
Physics 498BIN, Fall 2001 

Discrete Fourier analysis for phylogenetic trees 
MARTIN PH. STEHNO 
Department of Physics, University of Illinois at Urbana-Champaign 
 
ABSTRACT Discrete Fourier transformations (DFTs) provide a useful tool to assign a 
phylogenetic tree (PGT) to an observed frequency of nucleotide patterns in DNA sequences of 
species.  The advantage of this sort of spectral analysis is that it allows global correction for 
multi-substitution processes [1]. 
 
SPECTRAL ANALYSIS OF PGTS 
Two spectras characterize a PGT, the probability spectrum p(T), and the expected sequence 
spectrum s(T).  After labelling the edges of the tree in an appropriate way, they are can be 
related by two steps of transforms using vector functions called Hadamard conjugations.  The 
intermediate vector is called the edge length spectrum.  The transformation scheme is given in 
Fig. 1. 

 
This scheme can be used in two ways.  Starting with a probability distribution we can 
calculate the edge length spectrum and the expected sequence spectrum.  On the other hand, 
given a data set D, we can take the observed sequence spectrum s(D) (the relative frequencies 
of character patterns) as an estimate for s(T).  From this we calculate a conjugate spectrum 
γ(D) (the ‘corrected partition frequencies’) [1, 4].  This will correct for all parallel, multiple, 
and higher order substitutions.  We find the corresponding tree, that is the tree for which  
| γ(D) – q(T) | is minimal, using a fitting algorithm (e.g. least-squares best fit or ‘closest tree 
algorithm’).  Having found the correct tree one is able to reconstruct the probability spectrum 
and expected sequence spectrum. 
 
HADAMARD CONJUGATION 
A conjugation consists of three transformations that are successively applied.  The third 
transformation is the inverse of the first.  The m � m – Hardamard matrix Ht is defined as 
 

 
(Hendy et al., Proc. Natl. Acad. Sci. USA 91 (1994))

Fig.1.  Scheme of transformations. 

Ht = H1 ⊗ Ht-1, 
 
H1 = (                   ). 
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The Hadamard transform1 is 
y = H-1 (ln(Hx)), 

and its inverse  
x = H-1 (exp(Hy)), Hx > 0. 

 
In order to apply the Hadamard transform to our problem, we have to label the tree edges ei.   
We define a binary coding of the four nucleotides by elements of the Klein 4-group, see 
Table 1. 
 
 
 
 
 
 
 
 
The substitutions have been chosen to agree with the definition of the Kimura 3ST (or ‘three 
substitution-type’) model. This model has 3 parameters: p1 is the rate of transitions of type A-
G, T/U-C, p2 the rate of transversions of type A-T/U, G-C, and p3 the rate for transversions of 
type A-C, T/U-G [2].   
Now suppose, we have a set N of n taxa  (sequence positions, which are compared).  A 
bipartition is a pair of disjoint subsets (A, B) of N.  Thus a taxon  belongs either to subset A or 
B.  The edges of a simple PGT T for the taxa N with only two characters define a bipartition, 
the edge bipartition e.  Thus each edge is fully described by the labels of the subgroups it 
belongs to.  There are  m = 2n-1 possible bipartitions.  Since there are four nucleotides, we 
have to use quadripartitions rather than bipartitions (four subsets for each site), but 
employing the scheme of Table 1, we can break the quadripartition Q i+mj down to a first and a 
second component of the pair (B i, Bj) of bipartitions.  The indices i, j for the bipartitions are  
 

i, j = 2a-1 + 2b-1 + 2c-1 + …, 
 
where the taxa a, b, c, … have a component, which differs from corresponding taxon 

on sequence n. 
 
SEQUENCE EVOLUTION MODEL 
Three parameters p1

i , p2
i , and p3

i , the parameters of the Kimura 3ST model, are assigned to 
each edge ei  of the tree T.  Together with p0

i = 1- p1
i - p2

i  - p3
i they form the vector p. From p  

we can calculate the vector  (in i space) 
 

E = H2
-1 (ln(H2p)), 

 
with the zero-component E0 = - (E1

i + E2
i + E3

i )), which can be thought of as the 
negative of the expected value of the total number of substitutions along e i , and the rest of the 
components correspond to the number of substitutions of type 1, 2, 3 respectively. 
 
Analogously the transform 
 

p = H2
-1 (exp(H 2E)), 

 

                                                 
1 Logarithm and exponential are taken for each component separately. 

Nucleotide  Code Substitution 
A (0, 0) - - 
G (1, 0) A-G C-T 
C (0, 1) A-C G-T 
T (1, 1) A-T C-G 

Table 1.  Binary coding 



will give us back the probability spectrum p. 
 
We obtain the edge length spectrum q(T) from the E j’s using 
 

q0 = - Σ i,jEj
i 

qi = E1
i, 

qmi = E 2
i, 

 qi+mi = E3
i, 

and qj = 0 otherwise. 
 
This spectrum contains all the information about the edge lengths and therefore the 
substitution probabilities of each type. Finally, we calculate the expected sequence spectrum 
 

s(T) = H2(n-1)
-1 (exp(H 2(n-1)q(T))). 

 
The inverse of this equation is needed to obtain the conjugate spectrum γ(D) from the data 
set D, 

γ(D) = H2(n-1)
-1 (ln(H2(n-1)s(D))). 

 
If the sites evolve at different rates, we must replace the logarithm by the functional inverse ϕ 
of the momentum-generating function for the distribution, thus 
 

γ(D) = H2(n-1)
-1 ϕ((H2(n-1)s(D))). 

 
 
DISCUSSION 
The Hadamard conjecture is an alternative to more conventional methods of PGT 
construction.  It has been found particularly useful for analysing the performance of different 
phylogenetic methods under suitable conditions.  [2] 
Recently a new idea for a dynamical picture of phylogenetics has been proposed  [5]. It is 
based on an analogy between quadripartition and a momentum space representation of 
perturbation theory for a many-body quantum field theory on a hypercubic lattice. The 
quantum field theory formalism was introduced to solve the statistical master-equations for 
the time-evolution of the probability functions [6]. In this context the Hadamard inversion 
techniques could provide a position space formulation of the theory. 

BIBLIOGRAPHY 
[1]  M.D. Hendy, D. Penny, M.A. Steel, A Discrete Fourier Analysis for Evolutionary Trees, 

Proceedings of the National Academy of Sciences of the United States of America, 
Vol. 91, Issue 8 (Apr. 1994) 

[2]  M. Steel et al., Reconstructing phylogenies from nucleotide pattern probabilities: A 
survey and some new results, Discrete Applied. Mathematics 88 (1998) 367-398 

[3]  D. Penny, Comparative Analysis of Signals in Sequences, virtual web lecture at the 1st 
Internet-extended Bioinformatics Conference (IEC-1), April 1998 

[4]  F. Rodriguez et al., The General Stochastic Model of Nucleotide Substitution, J. theor. 
Biol. (1990) 142 , 485-501 

[5]  P.D. Jarvis, J.D. Bashford, Quantum field theory of phylogenetic branching, 
arXiv:physics/0107047, Aug. 2001 

[6]  Masao Doi, Second quantization representation for classical many-particle systems, J 
Phys. A: Math. Gen., Vol. 9, No. 9, 1976 



 
 


