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Abstract

The observation of Barkhausen Noise in magnetic systems and re-
lated scaling suggests the possibility of the systems proximity to a critical
point. This turns out to be consistant with the zero temperature Random
Field Ising Model [RFIM] with a critical point designated by the width
of the uncorrelated (long wavelength) random field distribution over a
d-dimensional cubic lattice and a given external field.

Introduction

If one were to scour all of the scientific literature over the lifetime of science one
would generally find an aversion to impurity. Noise, dirt, disorder, structural
impurities anything that gets in the way of the beautiful theories constructed by
the most notable scientific intellects of history usually plays the role of spoiler.
Where the effects of disorder are important good practitioners are sure to qual-
ify at least and quantify when possible these effects but thier influence on the
outcome is rarely the primary focus of investigation. There are however increas-
ingly more studies of systems in which the disorder is the source of the behavior
of interest. In this paper we present one such study.

The behavior of interest can be couched in terms of a discovery made in 1919
by H. Barkhausen and results from simply magnetizing a ferromagnetic material.
Upon increasing the external magnetic field one might look at the resulting M
vs. H curve and conclude that this is a continous process, but we note upon
further inspection that this curve is made up of a set of descrete jumps (fig.
1) . One can actually hear these jumps with the aid of a pickup coil and some
speakers as a sort of static “like the noise of sand grains falling over each other as
a can of sand is tilted”[1]. This static is known as Barkhausen Noise (BN) and
is useful because when coupled with a mesoscopic theory it gives us means of
studying aspects of mesoscopic structure of the ferromagnetic materials (among
others) in a nondestructive way through macroscopic measures such as noise
spectra [7]. These materials are of great technological interest because they are
materials that “remember” what has happened to them or more technically they
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Figure 1: Detailed view of magnetization curve, magnified region shows
Barkhausen Jumps

display hysteresis on long time scales. This property is manafestly tied to the
pinning effect of the disorder.

That disorder is a factor in this phenomena seems clear given the non-
deterministic nature of the BN as well as the polycrystaline structure of these
ferromagnets but extracting its precise role is by no means a trivial task. And
as of now it seems for generic materials and parameters there does not ex-
ist an tacitly accepted theory. For instance one theoretical treatment (ABBM
model)[11]reduces the system to one degree of freedom modeling the system as
“the” domain wall being dragged through a random potential. Another treat-
ment (Cizeau et.al.)[12]takes into account the surface tension of the domain wall
and models the phenomenon as a flexible domain wall being dragged through
random pinning sites. While both appear to be consistant with some exper-
iments the collapse to one degree of freedom of the ABBM model is not un-
derstandable in terms of the mesoscopic structure. That is it is hard to tie
the correlation of the disorder in the 1d pinning potential to the large number
degrees of freedom the system is supposed to have. The smooth domain wall
picture given by Cizeau et.al. is limited to soft ferromagnetic materials and may
correspond to a different universality class than is presented in this paper (i.e.
long range forces).

Dispite the differences in many theories one curious fact is observed when
analysing BN. That is that the frequency spectrum and amplitude distribution
exhibits power law scaling over many decades. This experimental fact has been
interpreted as Self-Organized-Criticality (SOC) due to decades of scaling ap-
parently without tuning any parameters' (observed cutoffs were attributed to
finite size effects). There is evidence however to suggest that the scaling may be
the result of the system being near a “plain old” critical point. Here I present a

I The defining criteria “criticality without fine tuning” seems to have need of amendment
[3] but this is material for another paper.



model that I hope will convince you of this.

The proximity to a critical point is stated not in terms of temperature and
external field (as in the standard Ising model) but in terms of the “strength”
of the disorder and the external field. The disorder is responsible for pinning
the system in local energy minima resulting in a system far from equilibrium.
In the present discussion it is assumed that the barriers posed by the disorder
do not allow for the observation of relaxation to the equilibrum state on the
time scales of the experiments. In this paper I introduce a cartoon picture of
the mesoscopic physics and show that it goes a long way into explaining scaling
found in experiments. The model that applies to these sketched out properties
and will carry us for the rest of the paper is the zero temperature Random Field
Ising Model (RFIM).

The Model

The RFIM consists of descrete up down spins on a d-dimensional hypercubic
lattice. The general hamiltonian for the RFIM which includes all of what is
assumed to be an effective charactiture of the basic physics for both long and
short range forces is given by-
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(4,3)

omitted in present treatment

It includes the dipole interaction term and a infinite range so called demagne-
tization term which in this paper will be neglected. In order to investigate the
short range force universality class I will instead focus on the system dominated
by nearest neighbor (nn) interaction (J; ; summed over nn (i,j)), interaction
with the external field (H), and the local quenched disorder represented by the
R.V. h; with the following gaussian distribution-

1
h;) = ———e2R?
p(hi) N

The disorder is spacially uncorrelated which in the long wavelength limit
seems reasonable. R, the standard deviation of the distribution, is what I am
referring to when I talk about the “strength” of the disorder (fig 2).

We take the long time (compared to the time it takes a spin to flip given it
is energetically favorable to do so) limit and obtain spin flips in the simulation
upon the reversal of the sign of the net local effective magnetic field he¢ff =
H+hi+3_;y Ji;S; - Qualitatively one can imagine the resulting hysteresis loops
obtained for extreme values of R assuming we begin with all spins pointed down
and ramp the field from -co up. When R is small the system looks like a regular
Ising model at zero temperature, that is upon ramping the field the system
undergoes one large jump when the external field goes from H < 0to H > 0 .
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Figure 2: Picture of the quenched random fields present for different values of
R. Note this is a side view of a 3d cube, the random fields point along the axis
of symmetry i.e. the z-axis

When R is very large the random fields dominate the dynamics overriding the
nn interaction and the hysteresis curve looks like a gaussian intetgrated from
-00 to H. Somewhere in between the loop goes from having a discontinous jump
to a smooth curve having a point of infinite slope (fig. 3).

From simulations as well as mean field theory we discover the system near
this point turns out to behave much like a traditional equilibrium system near
a critical point. The role of the barkhausen jumps is played by “avalanches”
which have a characteristic size (fig 4) that diverges as one would expect, the
distribution of avalanche sizes scales, the susceptability diverges by definition
and so on.

Mean Field Theory

This model is exactly solvable in the Curie-Weiss type mean field theory where
the nn coupling is replaced by the net magnetization of the system and J;; —» %
where N is the system size. This results in the following Hamiltonian

H==> (H+h;+JM)S;

i

Most of the qualitative properties of the system are given by MFT. For
instance the system displays hysteresis for R < R, there is a discontinuity in
the slope of 3—% and the avalanche size distribution scales as R approaches R,
from the right. This is a great help since it gives us a starting point for analytic
treatments but how does this apply to our system? After all details given by
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Figure 3: Schematic drawing of loops for various levels of disorder with the
critical point illustrated in the center. [5]

MFT are notoriously unreliable. We do know however that if we increase the
dimension of our system the number of nearest neighbors increase giving the
effect of each spin “feeling” the mean field. To find out how high the dimension
must be for MFT to apply to our system the following argument has been
presented.

Suppose you are approaching the critical point by varying h along the » =0
line (where h = = and r = %). For the transition to be well defined the
fluctuations in h, Ah must be less than the value of h or % < 1 as h approaches

zero. We know[2] that the correlation length & ~ h7 near the critical point
and that Ah ~ £~%. This yield the following inequality
2

> Z
—d

v
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and with the MF values of v = 1/2 and 36 = 3/2 we obtain the upper

critical dimension to be 6. This is an unphysical dimension but as you will

see d=6 provides a useful starting point around which one can use perturbation
methods in the dimension of the system to probe more realizable dimesions.

Scaling forms and Critical Exponents

From MFT we can construct scaling forms for various quantities and use them
as ansatz’ below the upper critical dimension to test how the exponents change
as we approach more physical dimensions. Here, we simply quote a couple of
scaling forms and define the exponents of interest in order to demonstrate scaling
collapse and the extraction of critical exponent values from simulations. There
are other useful scaling forms which the interested reader can investigate[2],[9].
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Figure 4: Illustration(from [8]) of 3 dimensional avalanche near the critical
disorder. The colors indicate the order of flipping events.

Magnetization Curves

Near the critical point (r & h small) M(H,R) is found to have the much more
restrictive form

M(H,R) = M ~ ||’ M (h/ Ir|*)

where M, = M(H,., R.) and M is the universal scaling function ((+) de-
notes above R, and (-) is a potentially different scaling func. below R, ). Both
B and 3¢ are defined by this relation and have MF values of 1/2 and 3/2 re-
spectivly.

To remove the non-universal M. as well as investigate the divergence in the
slope we take the derivative w.r.t. H to obtain

dM(H,R)

o = Il ML/ 1)

Avalanche Size Distribution

In general the Avalanche Size Distribution is formally D(S,R,H), near the critical
point MFT gives

h

D(S,R,H) ~ S™"Dy(S7 |r|, HW)
r



where as usual r & h are small and S is large. The mean field values of
and o are 3/2 and 1/2 respectively. One can integrate this over all fields and
by noting that the integral will only have notable contributions near h=0 we
obtain the following so called “integrated” avalanche size distribution.

Dint(S, R) ~ S—('r-i-aﬁé)pzzt(sa |’I“|)

with 7+ 036 = 9/4 in MFT.

Scaling Collapse

The constraint of the scaling form imposed by nature allows us to extract expo-
nent values from the experimentally obtained or simulated functions by collaps-
ing the data. For example knowing that w has the form given above leads
us to take % as data and plot % Ir|?°7F vs. h/|r|? for different
values of r. The universality of M. (h/ |r|’3 %) implies these data will collapse
onto one curve if we get the exponents right. Unfortunately this requires taking
a range of r values and we know we will only get a collapse for r close to zero so
we are torn. For scaling to be convincing i.e. have well defined exponents for
a given fit, the range over which r is taken must be significant. That is if r =
0.1,0.1001,0.1002 we surely expect to see collapse but the parameter space over
which we get collapse is huge. On the other hand if we choose r =0.1,0.5,1.0
we are likely to not get collapse at all since some of the values in the range
fall outside the region described by the critical exponents. This is precisely
the problem experienced with w. I mention this because in the case of
D"t (S, R) we get bailed out by a very curious situation.

It seems that the scaling form holds for conventionally large r values but
the exponent values are not the same as you increase r, and they seem to vary
smoothly. This allows a wonderfully simple trick. By taking a set of small sets
with non-trivial but small ranges centered around an increasing r so you have
{ri—,ri,rit}, collapsing the small sets to end up with a new set composed of
ordered pairs of r and corresponding exponents {r;, exponents;} and by extrap-
olating the processed data to 7 = 0 we extract the true critical exponent (fig 5)
. Now for MFT we already know the answers so this is just a demonstration
of method but when simulating finite systems this technique will prove quite
useful.

Simulation

Before I sketch any of the analytical aspects of this problem it will be good
to introduce you to some computational aspects as well as the results of the
simulation. In principle the simulation is very straight forward so you may
wonder why I discuss the computational aspects at all. Indeed these are well
covered in [8] but you will hopefully note in the implimentation of the model
that there are some details, notably true infinitely slow sweeping rate, that may
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Figure 5: MF example of critical exponent determination from integrated
avalanche distribution.

aid in the understanding of the physics as well as give limits (mostly hardware)
imposed by the model.

Computational Aspects-

There have been two primary algorithms used to study this system[8]. The
first uses a sorted list structure with runtime scaling of O(NlogN) requiring
asymptotically N - (doubleg;.e + integers;,.) bytes of memory. This allows for
system sizes of approx 80,000 sites per megabyte and takes about 10min for one
run of a 2002 system (RS6000 43P 260). The memory required by this algorithm
limits the system sizes to approx 500° for a machine with 2gigs of memory. A
benefit of this algorithm is that you can sweep the field back a forth to study
proporties of the hysteresis loop. The other algorithm used takes advantage of
the fact that if you only go one way in the hysteresis loop you do not have to
store information about the individual random fields on each site. Thus you
only have to store the spin state (up or down) or one bit per spin. This allows
for much larger systems (~ 1000 and larger) and also runs in O(NlogN) time.
The drawback is that you can’t go backwards.

All of the results quoted in this paper are quoted for infinitely slow sweeping
rate and indeed that is what is implemened in the simulation. In schematic
form the algorithm goes as follows (both follow this in spirit).

e The external field is raised until one spin flips.
e The spin may or may not cause others to flip.

If it does then we propogate the avalanche until no more spins want to
flip, all the time the external field has not increased.

Start over.



measured exponents 3d 4d 5d mean field

1/v 0.71£0.09 1.12+0.11 1.47+0.15 2
0 0.015+0.015 0.32+0.06  1.03+0.10 1
(r+0B6—3)/ov  -290+0.16 -3.20+0.24 -2.95+0.13 -3
1/o 42403 3.2040.25 2.35+0.25 2
) 2.034+0.03  2.07+0.03 2.15+0.04 9/4
T 1.60+£0.06  1.53+0.08 1.48+0.10 3/2
d+B/v 3.07+£0.30 4154020 51404 7 (at d. =6)
B/v 0.025+£0.020 0.19+£0.05  0.37+0.08 1
ovz 0.57+£0.03  0.56+0.03 0.545+0.025 1/2

Table 1: Values for the exponents extracted from scaling collapses in 3, 4, and 5
dimensions. The mean field values are calculated analytically[2, 10] v is the cor-
relation length exponent and is found from collapses of avalanche correlations,
number of spanning avalanches, and moments of the avalanche size distribution
data. The exponent § is a measure of the number of spanning avalanches and
is obtained from collapses of that data. (7 4+ 03 — 3)/ov is obtained from the
second moments of the avalanche size distribution collapses. 1/¢ is associated
with the cutoff in the power law distribution of avalanche sizes integrated over
the field H, while 7 4+ 03§ gives the slope of that distribution. 7 is obtained
from the binned avalanche size distribution collapses. d + /v is obtained from
avalanche correlation collapses and /v from magnetization discontinuity col-
lapses. ovz is the exponent combination for the time distribution of avalanche
sizes and is extracted from that data.

Simulation Results-

Numerical results measured by Perkovic et al are given in the following table
and caption found in [9].

Renormalization Group Results

This system is at zero temperature far from equilibrium, there is no partition
function to be had, so the usual step of writing down the partition function can-
not be done. Instead an analog to the partition function is created. It is noted
that given a configuration of random fields the system follows a deterministic
path upon sweeping the external field. By assigning a ¢ function weight to that
path for that configuration and then averaging over all possible configurations
we obtain a distribution for the possible paths of the system. So the “possible
states” of good old thermodynamics goes to “possible paths” in this system and
the “sum over states” of the traditional partition function goes to a “weighted
sum over paths” in this system.

When the dust settles [2, 13] we end up with an perturbation expansion in
dimension d = 6 —e around the mean field values of the critical exponents as well



-
20(® & & - A
0 -5
g o-—-__F _F-——0
c T /’o
@] A
X 10 AW -

0.0

Dimension (d)

Figure 6: Results of the 6-¢ expansion vs. numerical simulations.[14]

as a justification to the scaling forms mentioned above for our system below the
upper critical dimension. The results of this calculation and corresponding phase
and flow diagrams are shown in figs. 6&7. The data appear to fit surprisingly
well given that the expansion was in terms of a non-physical parameter and the
perturbation was in terms of a rather large number.

Conclusion

We see in this work a compelling agrument for the presence of scaling in Barkhausen
noise as well as an interesting application of RG to a system far from equilib-
rium. The renormalization gives us a systematic way to coarse grain degrees of
freedom and map the complex system onto experimentally observed phenom-
ena like the noise amplitude distribution. What is needed is some experimental
conformation in the light of the role of disorder. Unpublished experiments done
by A. Berger whereby hysteresis loops are measured for various annealing tem-
peratures of Gd films may be the beginning of this and efforts are underway
to pursue this. There are also interesting questions currently being addressed
regarding the connection between the equilibrium RFIM, relaxation times a fi-
nite sweeping rates. The fruits of this model are just beginning to ripen and
hopefully this paper will interest you in the harvest.
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Figure 7: Left:Schematic phase diagram for our model, with arrows showing
flows under coarse-graining. The dark line is H.(R), the external field at which
the infinite avalanche occurs when the system is swept upwards from H =
—o00. Under coarse-graining, the effective external field h = (H — H.)/H grows
fastest, and the effective disorder r = (R — R.)/R grows more slowly: all other
directions are stable under coarse-graining. [Right is explained in reference but
not discussed here. It relates to the simalarity between this system and the pure
Ising model’s 4-€¢ expansion... I experienced technical difficulties isolating the
left figure|[14] (figure and caption text in []| is mine)
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