
Emergent States of Matter

HOMEWORK SHEET 4 and 5

HW4: Due 5pm Fri 6 April 2018.
HW5: Due 5pm Fri 13 April 2018.

Please attempt these questions without looking at textbooks, if you can. You will learn more by thinking about
these problems yourself.

Question 4–1.
In this question, you will derive the excitation spectrum for Bogoliubov quasi-particles, starting from an
equation of motion for the condensate known as the Gross-Pitaevskii equation. You will be surprised at how
easy it is from this approach, compared to the operator approach.
(a) Writing the field operator ψ̂(r, t) = ψ0(r, t) + ψ̃(r, t), find the equation satisfied by ψ̃, by substituting

into the Heisenberg equation of motion with the Bogoliubov Hamiltonian. Here the notation is as in
the lectures: note that ψ0(r, t) is the wave function for a condensate in some general superposition of
plane wave states.

(b) We are interested in small fluctuations about the uniform state of the condensate. Verify that the
uniform state is ψ0 =

√
n0 exp(−iµt/h̄), with µ = U0n0, and hence derive the linearised equation of

motion for ψ̃.
(c) Define δψ = ψ̃ exp(iµt/h̄). Show that(

ih̄
∂

∂t
+
h̄2∇2

2m

)
δψ − n0U0

(
δψ + δψ+

)
= 0,

where δψ+ is the Hermitian conjugate of δψ.
(d) From this equation, and its Hermitian conjugate, obtain an equation for the quantity (δψ − δψ+) and

seek a solution of the form exp i(k · x− ε(k)t/h̄) to find ε(k). Explain briefly the interpretation of ε(k).

Question 4–2: Solution of a minimal model for a superconductor.

Only do parts (a) - (c) for this week’s homework. In HW 5, you will complete the calculation.

Consider the Hamiltonian due to Bardeen, Cooper and Schrieffer (BCS)

H(U) =
∑
k

E(k)(c+k ck + c+−kc−k)− U
∑
kk′

c+k′c
+
−k′c−kck

where U > 0, and the ck are fermionic annihilation operators. In the first term, k includes the spin degree
of freedom, and a sum over k also indicates a sum over the spin. The kinetic energy term is measured
with respect to the Fermi energy µ and is given by E(k) = h̄2k2/2m − µ. Notice that when U = 0, this
Hamiltonian describes a free Fermi gas. In the second term, there is no sum over spin: that is, k and spin
are locked together by the formation of the Cooper pair, which has been put in “by hand” in the BCS
Hamiltonian: k = k ↑ etc.

We will later apply some constraints on the sum in the potential energy term. This Hamiltonian is a
minimal model of a superconductor. In this problem, you will use the Bogoliubov theory, following the steps
we did in class to solve this Hamiltonian at zero temperature. This question, unlike most others in the class,
will involve you doing some careful algebra. Don’t begin your attempt to do this question the night before
the due date!
(a) Introduce quasi-particle operators by the transformation

αk = ukck − vkc+−k
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where the uk and vk are positive real functions to be determined. In this problem, because we are
using Fermionic operators, not Bosonic operators, there are minus signs that appear in the definition
of the quasi-particles and in the behaviour of the uk and vk functions. We will impose the conditions:
uk = u−k, v−k = −vk. Show that the transformation is canonical in the sense discussed in lectures
as long as u2k + v2k = 1 and verify that the quasi-particle operators satisfy the canonical Fermion anti-
commutation relations.

(b) Hence express the original electron operators in terms of the quasi-particle operators.
(c) Substitute your expression for the ck in terms of the αk into the kinetic energy part of the Hamiltonian.

Define the quasi-particle number operator mk ≡ α+
k αk. Show that the kinetic energy is:

Hkinetic =
∑
k

E(k){2v2k + (u2k − v2k)(mk +m−k) + 2ukvk(α+
k α

+
−k + α−kαk)}
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(d) Calculate the exact expression for the potential energy in terms of the quasi-particle operators. I won’t
even attempt to TEX it!

(e) Notice that the full Hamiltonian can be written as the sum of terms that are (i) constants, (ii) pro-
portional to the number operator, (iii) Quadratic off-diagonal terms i.e. with α+

k α
+
−k, (iv) Quartic

off-diagonal terms. We will make (iii) vanish by appropriate choice of the uk and vk. (iv) will be ignored
as being small compared to the terms remaining (they describe quasi-particle interactions which are
beyond the scope of this course). Let’s now implement this program. We will start by looking at the
ground state of the system. In contrast to the weakly-interacting Bose gas, we will have to derive the
existence of the condensate. We start by assuming that the are no quasi-particles so that mk = 0. Write
down the expression for the energy of the system, which will be made up of terms (i) and (iii). Set the
coefficient of (iii) to zero and define the number ∆ ≡ U

∑
k ukvk. Parameterise u2k ≡ (1 + ξk)/2 and

v2k ≡ (1− ξk)/2. Hence determine ξk in terms of E(k) and the constant ∆.
(f) Now, using its definition and your result for ξk, show that ∆ is given by the solution of the equation:

1 =
U

2

∫
N(E)

(E2 + ∆2)1/2
dE

where N(E) is the density of states in energy. In a classic superconductor, i.e. one in which the origin
of the attractive interaction U is the electron-phonon interaction, the interaction is only effective within
an energy interval of width h̄ωD around the Fermi surface, where ωD is the phonon Debye frequency.
So in the integral you derived, N(E) can be approximated by its value at E = 0 (remember we are
measuring all energies with respect to the chemical potential), and the limits of the integral are ±h̄ωD.
Hence determine ∆ in terms of h̄ωD, U , and N(0), for small U , i.e. UN(0)� 1. Notice that your result
is non-analytic in U .

(g) Define the condensation energy Ec ≡ H(U)−H(0). Show that Ec < 0, i.e. the free electron gas has a
higher energy than the state of the system which is the ground state of H(U). [You should be able to
calculate that Ec = −N(0)∆2/2, assuming that ∆� h̄ωD, but you do not need to do this.]

(h) To determine the wavefunction in this state, notice that the ground state |ψ〉 has mk = 0 and thus
αk |ψ〉 = 0 for all k. Show that the unnormalised state

∏
k αkα−k |0〉 has this property ( |0〉 is the

vacuum), where the k vectors are “positive” in the sense of being restricted to have kz > 0. Determine
the normalisation and hence show that |ψ〉 =

∏
k(uk + vkc

+
k c

+
−k) |0〉

(i) Calculate uk and vk when U = 0 taking care to distinguish between k < kf and k > kf where kf is the
Fermi wavevector. Show that the wavefunction found in (h) just reduces to the regular free Fermion
wavefunction.

(j) Now let’s allow quasi-particles. Up to now, you just calculated the ground state energy and wavefunction
of the system. We will now allow mk 6= 0. Then the energy of the system is the ground state energy
you have already calculated + the terms (ii). Show that the energy of the system is then for the form:
H = HGroundstate +

∑
k ε(k)mk and determine the quasi-particle excitation spectrum ε(k). Plot your

result for ε(k) a function of k, indicating clearly where kf is and µ.

2


