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1. Introduction

The folding of proteins is one of the most challenging problems in science. Although, the
sequences and the native tridimensional structure of many proteins are known, there is not a
general theoretical framework to describe the intermediate steps of folding. On the other
hand, experimental research of the intermediates steps is restricted by the range of times
involved in the fast phase of folding (∼µ s), only accessible in few cases [6]. In general, it is
known that the tridimensional structure of proteins is determined by its amino acid sequence,
but we do not know how this is possible.

One method to analyze protein is the inverse folding strategy [4]. In this scenario the
quest is the search for sequences that fold fast into a predefined native conformation.
Usually, this is done using the so-called lattice models and Monte Carlo simulations [3,4].
This strategy has been extensively used in the study of protein folding [2,3,4,5] and recently
to analyze the concept of designability of protein conformations [1,2]. The designability of a
given conformation of lattice model heteropolymers is the number of sequences that fold to
that conformation in short time.

The aim of this article is to review the model given by Tiana et al. [1] for the calculation
of the designability. Instead of using a 2-letter1 representation of protein sequences as in the
first studies of designability [2] they used a 20-letter representation. The analysis made by
Tiana et al. confirmed the relation between stability and designability. According to this,
proteins which are stable can tolerate mutations without a lost of activity and consequently
without lost of structure. Of course this was known experimentally but there was not a
theoretical framework for its interpretation.

2. Lattice Models

In lattice models, a protein is modeled as a string of beads that is arranged on a cubic
lattice of step length a. In these conditions, the configurational energy of a chain of N
monomers is given by:
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1 Polar and Non-polar amino acids.
2 The values used by Tiana et al. were those provided in the work of Miyazawa et al. [7]. These values
correspond to a 20-letter representation of protein sequences.
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In this context, “native” sequences are designed by minimizing, for a fixed amino acid
composition, the energy of a target conformation, with respect to the amino acid sequence.
The sequences found in this way fold in a short time to the target conformation, which is
called “native”.

Besides the native sequences, there are other “good folder” sequences [2] which are
characterized by a large gap δ = Ec - En  (compared to the standard deviation of the contact
energies) between the energy En in the native conformation and the lowest energy Ec of the
conformation structurally dissimilar to the native conformation. Ec is determined by the
composition of the protein [4].

3. Designability

The designability of a conformation is the number n of sequences that can fold to that
conformation. It can be found starting from the minimun energy sequence and counting the
number mn  of sets of m mutations3 lying within the gap δ = Ec - En , that is:
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Instead of counting the sequences, designability can be evaluated considering the energy
distribution probability )( EPm ∆  associated with m mutations and then evaluating the

integral:
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where tot
mn  is the total number of sets of  m mutations.

Thus, the problem of determining the designability is reduced to find tot
mn  and )( EPm ∆ .

It turned out that mtot
m en α≈ , where α is determined by the condition that !Nntot

N =  for the case

of composition conserving mutations. And, )( EPm ∆ can be expressed as a convolution of

functions )(2 EP ∆ i.e. the energy distribution associated to two mutations.

The functions )(2 EP ∆ were found with MC simulations considering specific lattice
model heteropolymers. It was found that these functions have two peaks and that the
                                                                                                                                                      

3 In this context one mutation corresponds to the replacement of one amino acid by another.



resultant distribution can be fitted by the sum of two gaussian distributions. Further analysis
shows that the peaks of the distribution are associated to the cold and hot sites4. The
Gaussian behavior of )(2 EP ∆ has been attributed to the random nature of the interactions
associated to the cold sites.

Under these considerations, it was found for the designability that:
δβen ∝

where β depends on the parameters of the gaussian distribution associated to the cold sites.
The calculation of the designability in the case of the 36mer5 gives a value of 6 x 1030 which
should be compared with 41

36 1072.3 xntot =  for the case of composition conserving mutations.

The fact that the designability is determined only by δ shows that the concepts of
designability and foldability are intimately connected. If a protein is stable in its native
conformation, such conformation is highly designable and viceversa.

4. Discussion

The result obtained by Tiana et.al allows one to estimate the probability of that a random
sequence folds to given conformation. It will be equal to the ratio between the designability
and the total number of possible sequences. In the case of the 36mer this number is in the
order of~10-12. This number is very small, as it could have been expected from the fact that if
one chose a random sequence of amino acids with the same composition of any protein, this
will not fold to its native conformation.

 Manifestations of the designability can be found in real proteins where mutations in
the “cold” sites maintain a functional protein. Site directed mutagenesis experiments have
show that this is possible.  Of course, the amount of mutations we can make is limited. It is
also known that proteins with the same function in different species share the same overall
tridimensional structure even though there are several differences in their amino acid
sequences. Again, it is also known that those differences are limited to a small number of
amino acids. The expression found by Tiana et.al is a mathematical expression of these facts.
It is reasonable to think that the designability in real protein is also quantifiable.

The fact that the structure of a protein can be described using a small number of
secondary structures such that α-helices and β-strands suggests that at least at this level of
organization there are no many restrictions on the sequence of amino acids necessary to have
a given secondary structure. So, secondary structures are more designable than tertiary
structures and consequently more stable. Experimental evidence support this conclusion [6].

Finally, it is important to mention that the results reported by Tiana et al. rely on the
Gaussian character found for the function )(2 EP ∆ . This was attributed to the randomness of

                                                
4 A mutation in a cold site does not change the configurational energy significantly where as a mutation in a hot
site cause a big change and even denaturation.
5  The 36mer is chain of 36 amino acids designed to have the lowest conformation on a given cubic lattice [1]



the interactions associated to cod sites are random and independent of the specific amino acid
in the site. This is no necessarily the case in real proteins where the difference between
amino acids could matter. Moreover, this behavior of the cold sites found using lattice
models could be a consequence of the interaction matrix [7] used in the simulations. The
result should be generalized by considering a general form of the interaction matrix. This is
necessary considering that it has been pointed out that the matrix used by Tiana et al. is not
totally accurate in the description of the interactions in proteins [8].
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