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Abstract

We present the motivation for studying traffic systems from a physical perspec-
tive. We proceed to classify the myriad of theoretical approaches applied to the
problem. Experimental methodology and observed phenomena are then presented.
Next comparisons are made with relevant theoretical results. Finally, an attempt is
made at evaluating the progress of theory in meeting its internally stated objectives.



1 Introduction

The study of vehicular traffic has strong ties with the field of non-equilibrium sta-
tistical physics. Most modern models of vehicular traffic treat individual vehicles as
“particles” that strongly interact. Thus the general discipline is rightly described as
“the study of interacting particles driven far from equilibrium.” The nature of these
interactions often departs widely from those found in the standard study of physi-
cal particles, yet successful mappings from the microscopic models to macroscopic
phenomena carry the familiar form of the hydrodynamic equations. Tools familiar
to theoretical physicists find ubiquitous application in the field: nonlinear ODEs,
linear stability analysis, mean field theory, a form of Newtonian molecular dynamics
simulation, cellular automata from a lattice formulation of the problem. A rich set
of physical phenomena are involved in the dynamics of traffic flow: transitions be-
tween dynamical phases, phase segregation, criticality and self-organized criticality,
metastability and hysteresis, etc. Indeed, the strong connection with more conven-
tional physical systems has inspired the expansion of the field in recent years.

From a more practical perspective, understanding the fundamental laws governing
traffic phenomena has the potential to benefit society at large. From the point of
view of infrastructure, vehicular traffic constitutes the dominant method of travel
and shipping, thus its optimization has direct economic benefits. As is typical in
physics as a whole, there is a divide between theoretical investigation and practical
application. In the case of vehicular traffic, the latter is the subject of the well
established field of traffic engineering. Thus the questions pursued by the two camps
are different, but often complementary [9]:

Physics:

- What are the dynamical phases of traffic?
- What is the nature of the fluctuations around steady states?
- How can the dynamical approach to steady state be described?
- What is the affect of quenched disorder (e.g. bottlenecks)?

Engineering:

- What is the relationship between traffic density and flux?
- What are the distributions of distance and time headways?
- What is the optimal placement and design of on and off ramps?
- Does a new lane significantly improve traffic flow?

For the purposes of this paper, we will concentrate our discussion on the micro-
scopic states observed and modeled in vehicular traffic, with specific emphasis on the
transition from free flow to congested traffic. In section 2, we present a brief overview
of the historical development of the discipline. Section 3 is dedicated to synopses of
four major theoretical approaches to the problem. We then proceed in section 4 to
discuss empirical observations of traffic’s dynamical states. In section 5 we discuss
corresponding results from the theoretical models and make comparisons with the
empirical findings. We conclude in section 6, emphasizing the relevance of the field
to the modern study of physics.
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2 Historical Background

Traffic studies can be traced as early as 1935 with the work of Greenshields [1].
Later, a flurry of research was localized in the 1950’s-1960’s. In this period, each of
the four theoretical models presented in this paper (macroscopic fluid, gas-kinetic,
car-following, and cellular-automata) find their beginnings. In 1955, Lighthill and
Whitham [2] pioneered a 1D hydrodynamic theory of traffic. By postulating that
traffic flux was a function of the density alone and using classic continuity arguments,
they arrived at fluid dynamic equations in which traffic jams are modeled as shock
waves. Though obscure today, work performed by Gerlough, contemporary with
Lighthill and Whitham, used an early form of a cellular-automata algorithm [3].
Later work by Prigogine et al. (1960) pursued a gas-kinetic formulation based on the
Boltzmann equation and were able to reproduce the formalism developed by Lighthill
and Whitham [4]. In 1961, Newell proposed a car-following theory (where cars are
‘particles’ interacting through a Newtonian potential) known as the Optimal Velocity
(OV) model, which is still in use today [5].

In somewhat of a gap between these early works and the more recently stimulated
modern activity, Treiterer (1975) analyzed a series of aerial photographs and first ob-
served the occurrence of the so-called “phantom jam” [6] (a traffic jam which emerges
spontaneously from uniform traffic without an obvious cause like a traffic accident or
lane closing, see fig.1) which became a major feature to qualify or disqualify modern
traffic models. He also observed stop and go waves in congested traffic which would
later be associated with a fundamental dynamical phase of traffic.

Figure 1: Emergence of a ‘phantom jam.’ The lines are single vehicle trajectories. (Repro-
duced from [17])

Work in traffic physics slowed until the early 1990’s when new traffic data became
available (largely due to induction loop detectors being installed on several major
freeways) and the techniques of modern statistical physics were brought to bear on
the problem. In this period, the works of Biham, Kerner and Kohnhauser, Nagel and
Schreckenberg, Lee, Treiber, and others set the stage for the modern approaches to
the problem.
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3 Outline of Theoretical Models

The theoretical models that have been developed in the study of vehicular traffic
can be sorted into four broad classes: hydrodynamic, gas-kinetic, car-following, and
particle hopping (cellular automata) models. Models in the first two classes gener-
ally correspond to earlier work in the field, though some efforts in those areas are
still being made. The microscopic kinetic and car-following models can be coarse
grained to obtain macroscopic hydrodynamic models. Similarly, connections have
been made between the Nagel-Schreckenberg (particle hopping) and Optimal Ve-
locity (car-following) models [7]. Thus all the models, while conceptually different,
contain unifying connections and therefore truly are different roads leading to similar
‘Romes.’ Before proceeding with our summary of these theoretical descriptions, it is
helpful to present definitions of fundamental ‘physical’ quantities which characterize
the problem: (1). density (ρ)-number of cars per unit distance, (2). flux (J)-number
of cars passing a point per unit time, (3). distance headway (∆x)-distance between
adjacent vehicles, (4). time headway (∆t)-time difference for adjacent vehicles to
pass the same point.

3.1 Hydrodynamic Models

Traffic, when observed from a distance, appears to behave much as a continuum 1D
fluid. Thus, early approaches to describe traffic flow where couched in the famil-
iar language of fluid mechanics. All approaches rely on two simple statements of
conservation, ‘mass’ and ‘momentum’:

∂tρ + ∂xJ = 0 , J ≡ ρv (1)
dtv = ∂tv + v∂xv = F/m (2)

From here, a mean-field description can be pursued. We expect that there will be
fluctuations about the mean values of density and velocity:

v = 〈v〉+ v′ , 〈v′〉 = 0 (3)
ρ = 〈ρ〉+ ρ′ , 〈ρ′〉 = 0 (4)

Substituting these expressions into eqs. (1) and (2), averaging each equation, and
approximating fluctuations about a quantity using the gradient (〈v′ρ〉 ∝ ∂x〈ρ〉), we
arrive at the mean field equations (the substitution (v, ρ) ≡ (〈v〉, 〈rho〉) has been
made) [8]:

∂tρ + ∂xJ = D∂2
xρ (5)

∂tv + v∂xv = ν∂2
x + F/m (6)

The original work of Lighthill and Whitham began with (5) under the assumption
that D ≈ 0 [2]. The enabling assumption that they made (and which is the basis of
most macroscopic traffic models) is that traffic flux is a function of the density alone.
Under this assumption, a single non-linear equation is obtained:

∂tρ +
dJ

dρ
∂xρ = 0 , J(ρ) = ρv(ρ) (7)

This equation admits solutions of the form ρ(x, t) = ρ(x − ct) (c ≡ dJ
dρ ), or density

waves. From the theory of characteristics, solutions of (7) with crossing characteris-
tics will have discontinuities (shocks) which propagate with speed ∆J

∆ρ (the differences
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spatially straddle the shock discontinuity). For D 6= 0, waves decay as e−Dk2
, where

k is the wavenumber. Thus traffic jams enter this formalism as propagating shock
fronts which decay in time back to the uniform state.

Thus far we have not specified J(ρ). The Greenshields model is obtained by
setting J(ρ) = vmaxρ(1− ρ), which has qualitative similarities to empirical findings.
Under the transformation (x, t) → (vmaxt′ − x′, t′), (5) becomes the deterministic
Burger’s equation [8]:

∂t′ρ + 2vmaxρ∂x′ρ = D∂2
x′ρ (8)

A considerable advantage of the Greenshields model is that the Burger’s equation has
been extensively studied and can be further mapped onto the readily solved diffusion
equation by means of a Cole-Hopf transformation [9].

Several qualitative features of vehicular traffic are still missing from the formalism
developed to this point. First, cars cannot accelerate to new speed instantaneously (as
is possible in the preceding), which requires the inclusion of momentum conservation
(eq. 6). Second, the ‘force’ which acts on the vehicles needs to be defined. This is
usually approximated by a ‘relaxation’ term and an ‘interaction’ term. Exponential
relaxation toward a desired speed can be achieved by the term 1

τ [V (ρ)−v], where V (ρ)
is the (driver) desired velocity, and τ is the relaxation time. The interaction term
usually takes the form − c20

ρ ∂xρ (c0 is the characteristic speed of jam propagation,
15km/h), which can be mathematically motivated from the relaxation term just
described [8]. The interaction term captures the qualitative feature that traffic slows
in response to increasing density. Thus we arrive at the Kerner-Kohnhauser model
[10]:

∂tρ + ∂x(ρv) = D∂2
xρ (9)

∂tv + v∂xv = ν∂2
xv − c2

0ρ
−1∂xρ +

1
τ
[V (ρ)− v] (10)

By using methods of non-linear analysis, Kuhne showed that the KK model has
quasi-periodic behavior, just as is observed in real traffic [11].

3.2 Kinetic Models

The early work on kinetic models of vehicular traffic can be largely attributed to
Prigogine, et al [4]. Inspired by the Boltzmann equation, he proposed:

∂tf + ∂xf = − 1
τ [f − ρFdes(v)] +

(
∂f

∂t

)
int

(11)

The term involving Fdes(v) describes collective relaxation of the microscopic distri-
bution f(x, v, t) to Fdes(v), a spatially uniform steady state.

Later work showed that such collective relaxation was unphysical. To resolve
the unphysical features of the Prigogine model, Paveri-Fontana [12] expanded phase
space to include the desired speed of the individual driver, g = g(x, v, vdes, t):

∂tg + v∂xg − ∂v[ 1
τ (vdes − v)g] = (∂tg)int (12)

(∂tg)int = f

∫ ∞

v
dv′(1− P )(v′ − v)g − g

∫ v

0
dv′(1− P )(v − v′)f (13)

f ≡
∫ ∞

0
dvdesg , P ≡ ‘Probability of passing′
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This formulation relies on the assumption of ‘vehicular chaos,’ namely that driver-
driver correlations are small. This limits the validity of the description to low densi-
ties, which prevents a derivation of the macroscopic equations from this microscopic
model [9].

The mapping from micro to macro was later successfully performed by Hel-
bing, who developed a gas-kinetic theory starting from the master equation [7]. His
Boltzmann-like formulation takes the following form:

∂tf + ∂x(vf) + ∂v[ 1
τ (vdes − v)f ] = 1

2∂2
v(Dvf) + (∂tf)int , f = f(x, v, t) (14)

Here Dv is a velocity dependent diffusion coefficient and (∂tf)int represents the in-
teractions between particles.

3.3 Car-Following Models

Car-Following models are so-named because the theoretical description is couched
in terms of Newtonian dynamics, where the trajectory of each individual vehicle is
traced or ‘followed.’ Early work (‘Follow-the-Leader’ models) postulated that driver
response (acceleration) is related to the relative velocity of a vehicle and its down-
stream partner:

ẍn(t + τ) = Sn[ẋn+1(t)− ẋn(t)] (15)

where τ describes the response time of the driver and Sn represents the ‘strength’
of the response. Forms have been proposed to make Sn more realistically depend on
the nearest-neighbor proximity (the distance headway) to avoid ‘collisions’:

Sn =
κ

xn+1(t)− xn(t)
(16)

Such a prescription results in a set of n coupled, non-linear, ordinary differential
equations, from which it is very difficult to make analytical progress [9].

Later work by Newell [6] reformulated the problem in terms of a desired (optimal)
velocity that depends on the distance headway ∆x. In the Optimal Velocity (OV)
model, a driver accelerates from their current velocity to the optimal velocity in time
τ :

ẋj(t + τ) = V (∆xj(t)) (17)

Bando Taylor expanded this form and obtained [13]:

ẍj =
1
τ
[V (∆xj)− ẋj ] (18)

One immediately notices that (18) corresponds to the classical motion of a particle
with friction, driven by a ‘force’ proportional to V (∆x). In general, the optimal
velocity function V (∆x) is required to: be monotonically increasing, be bounded
from above, and have a point of inflection. The last requirement can be shown to be
necessary to obtain density waves that are interpretable as traffic jams [7]. A popular
form for V (∆x) was proposed by Bando [13]:

V (∆x) = vm
2 [tanh (∆x− xc)− tanh xc] (19)
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By using a series expansion of the headway in terms of the density, Berg et al. have
successfully obtained a macroscopic representation from the Optimal Velocity model
[14]:

∂tv + v∂xv = 1
τ [V (ρ)− v] + 1

2τ V ′(ρ)[ρ−1∂xρ + 1
3ρ−2∂2

xρ− ρ−3(∂xρ)2] (20)

What distinguishes (20) from the results presented for the hydrodynamic and gas-
kinetic models is that the coefficients represented in terms of observable microscopic
variables, rather than the phenomenological constants of vehicular ‘diffusion’ and
‘viscosity,’ which are difficult to define. An unphysical feature of the OV model
is that the collision frequency increases much too rapidly as the delay time τ is
increased, since the optimal velocity function does not depend on ∆v.

The so-called Intelligent Driver Model (IDM) attempts to rectify some of the
unphysical features of the OV model by carefully describing the reactions of the
individual drivers. Treiber et al. prescribe the following model of driver response
[15]:

v̇ = a

[
1−

(
v
v0

)4
−

(
∆x∗

∆x

)2
]

(21)

∆x∗ = ∆x0 + Tv + v∆v
2
√

ab
(22)

Here v0 is the desired velocity, ∆x0 is the safe distance headway, T is the safe time
headway, a is the maximum acceleration, and b is the desired deceleration. As we
will see in section 5, the IDM can produce quantitative agreement with empirical
findings.

3.4 Particle Hopping Models

Unlike the models previously described, space and time are discretized in particle
hopping models. Individual vehicles move on a lattice according to a set of predefined
rules, thus particle hopping models are described in the language of cellular automata
(CA). The simplest CA representation of vehicular traffic is the CA 184 algorithm
developed by Wolfram. Here a vehicle moves ahead by one site if the site ahead of it
is unoccupied and stops otherwise [7]:

xj(t + 1) = xj(t) + min[1,∆xj − 1] (23)

A more realistic particle hopping model was developed by Nagel and Schreck-
enberg [16]. In this model, four steps are used in the vehicle update cycle: accel-
eration, deceleration, randomization, and movement. Vehicles increase their speed
by 1 if below a maximum threshold (acceleration). If a vehicle would collide with
its downstream neighbor, its speed is reduced to land on the site behind it instead
(deceleration). The speed of a vehicle is reduced by 1 with probability p (randomiza-
tion), which takes into account differences of individual drivers and the tendency to
overreact when braking. Finally, the vehicles position is increased by its net veloc-
ity calculated in the preceding steps (movement). The algorithm can be expressed
compactly as [7]:

xj(t + 1) = xj(t) + max
[
0 , min

[
vmax , ∆xj − 1 , xj(t)− xj(t− 1) + 1

]
− uj(t)

]
(24)
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where uj(t) is 1 with probability p and 0 with probability 1 − p. As we will see,
overreaction during breaking in the NaSch model is an important feature in sponta-
neous jam formation. When modeling real traffic, the time step of the update cycle
is usually associated with the shorteest relevant time scale of the system, ie. the
reaction time of drivers ( 1s)[7]. One shortcoming of the NaSch model described here
is that it does not generate metastable or hysteretic dynamics. This can be rectified
by qualitatively incorporating the fact that drivers do not always immediately notice
when they can begin to accelerate again once stopped. This results in ‘slow-to-start’
rules where a driver accelerates with probability q if accelerating from stopped [17].

4 Empirical Observations

Researchers in traffic phenomena have only a few sources for empirical data. In
general, modern traffic data are gathered by induction loop detectors installed on
overpasses which measure coarse grained distance and time headway distributions
as well as short term temporally averaged density and velocity data. Despite the
roughness of the data gathered, quantitative comparisons can often be made.

4.1 Traffic Jams

The most widely observed phenomena in traffic physics are traffic jams. The works
of Kerner et al. ([18]-[21], see, e.g. [9] for more references) taken together constitute
a detailed analysis of the formation and characteristics of traffic jams. Many of the
findings are the result of case studies of individual traffic jam events. Kerner’s works
reveal that almost all traffic jams are caused by some sort of bottleneck which restricts
the traffic flow (which is not surprising given common experience). The nature of the
jams did not seem to depend on the details of the bottleneck, eg. whether it was a
lane reduction, traffic accident, on-ramp, or uphill gradient [19]. This is encouraging
from the standpoint of physics because it seems to indicate universal behavior. The
notable exception to the bottleneck induced traffic jams are the so-called ‘phantom’
jams mentioned earlier. From Treiterer [6] and Kerner, we have come to understand
spontaneous traffic jams as a kind of nucleation effect. Local fluctuations in the
traffic density (often caused by driver overreaction during braking) become amplified
as more cars brake behind the locally slowed pocket. As more cars are involved in
the process (due to increased velocity upstream), a jammed state emerges.

Kerner observed that the jammed state is stable for long periods of time and
that jam waveforms can propagate for long distances over changing road conditions
(encountering on and off ramps and lane reductions) with little change. He also
found that jam waves propagate at a characteristic speed of about 15km/h. This is
primarily due to the fact that it takes an individual driver at least 2s to accelerate,
thus drivers leave the jam sequentially and slowly. In fact the outflow density profile
is essentially constant in time. This leads to the other major characteristic of traffic
jams. Kerner found that the outflow from a jam is not only constant in time, but
is universal: other jams under similar weather conditions will have the same outflow
[19]. These universal characteristics of traffic jams make the system accessible to a
physical description.
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4.2 Phases of Traffic

In addition to the jammed state just described, the works of Kerner and others have
revealed that traffic actually consists of many dynamical phases. Below is a summary
of the states reported so far (naming may vary).

1. Free Traffic (FT) is characterized by high flow. Each individual vehicle is moving
at a roughly constant speed and is relatively unaffected by its neighbors. In FT
traffic in different lanes in nearly uncorrelated. Free flow breaks down at higher
densities.

2. Synchronized Traffic (ST) is characterized by a high density and high flow. ST
exists in density regimes closer to the jammed state, yet has a flux nearly the
same as free flow. In synchronized traffic, cars all move with nearly uniform
velocity and strong correlations exist between different lanes.

3. Oscillatory Congested Traffic (OCT) is a jammed traffic state that has periodic
‘stop-and-go’ waves. A ‘stop-and-go’ wave is a period pulse of lower density
that propagates upstream.

4. Highly Congested Traffic (HCT) is the jammed state. In HCT vehicle flux is
either zero or negligible.

5. Pinned Localized Clusters (PLC) are regions of high density locally confined to
a road inhomogeneity (such as an on ramp).

As in condensed matter physics, the different phases of vehicular traffic can be iden-
tified in practice by their microscopic behavior. A revealing microscopic property is
the distribution of time headways [9]. An example is displayed in figure 2. In the
FT regime, one immediately notices two characteristic peaks in the distribution. The
first peak occurs near ∆t = .8s and corresponds physically to ‘platoons’ of vehicles
traveling at high speed close together. The second peak near ∆t = 1.8 reflects the
desire to maintain a safe time headway (driving schools encourage a ∆t of about 2s).
In ST, the short time peak is destroyed while the safe driving peak gains relative
prominence. In OCT, no short time headways are observed and leaving only the safe
driving peak [9]. In this manner different microscopic states can be identified either
from empirical or simulation data. Different phases of traffic have also been found to

Figure 2: Distributions of Time Headway for Free, Synchronized, and Oscillatory Con-
gested Traffic. (Reproduced from [17])
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coexist. A striking example from Kerner is three phase coexistence of FT, ST, and
jam waves (see figure 3). Here two jam waves propagate in parallel across regions of
FT and ST. A remarkable feature is that the jam waves cross the transition between
FT and ST with little to no disturbance.

Figure 3: Spatio-temporal plot of 3 dynamically coexisting phases. (Reproduced from
[21])

4.3 Phase Transitions

An often sought after relation in traffic physics is the ‘fundamental diagram,’ or flux-
density relation which indicates a separation between free flow and congested states.
A typical example of the flux-density relation can be found in figure 4. At low density,
flux varies linearly with density, which means that the increase in density in this
regime has not affected the average velocity. At higher densities, vehicles impede each
other (vehicle-vehicle interactions become important) and congested traffic states
form. It is now well established that the flux is discontinuous in density across the
transition, thus it is a first order phase transition. Kerner has found that both of
the transitions FT → ST and FT → HCT are first order [20]. Correspondingly,
traffic states also exhibit hysteresis. Figure 4 contains a time trace of traffic data
moving from free traffic to a congested phase and eventually back to free flow, thus
forming a hysteresis loop. Though the primary order parameter governing the phase
transitions is density, the transitions can be triggered by other means. Kerner found
that a propagating jam interacting with a bottleneck can induce dynamical phase
transitions. He observed a jam approaching a region of free traffic prior to, during,
and after a bottleneck. After passing the bottleneck, a synchronized traffic state
had formed prior to the bottleneck [21]. As noted before, he also found that the
FT → ST transition can also be induced by a short-time localized fluctuation in the
density (the ‘phantom jam’).

5 Theoretical Results

All of the model classes discussed in this paper are capable of reproducing free,
synchronized, and jammed traffic states. For the rest of this section, we will primarily
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Figure 4: Flux-density relationship observed in traffic (left). Hysteresis in dynamic phase
transitions (right). (Reproduced from [9])

focus on the modern car-following and particle hopping models, which are capable
of comprehensive qualitative, and at times quantitative, agreement with empirical
observations.

5.1 Traffic Jams

In analytical theory, the invariant properties of traffic jams has inspired description
in terms of classic non-linear differential equations such as the Burger’s, Kortweg de
Vries (KdV), and Modified KdV equations. Different models typically favored one
particular equation. More recently, Nagatani has discussed how all three non-linear
equations can be derived from the Optimal Velocity model and exist in different
areas of a proposed (analytical and numerical) phase diagram. The various solutions
of triangular shock (Burger’s), soliton (KdV), and kink-antikink (MKdV) waves have
qualitative similarities with empirical time trace data [7].

5.2 Phases of Traffic and Phase Transitions

The Modified Nagel-Schreckenberg, Optimal Velocity, and Intelligent Driver models
are capable of reproducing the five phases discussed so far. Theoretical phase dia-
grams have been proposed for certain hydrodynamic, gas-kinetic, and car following
models. A host empirical findings have been verified analytically or by simulation.

Similar to Kerner’s observations, Knospe, using the NaSch model, has observed
three phase coexistence [22]. These results were obtained by incorporating rules
which reflect the desire for smooth driving into the NaSch model, which implies that
the ST phase may emerge due to this microscopic tendency. Results from Nagel
with empirical boundary conditions reproduce the empirical flux-density relations
measured by Wiedemann [7]. The flux-density relation obtained from the OV model
also recaptures the shape of the empirical curve along with the finite discontinuity
at the critical point. Expansion of equation (20) (coarse-grained OV model) around
the critical point results in a Time-Dependent Ginzburg-Landau equation, implying
that the jamming transition is governed by the TDGL equation. Stability analysis
and simulation imply that the free-congested transition is similar to the gas-liquid
phase transition [7].
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Figure 5: Traffic breakdown from a lane closing (left) and OCT on an uphill road section.
Compare empirical measurements (top) with IDM results (bottom). (Reproduced from
[15])

Some of the results from the IDM model have even more striking quantitative
agreement with empirical findings. Figure 5 shows spatio-temporal plots of con-
gested traffic from observation and for the IDM with empirical boundary data [15].
Such close agreement reassures us that the microscopic dynamics are being correctly
considered. It should be noted that much more information could be presented here,
but we instead refer to the relevant literature.

6 Conclusion

Vehicular traffic provides a rich set of ‘physical phenomena.’ Understanding the dy-
namic phases of traffic, as well as the causes of metastability and hysteresis are bound
to have broader impacts than road design. As we have seen, the field of traffic physics
is replete with connections to other fields of physical study. The appearance of macro-
scopic hydrodynamic equations and the Time-Dependent Ginzburg-Landau equation
speak of deeper connections. Even the similarities between the formation of ‘pla-
toons’ behind slow moving vehicles and Bose-Einstein Condensation raise questions
[9]. The field of traffic physics is becoming well developed in the modern language
of non-equlibrium statistical physics, and its further maturation should help in fun-
damentally understanding other important physical systems with similar qualitative
features.
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