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Liquid crystals can be classified into 5 phases; Liquid, Nematic, Smetic, Columnar and
Crystalline according to their position order and orientational order. To explain these phases,
many models have been employed; Landau-de Gennes theory, Onsager-type theory, Maier-
Saupe theory and the van der waals type theory. In this paper, I’ll explain these theories
and their computer simulations. At the end, experiment will be introduced for comparison.
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I. INTRODUCTION

It is fairly easy to define a crystal and a liquid separately or come up with their simple properties.
In crystals, molecules are well ordered and constrained to each site. In liquids, they can move randomly
pointing any directions. Liquid crystal, which sounds quite paradoxical, is a state in the middle of
those two states and we can classify it according to degrees of order. Most disordered type is a nematic
phase. It has an orientational order which is called a director, but no positional order. Next type is
a smetic phase. In this phase, molecules are arranged in sheets with well-defined interlayer spacing in
addition to orientational order. Next type is a columnar phase. In this phase, molecules are aligned
in disk-like way and the columns that molecules form make two dimensional array. As expected,
when isotropic liquid is cooled down, it goes through nematic, smetic and columnar phase.(There are
more sub-phases under each nematic, smetic and columnar phase but I will not discuss them in this
paper.) Also depending on the structures, it can skip one phase such as jumping from nematic to
columnar phase or more disordered phase can appear such as nematic phase after smetic phase.(re-
entrant phase transition.) As seen in phase transition of various systems, phase transition in liquid
crystal also exhibits spontaneous symmetry breaking, strong fluctuation, diverging susceptibility and
discontinuity, which come from cooperative interactions at microscopic level. In this essay, I will focus
on relatively well-discovered isotropic-nematic(NI) transition.

II. THEORY

A. Landau-de Gennes(LD) Theory

First, we need to define an order parameter for orientational order, which take 0 for complete
disorder, and 1 for complete order. There can be a different definition for the order parameter with
this property but we are going to use the definition:P = 1

2〈3 cos2 θ−1〉 =
∫

1
2(3 cos2 θ−1)f(θ)dθ where

θ is an angle to the director and f(θ) is an orientation function. Experimentally, the order parameter’s
abrupt drop from 0.25-0.5 to zero at transition temperature has been observed, which is manifestation
of first order transition. In LD theory[1], to explain this first order transition, following Landau free
energy was employed.

F =
1
3
a(T − T ∗NI)P

2 − 2
27

BP 3 +
1
9
CP 4 (2.1)

where a,B,C is a positive constant and T ∗NI is a temperature close to transition temperature TNI .
Differentiating (2.1) by P , we get equilibrium value of P , which satisfies

a(T − T ∗NI)P − 1
3
BP 2 +

2
3
CP 3 = 0 (2.2)

The solutions of (2.2) are

Pi = 0 isotropic case

P± =
B

4C

[
1± (1− 24aC(T − T ∗NI)

B2
)1/2

]
nematic case

(2.3)

At T < TNI , the value of P which gives us minimum free energy is P±. Also at T = TNI the equation
(2.1) should satisfy

a(TNI − T ∗NI)P
2 − 2

9
BP 3 +

1
3
CP 4 = 0 (2.4)
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With two equations (2.2) and (2.4), we can get two solutions.

PNI = 0, TNI = T ∗NI

PNI =
B

3C
, TNI = T ∗NI +

B2

27aC

(2.5)

In conclusion, we can distinguish three different temperature regions.
1. T > T ∗NI : the free energy minimum corresponds to P = 0.
2. TNI < T < T ∗NI : Relative minimum of free energy exists at P = P+, but the free energy minimum
still corresponds to P = 0
3. T < TNI : The minimum corresponds to nematic phase, P±.
We can also include fluctuation of order parameter in Landau free energy, but I will not describe it
because it’s the same derivation as we did in class.

B. Onsagar-type theory (Hard rod theory)

This is an important idealization that attributes the orientational ordering to the anisotropic shape
of molecules[2]. In this theory, NI transition originated from effective repulsion of molecules, which
affect entropy with excluded volume.

If UN is a potential energy of interaction,

UN =
N∑

1<i<j<N

uij (2.6)

In a hard rod theory, this can be approximated to

uij = uij(rij , θi, θj) =

{
∞ if i and j overlap
0 otherwise

(2.7)

In a perfect gas, entropy can be written as

Sideal = kB ln(a
V

N
) (2.8)

S = kB ln(a
V −Nb

N
) (2.9)

= Sideal + kB ln(1− Nb

V
) ≈ Sideal − kB(

N

V
b) (2.10)

where b is a finite volume of a molecule. Then F = F0 + kBT ln(n) + kBTnb. Here, we will take two
factors into consideration.
1. orientational entropy : ∆S = −kB

∫
f(θ) ln(4πf(θ))dΩ

2. excluded volume from the potential.
For 2nd factor, consider two rods whose lengths are L, diameter is D and angle is γ. Then the excluded
volume will be 2L2D sin (γ) and its average volume will be 2L2D

∫ ∫
f(θ)f(θ′) sin(γ)dΩdΩ′. Thus final

free energy will be

F = F0 + kBT (ln(n) +
∫

f(θ) ln(4πf(θ))dΩ + L2Dn

∫ ∫
f(θ)f(θ′) sin(γ)dΩdΩ′ (2.11)

This is a functional and it’s hard to get an exact function which minimizes it. We will approximate
a trial function with a parameter and get a parameter to minimize it. With a trial function[3],
f(θ) = (const) cosh(α cos(θ)), we could see abrupt first order phase transition from isotropic(α = 0)
to nematic (α > 18) with an order parameter P ∼= 0.84. This model doesn’t predict a right solution
in high density but it gives a correct qualitative picture of NI transition from the anisotropic shape of
the molecules.
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C. Maier-Saupe(MS) type theory

In this theory, it was assumed that there should be anisotropic interaction to cause an orientational
ordering. The interaction can originate from several mechanism and one of the strong candidates is
van der Waals forces. For the simple and phenomenological interaction, the following potential was
assumed

Uij = −u
P 2

2
(2.12)

where u is a parameter that expresses the strength of interaction. Then the free energy will be

F = −u
P 2

2
+ kBT

∫
f(θ) ln[4πf(θ)]dΩ (2.13)

To minimize this free energy, we need to know f(θ) which maximizes the entropy for different order
parameter P. We use Euler-Langrange equation to find a stationary value of

∫
f(θ) ln[4πf(θ)]dΩ with

a constrain that
∫

1
2(3 cos2 θ − 1)f(θ) sin θdθ = P is a constant. Using a calculus of variation, we can

get

ln f +
3λ

2
cos2 θ + 1− λ

2
= 0 (2.14)

which has the solution

f(θ) = exp(3λ cos2 θ) (2.15)

where λ is the Lagrange multiplier which is the value of the order parameter P. With these, we can
plot the free energy as a function of P for different value of u/kBT .(FIG1)

FIG. 1: Free energies for different values of u/kBT

As the value of u/kBT increases from zero, P also starts from zero, which corresponds to isotropic
phase. When u/kBT is 4.55, we can observe discontinuous change of P from P=0 to P=0.44, which
corresponds to nematic phase(FIG2). Also this discontinuous change of P indicates the first order
transition. In order to compare this with experiment, we need to assume the value of u first. If we
set the value u which reproduces the experimentally observed transition temperature, the prediction
of order parameter from the theory agrees with the value from experiment well.
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FIG. 2: The value of order parameter which minimizes free energy as a function of coupling parameter u/kBT

D. The van der Waals(vdW) type theory

In Onsagar-type theory and MS theory, we realized that short-range repulsive potential and long
range attractive potential contribute to the NI phase transition. Also in the construction of molecular
theory, the spatial and angular variables of molecules should be taken into account. Many models,
known as vdW type theory, have been developed considering these conditions. In these theories,
geometry of molecules is recognized as a predominant factor. Long range attraction is taken as a
negative and spatially uniform mean field to the first order. Here, I’ll develop a perturbation theory
in the mean field approximation.

First, interaction potential between two molecules can be written as

u(xi, xj) = u(0)(xi, xj) + λu(p)(xi, xj) (2.16)

where u(0)(xi, xj) is a rapidly varying short range repulsive interaction, u(p)(xi, xj) is a smoothly
varying long range attraction and λ is a perturbation parameter. Then the configurational integral is

QN =
1

N !(4π)N

∫
drN

∫
dΩNexp[−βUN (x1, x2.....xN )] (2.17)

If we divide unit sphere into arbitrary small angles ∆Ω(n = 4π/∆Ω) and define Np as the number of
molecules whose orientation is in the pth solid angle,

QN =
1

N !(4π)N

∑

N1

....
∑

Nn

N !(∆Ω)N

N1!...Nn!

∫
drNexp[−βUN (rN , N1...Nn)] (2.18)

For a simpler form, if we consider the maximum values of N,

QN ' (
∆Ω
4π

)N [
n∏

p=1

N̂p!]−1

∫
drNexp[−βUN (rN , N1...Nn)] (2.19)
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Considering (2.16), if we take a derivative w.r.t. λ

∂ ln QN

∂λ
= − 1

2V
β

n∑

p=1

n∑

p′=1

N̂pN̂p′

∫
dru(p)(r,Ωp, Ωp′)g(r,Ωp, Ωp′) (2.20)

where

g(r,Ωp, Ωp′) =
V 2

QN
(
∆Ω
4π

)N [
n∏

p=1

Np!]−1

∫
drNexp[−βUN (rN , N̂1...N̂n), λ] (2.21)

Integrating (2.20), we can get Helmholtz free energy

F = F 0 +
1
2
Nρ

∫ 1

0
dλ

∫
f(Ωp)dΩp

∫
f(Ωp′)dΩp′

∫
drup(r,ΩpΩp′)g(r,Ωp,Ωp′) (2.22)

where f(Ω), continuous orientational distribution, means

N̂ = Nf(Ωp)dΩp (2.23)

If we expand g(r,Ωp,Ωp′) and free energy w.r.t. λ

g(r,Ωp, Ωp′) = g(0)(r,Ωp, Ωp′) + λg(1)(r,Ωp, Ωp′) + ... (2.24)

A = A(0) + λA(1) + λ2A(2) + ... (2.25)

With these and (2.22), we can get

F = F 0 +
1
2
N

∫
f(Ωp)dΩp[

∞∑

r=1

Ψ(r)(Ω)] (2.26)

where Ψ(r) is defined as the effective one-body potential:

Ψ(r)(Ω) =
1
2r

ρ

∫
f(Ωp′)dΩp′

∫
drup(r,ΩpΩp′)g(r−1)(r,Ωp, Ωp′) (2.27)

The vdW-type theory considers only the first order perturbation[4], which is :

Ψ(1)(Ω1) = ρ

∫
f(Ω2)dΩ2

∫
drup(r,Ω1Ω2)g(0)(r,Ω1, Ω1) (2.28)

Then,

F = F 0 +
1
2
N

∫
dΩ1f(Ω1)[Ψ(1)(Ω1)] (2.29)

where

Ψ(1)(Ω1) = ρ

∫
f(Ω2)dΩ2

∫
dru(p)(r,Ω1Ω2) exp[−βu(0)(r,Ω1, Ω1)] (2.30)

Because the potential u0(r,Ω1Ω2) is same as (2.7), exp(−βu0(r,Ω1Ω2)) is 0 within rods and 1 outside
rods. For u(p)(r,Ω1Ω2), assume

u(p)(r,Ω1Ω2) = − 1
r6

[Ciso + Caniso cos2 Ω12] (2.31)

Then we use a calculus of variation as in MS theory assuming the orientational function,

f(Ω) =
λ cosh(λ cos θ)

4π sinhλ
(2.32)

Computer simulation[5] of vdW does not quantitatively agree with experiment, but it shows that the
anisotropy of short-range repulsion is important in NI transition.



7

III. COMPUTER SIMULATIONS

Because of complexity of liquid crystals, computer simulation is a very important method to under-
stand a system. In reality, molecules consist of rigid cores and flexible side chains and their interactions
become very complicated to describe. Thus molecules and their interactions should be simplified for
a computer simulation.

A. Lebwohl-Lasher models

This is a computer simulation of MS model. First, simple cubic lattice of molecules with no
translational motion is assumed. The Hamiltonian is

H = −J
∑ 1

2
(3cos2θij − 1) (3.1)

where the sum is over nearest-neighbor pairs of lattice. Lebwohl and Lasher carried out Monte
Carlo(MC) simulation on the system[6] and observed strong first order NI transition with a jump
of order parameter from 0 to 0.33 near J/kBT = 0.89. Zhang and co-workers[7] simulated the same
model including more lattices, 283 and showed good agreement with the experimental data.

FIG. 3: Phase diagram in the hard ellipsoid model. I: Isotropic, S: Orientationally ordered crystal, PS: Plastic
crystal and N: Nematic

B. Hard-core Models

Frenkel and Mulder[12] performed a simulation of three dimensional hard ellipsoid using MC sim-
ulation. They defined length to width ratio as x and varying x, they found that first transition occurs
in the range x > 2.5 or x < 0.4(FIG3). Also Cuesta and Frenkel[13] carried out a simulation with two
dimensional ellipses with aspect ratios 2, 4 and 6. For aspect ratios 4 and 6, stable nematic phase with
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power-law decay of orientational correlation is observed. For aspect ratio 4, the first order transition
was found.

C. Gay-Berne model

This is a computer simulation with a more elaborate potential, called Gay-Berne(GB) potential,
which is

u(r,Ω1, Ω2) = 4ε(r̂, Ω1, Ω2)[(
σ0

r − σ(r̂, Ω1,Ω2) + σ0
)12 − (

σ0

r − σ(r̂, Ω1,Ω2) + σ0
)6] (3.2)

where

ε(r̂, Ω1,Ω2) = ε0(1− χ2[ê1 · ê2]2])(−1/2)x(1− χ′
(r̂ · ê1)2 + (r̂ · ê1)2 − 2χ′(r̂ · ê1)(r̂ · ê2)(ê1 · ê2)

1− χ′(ê1 · (̂ê2)2)
) (3.3)

σ(r̂, Ω1, Ω2) = σ0[1− χ′
(r̂ · ê1)2 + (r̂ · ê1)2 − 2χ′(r̂ · ê1)(r̂ · ê2)(ê1 · ê2)

1− χ′(ê1 · (̂ê2)2)
](−1/2) (3.4)

where χ′ = (
√

k′ − 1)/(
√

k′ + 1); k′ is the ratio of the potential well depths for side by side and end
to end configurations. DeMiguel and coworkers[8] performed a simulation with 256 molecules in GB
potential and obtained the phase diagram, FIG4.

FIG. 4: Phase diagram obtained using GB potential. SmB: Smetic B, T∗ = kBT/ε0 and ρ∗ = ρ/σ3
o

In the simulation, the first order is observed in NI transition. Also in their study of GB fluid,
molecules diffusing with cylindrical axis parallel to the director in nematic phase were observed. There
are similar types of simulations such as Luckhurst et al[10]’s and Emerson[11]’s work. Their results
were comparable to DeMiguel’s and all of these show that NI transition is mainly achieved by the
excluded volume effects.
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IV. EXPERIMENT

Among many experimental techniques, mottler oven and differential scanning calorimetry(DSC) are
widely used. Mottler oven is a method to obtain phases of a liquid crystal by detecting transmission
as a function of temperature. The transmission of a liquid crystal increases with decreasing order
parameter. Thus shining a light and placing photodiode in the other side, we can measure the change
of transparency of the sample. DSC is the method to observe the phase transition by detecting the
enthalpy change associated with. Also by measuring the level of enthalpy change, we can learn the
type of the phase transition[14].

For the NI transition, the abrupt jump of order parameter from zero to 0.25-0.5 is observed at NI
transition temperature over a stretches of 0.6-0.8K. Enthalpy change measured is small(1-2kK/mol)
comparing the enthalpy change, 30-50kJ/mol of the solid to isotropic liquid phase transition[15].

V. CONCLUSION

Since the first order type NI transition was observed, many attempts have been made to explain
it theoretically. Phenomenological description of the system, Landau-De Gennes theory could show
important features of the NI transition. For molecular level description, Onsager’s hard rod theory,
which maintained that molecules’s anisotropic shape and their excluded volume lead to orientational
ordering, and Maier-Saupe type theory, which proposed that anisotropic interaction of molecules cause
the ordering, were introduced. Computer simulations followed by them showed their good agreement
with experimental data.
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