j =0

Eek
j = 1|C] =

∑

X∈2
(j,k):|i−j|≤c2∧E

ek
j

=0

(−1)|X|+1℘[
∧

(j,k)∈X

(Eek
j = 1)],

using the inclusion-exclusion principle and C is an arbitrary condition of the
usual form. Each term is computable using the specialization procedure outlined
above. However, most terms will be zero since because they would lead to an
illegal overlap of motifs. The actual number of overlaps of k motifs in a region
2c2 + 1 will usually be small (c2 is typically 1 or 2). These overlaps can be
generated easily. The conditional expectation of a motif m, Nm, given the
occurrences of e1, . . . , eζ is

µm = E[Nm|Ee1 , . . . , Eeζ ] =
∑

i=1...l

pi.

A similar calculation leads to the expression for the conditional variance of Nm:

σ2
m =

= E[N2
m|Ee1 , . . . , Eeζ ]− (E[Nm|Ee1 , . . . , Eeζ ])2 =

≈
∑

i=1...l


 ∑

j:|j−i|≤c3

℘[Em
i = 1 ∧ Em

j = 1|Ee1 , . . . , Eek ] +
∑

j:|j−i|≥c3

pipj


− µ2

m.

Finally we can write down the conditional Z-score of m, given e1, . . . , ek,

Z(m|e1, . . . , ek) =
Nm − µm

σm
.

For the best explanators problem Blanchette and Sinha (2001)[1] used a greedy
algorithm, which is guaranteed to give a solution, but it need not be the optimal
one. (For our type and size of problem we don’t have to worry about this too
much.) A greedy algorithm assigns a numerical value (Z-score) to each candidate
(motif), and repeats the following three steps:

1.) Check the set S, if it is a solution. (See if all the motifs from the list
have been checked for being an artifact.) Otherwise, 2.) select a new candidate
(pick next motif) and 3.) check, if the candidate is feasible to be in the solution
(if the Z-score drops below a certain limit, conditioning in the other (remaining)
motifs (on the list) when calculating the Z-score), and add it to S (keep it on
the list), if so.
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To reduce computer time a pre-processing step was used, removing all motifs
m from the list that have a Z-score Z(m) < Z(e) and Z(m|e) less than some
threshold. In the following 4 was used as a threshold (cf. the threshold for over-
representation above.) This is supposed to filter out about 80% of the artifacts,
while it is very unlikely that a real motif will be removed.

Experimental verification

Three types of experiments have been carried out to validate the algorithm.
Typical inputs were 50 sequences of 800 base-pairs each with about 5 motifs
planted into them. As a motif-finder the YMF algorithm of Sinha and Tompa
(2000) [4] was used. It works with a restricted alphabet of 8 characters. This
was shown to be sufficient for describing the binding sites of yeast.

First, an accuracy test was carried out planting 5 motifs into random se-
quences. In 46 out of 50 cases all the motifs were recovered correctly. A de-
viating motif turned out to be generalizations or specializations of the original
motif and can usually be attributed to a low Z-score of the original. Meeting
the expectations the accuracy decreased when fewer sequences were available.
The reason for this is that the normality condition of the conditional Z-scores
is no longer valid.

In a second test real biological data was used. Genes of 5 arbitrary families,
whose binding sites are known, were merged into one large group of 44 genes.
The algorithm produced 7 explanators, 4 of which were the known consensus
for one of the gene families, the rest of the explanators on the list were part of
a longer binding site in the remaining family.

Finally sets of Saccharomyces cerevisae and other yeast genes were taken to
test the algorithm. Here - besides known consensus sequences - new motifs with
high Z-scores have been found proofing the applicability of the algorithm.
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