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Abstract

The Fermi liquid theory of interacting electrons in one dimension breaks down due

to the Peierls instability. Hence a different theory that takes into account explicitly

the one-dimensional nature of the system must be found. This theory was pioneered

by J.M. Luttinger, who was able to describe low-lying excitations in a one-dimensional

electron gas in terms of bosons. Haldane completed the constructive approach to the

theory and named it Luttinger liquid theory. More recently, advances in experimental

techniques and the discovery of carbon nanotubes allowed effectively one-dimensional

electron systems to be probed in the laboratory.
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Figure 1: Particle-hole excitations in one dimension [1].

Figure 2: Particle-hole excitations in two dimensions[1].

1 Introduction

1.1 Inadequacy of Fermi Liquid Theory in One Dimension

In one dimension, the Fermi surface consists of just two points at ±kF . The fact that
each branch of the Fermi surface can be mapped on the other by a single wavevector ±2kF

produces a singular particle-hole response at 2kF known as the Peierls instability. To see
why this is a problem in one dimension, images of the Fermi surfaces and particle-hole
excitations are depicted in Fig. 1 and Fig. 2 for one- and two-dimensions respectively. The
constriction of the one-dimensional picture is responsible for the breakdown of Fermi liquid
theory in one dimension. Note that in the two-dimensional picture, the allowed particle-hole
excitations are “filled out.”

1.2 History of Luttinger Liquid Theory

The history of Luttinger liquid theory actually goes back to the work of Tomonaga [2] from
1950, where he posited that excitations in one-dimensional systems could be described by a
“quantized field of sound waves” or phonons. While this is true, it is more accurate to call
these excitations plasmons after the work of Bohm and Pines (1953). Luttinger developed
this theory into a model that he incorrectly solved in 1963 [3]. By failing to properly
address the infite-dimensionality of the Hilbert space that changes the commutators of field
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operators, he derived that the excitations were the same for interacting and non-interacting
electron systems. Mattis and Lieb [4] fixed this problem in 1965, correctly writing down
the field operators. Haldane [5] coined the term ’Luttinger liquid’ (sometimes also called
a ’Tomonanga-Luttinger liquiud’) in 1981 and discovered a nice physical interpretation of
what the bosonization of the one-dimensional fermion excitations means. The next section
parallels the work of Eggert [6], which was derived from the work of Haldane.

2 Bosonization

2.1 Non-interacting system

Given ck and c�k as the electron annihilation and creation operators respectively, the non-
interacting Hamiltonian is given as

H =
∑

k

εkc
�
kck,

where εk are the single-particle energies. The ck and c�k obey the usual Fermi anti-commutation
relations

{c�k, ck′} = δkk′ {ck, ck′} = {c�k, c�k′} = 0.

The field operators corresponding to these annihilation operators are given by the Fourier
transform:

ψ(xj) =
1√
N

π/a
∑

k=−π/a

eikxj ck ck =
1√
N

N
∑

j=1

e−ikxjψ(xj),

where k is spaced in increments of 2π/Na and xj = ja, a the lattice constant (also, xN = `).
The field operator corresponding to the creation operators is just the Hermitian conjugate
of this. The ψ(xj)(ψ

�(xj)) annihilate (create) a localized Wannier state at lattice site xj .

2.2 Linearization of the Hamiltonian

The Fermi surface of a one-dimensional electron gas consists of two points, at ±kF . At
absolute zero, every state between these two wavevectors is occupied. Around the Fermi
surface, we may separate the electrons into right-movers, with k ≈ kF , and left-movers, with
k ≈ −kF , and linearize their energies as

εk ≈ εF + (k − kF )
∂εk
∂k

∣

∣

∣

∣

k=kF

+O((k − kF )2) ≈ vF (k − kF ) for k ≈ kF

for the right-movers and

εk ≈ εF + (k + kF )
∂εk
∂k

∣

∣

∣

∣

k=−kF

+O((k + kF )2) ≈ −vF (k + kF ) for k ≈ −kF

for the left-movers, where we take the Fermi energy to be zero. Define Λ as the range of
validity for this linearization approximation as in Fig. 3, so that the linearized effective

3



Figure 3: The linear region of the band.

Hamiltonian is

H ≈
kF +Λ
∑

k=kF −Λ

εkc
�
kck +

−kF +Λ
∑

k=−kF −Λ

εkc
�
kck

This expression may be made more concise if we define new quantum operators

cRk = ckF +k cLk = c−kF +k

for |k| < Λ as right- and left-moving annihilation operators by shifting the original ones
relative to the Fermi wavevector points. Then the linearized Hamiltonian may be written
as

H =

Λ
∑

k=−Λ

vFk(c
R�
k cRk − cL�

k cLk ).

We also find that the original fermion field operator splits into right- and left-moving parts:

ψ(xj) =
1√
N

∑

k

eikxjck

=
1√
N

( kF +Λ
∑

k=kF −Λ

+

−kF +Λ
∑

k=−kF −Λ

)

eikxj ck

=
1√
N

(

eikF xj

∑

k

eikxj cRk + e−ikF xj

∑

k

eikxj cLk

)

=
√
a(eikF xjψR(xj) + e−ikF xjψL(xj)),

where we have defined

ψR(xj) =
1√
`

∑

k

eikxj cRk ψL(xj) =
1√
`

∑

k

eikxj cLk .
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Figure 4: Particle-hole excitations

We have not explicitly labelled the range of summation in this expression for a reason.
Although we have explicitly introduced a cut-off because we only care about low-lying
excitations, we can include all the states −∞ < k < ∞ explicity because we will always
limit ourselves to low-level excitations, hence the added states outside the cut-off will never
contribute to any physical excitation. Primarily we do this so that the Fourier transform of
the right- and left-moving field operators may be represented by the continuous integral

c
R/L
k =

1√
`

∫ `

0

e−ikxψR/L(x) dx.

It should also be noted that by including all these state, the anti-commutator

{

ψ�
R/L(x), ψR/L(y)

}

= δ(x− y)

is normalized as a delta function as opposed to being dependent on the cut-off Λ.

2.3 Excitation Spectrum

In this section we will show how excitations of a one-dimensional Fermi gas at absolute zero
may be thought of as bosonic occupation numbers. This will be done by construction of
the excited state in Fig. 4. First, we consider only right-moving electrons, and temporarily
drop the superscript R on the operators. For simplicity we replace the subscript on the
creation/annihilation operators by excitation mode, i.e. c0 corresponds to annihilating the

electron at k = kF , c�1 corresponds to creating an electron in the 1st excited state, such that
the state created in Fig. is described by

c0c
�
1c

�
2c

�
4c

�
5c

�
8|0〉,
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Figure 5: Step one of the bosonization example is to add 4 electrons.

where |0〉 is the ground state of the filled Fermi sea. Since the order of operators is important,
we write the operators from left to right corresponding to lowest to highest integer. Instead
of doing this all at once, we break down this process into steps:
Step 1: Create the excited state in Fig. 5 by operating

c�1c�2c�3c�4|0〉
on the filled Fermi sea. The energy cost of this is

E =
πvF

N
n2

R,

where nR is the number of right-movers added.
Step 2: Now we shift each of these excitations, starting from the highest to lowest, in

order to create particle-hole excitations:

• shift the electron at n = 4 up 4 steps to level 8, with an energy cost of E = 1 × 4 ×
2πvF /N

• shift no electrons up 3 steps

• shift the next two electrons, at n = 3, 2 respectively, up 2 steps to levels 5, 4, with an
energy cost of E = 2 × 2 × 2πvF /N

• shift the next two electrons, at n = 1, 0 respectively, up 1 step to levels 2, 1, with an
energy cost of E = 2 × 1 × 2πvF /N

In this step we created the resultant state in Fig. 4
Step 3: Associate each shift of Step 2 with a boson of the same energy, as in
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• one excited boson on level 4

• no excited bosons on level 3

• two excited bosons on level 2

• two excited bosons on level 1

In this way we can represent particle-hole excitations as bosons. This will be made more
rigorous in the next subsection.

2.4 Boson operators

We will now define some boson operators and state some relations between them so that
we may write our old fermion operators in terms of these. In order to limit the amount
of tediousness in this section, the reader is referred to Ref for derivations of many of these
results.

First we define the fermion shifting operators as

ρR
k =

∑

k′

cR�
k′+kc

R
k′ ,

which can be seen as shifting all the right-movers up by an amount k. Since we include
all states below kF , this creates an analogous situation to Step 1 in the subsection above.
Notice that the fermion shifting operator is not Hermitian, indeed (ρR

k )� = ρR
−k, meaning

that the Hermitian conjugate will “annihilate” an excitation by amount k, which should be
expected for bosonic operators. Also consider the commutator

[(ρR
k )�, ρR

k′ ] = [ρR
−k, ρ

R
k′ ] = δkk′

kN

2π
,

where care must be taken in deriving the result for k = k′ due to the infinity of states in
the Fermi sea. This result, along with the commutator of the shifting operator with the
Hamiltonian,

[H, ρR
k ] =

∑

k′,k′′

vFk
′[cR�

k′ , c
R
k′ , c

R�
k′′+kc

R
k′′ ] = vFkρ

R
k ,

gives us the boson algebra and the Hamiltonian in terms of boson operators. We rescale the
shifting operators as

bR�
k = i

√

2π

kN
ρR

k bRk = −i
√

2π

kN
ρR
−k,

and since for left-movers the excitations correspond to k < 0,

bL�
k = −i

√

2π

kN
ρL
−k bLk = i

√

2π

kN
ρR

k .

This gives us the canonical boson commutation relations

[bRk , b
R�
k′ ] = δkk′ [H, bR�

k ] = vF kb
R�
k ,
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from which we may build up the spectrum, and write the Hamiltonian as

H =
∑

k>0

vFk

(

bR�
k bRk + bL�

k bLk

)

+
πvF

N
(n2

R + n2
L).

Here the second term corresponds to the initial addition of electrons, as in our constructed
example, called the zero modes. The terms in the sums correspond to particle-hole excita-
tions are called the oscillation modes.

2.5 Fermion operators expressed as boson operators

Using our right- and left-moving fermion fields, we can construct right- and left-moving
fermion densities given by

ρR/L(x) = ψ�
R/L(x)ψR/L(x),

which will turn out to be related to the fermion shifting operators. However, before we
continue, we must note that for the ground state,

〈ρR(x)〉 =
∑

kk′

e−ikxeik′x〈cR�
k cRk 〉 =

0
∑

k=−∞

〈cR�
k cRk 〉 = ∞,

that is, there are an infinite number of electrons in our Fermi sea. We can solve this problem
by normal ordering, in which we rearrange our operators to subtract off the ground state
expectation value,

: ρR(x) := ψ�
R(x)ψR(x) − 〈ρR(x)〉.

This is accomplished by moving our fermion annihilation operators to the right for k > 0
and to the left for k ≤ 0, as in

: cR�
k cRk := − : cRk c

R�
k :=

{

cR�
k cRk k > 0

−cRk c
R�
k k ≤ 0

.

With this in mind, we can now calculate the Fourier transform of the right-moving fermion
densities

∫ `

0

dx eikx : ρR(x) :=
∑

k′

: cR�
k′+kc

R
k′ :=

{

ρR
k k 6= 0
nR k = 0

,

which is just the fermion shifting operators for the oscillating modes or number of right-
movers added for the zero mode. By taking the inverse Fourier transform, we have expres-
sions for the fermion densities in terms of boson operators:

: ρR(x) :=
1

`

∞
∑

n=1

√
n

(

ibRn e
i 2π

`
nx − ibR�

n e−i 2π
`

nx

)

+
nR

`
,

and similarly for the left-movers, but the R is switched with L and the signs in the expo-
nentials are opposite. If now we define the boson field operators as

φR(x) = φR
0 +QR

x

`
+

∞
∑

n=1

1√
4πn

(

ei 2πn
`

xbRn + e−i 2πn
` bR�

n

)
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Figure 6: Model of a single-walled carbon nanotube [6].

and simlarly for the left-moving boson field (with R replaced with L and opposite signs in
the exponentials), then we may write

: ρR/L(x) :=
1√
π
∂xφR/L(x),

where QR/L =
√
πnR/L and φ

R/L
0 are defined as conjugate to the number operators

[φR
0 , QR] = −i/2 [φL

0 , QL] = i/2.

We can also express the Hamiltonian in terms of boson fields as

H = avF

∫ `

0

dx ((∂xφR(x))2 + (∂xφL(x))2).

3 Experimental Results in Carbon Nanotubes

3.1 Overview

Carbon nanotubes (Fig. 6) are tightly rolled up sheets of graphene, a hexagonal sheet of
carbon atoms. Single-walled carbon nanotubes are typically about 0.5-2.0nm in diameter,
thus thin enough that the excitations in the circumferential direction are frozen out, and we
have an effective one-dimensional electron gas. It has also been shown [8] that the instability
caused by the lattice distortion when a carbon nanotube “bends” is not important.

All of the results verifying Luttinger liquid behavior in carbon nanotubes has thus far
been about the measurement of anomalous critial exponents, as found in the last section.
For example, near the Fermi surface, the density of states [6]

ρ(ω) ∝ |ω|α α =
1

4
(g + g−1 − 2) > 0,

where g is the one-dimenstional electron-electron interaction parameter. In the case of
nanotubes contacted to metallic tunelling leads, in the case of small bias voltages V �
kBT/e, there is a power-law variation of conductance with temperature [9]

G ∝ Tα,
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Figure 7: A bundle of single-walled carbon nanotubes observed via tunelling electron mi-
croscopy [8].

and for high bias voltages V � kBT/e there is a power-law variation of (differential) con-
ductance with bias voltage

dI/dV ∝ V α,

where α depends on whether the nanotube was contacted to its bulk or end as

α =

{

1

8
(g + g−1 − 2) bulk
1

4
(g−1 − 1) end

.

3.2 Photoemission Spectroscopy

In this experiment, Ishii et. al. [8], measured the photoemission spectra from a synchrotron
source of ropes of carbon nanotubes grown by laser ablation. A bundle of these ropes is
shown in Fig. 7 These carbon nanotubes were determined to have apporximately the same
diameter. The results for observed photoemission spectra and calculated photoemission and
density-of-state data for the Tomonaga-Luttinger-Liquid model is given in Fig. 8

3.3 Electron Transport

In another experiment, Bockrath et. al. [9], measured the anomalous Luttinger liquid critial
exponents for how conductivity in a single-walled carbon nanotube scales with temperature
and bias voltage. The nanotubes were contacted using two different methods. The leads
were defined via electron-beam lithography either before or after the deposition of nanotubes
from a dichloroethane solution. Hence the chromium/gold leads may be on top or on
bottom of the nanotubes. Only nanotubes with well-defined periodic Coloumb blockade at
low-temperatures were used because this indicated the presence of a single quantum dot [9].
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Figure 8: Observed and calculated photoemission spectra and density-of-states. The expo-
nent determined here is ω = 0.46 [8].

In Fig. 9 the conductance versus bias voltage it shown. The conductance is scaled by a
temperature-dependent prefactor, based on theory, so that curves at different temperatures
can be compared. The power law is readily evident from this log-log plot.
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