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The theory of the helix-coil transition is introduced with the help of a toy model, and a simple
estimate of the melting temperature is made. Modifications necessary for the DNA are indicated,
along with the role of solvents, pressure etc. on the transition. Lastly the nature of the phase
transition is discussed in light of the finite size scaling analysis.

I. INTRODUCTION a major area of study in recent years. Though most of the

Proteins and nucleic acids are long chain polymers,
which in an aqueous solution are expected to behave like
one dimensional random coils. This is an extremely high
entropy state because of the large number of possible
conformations. However, in the solid phase, the free en-
ergy is minimised by taking up a helical conformation,
the famous double stranded helical structure of the DNA
being an example. Experimental evidence indicates that
the isolated biopolymer in solution is in a state of equi-
librium between helix and random coil.
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FIG. 1: Temperature variation of optical density of DNA
obtained from experimental data [7]

This raises interesting questions about the nature of
the equilibrium, i.e., the coexistence of both helix and
coil, and the effects of temperature, pH, salt concentra-
tion, and chain length on the equilibrium. Measurements
of properties such as optical density [7] show a very sharp
transition with temperature, as in Fig. 1 indicating that
the helix-coil transition might be a phase transition.

Different models in the limits of different chain lengths
have been proposed to incorporate this transition. How-
ever since the temperature in biological systems remain
constant, it is assumed that the transition is brought
about by changes in the solution properties. The effects
of the solution on the helix stability and coiling has been

theory was developed in the middle of the last century,
the field has received a new boost with the development
of computational techniques.

Another area of interest has been the very nature of the
transition. According to the Landau theory, an infinite
one dimensional system with finite range interaction do
not exhibit phase transition. The method of “finite size
scaling” avoids this by postulating that the system is not
one dimensional and that the interaction is long range.
These recent studies show that the transition is first order
though the results are not conclusive.

In this paper I will first discuss the simplest model
of the a-helix, to develop the theory of the amino-acids;
though this is inaccurate it’ll give a simple picture of how
to apply the general techniques of statistical mechanics to
biopolymers. Later this will be improvised to incorporate
the DNA molecule.

II. A TOY MODEL

Consider a long chain molecule consisting of NV linked
units, each unit being able to exist only in two states, the
helical state (h) and the random coil state (¢). The units,
called residues consist of several atoms and if the dihedral
angles ( angles of internal rotation about its single bonds)
are those characteristic of the helix, its in a state (h);
otherwise its in the state (c).

Thus there are 2% states of the molecule generated by
the expression (h +¢)™V, and the free energy G{h,c} is a
function of a given {h,c} sequence. Then the partition
function for the system becomes

Z(N) =Y exp[-G{h,c}/RT] 1)
{h,c}

with the probability of the occurrence of a given sequence
being given by the Boltzmann distribution. All the ther-
modynamic observables can be calculated form this par-
tition function, and hence the problem reduces to the
calculation of this quantity. Because the number of con-
formations is formidably large, several approximations



are required to answer any question of biological inter-
est.

A Independence of Sequences

The most important assumption in calculating the par-
tition function is that the free energy of successive se-
quences of ¢’s and h’s are independent. This imposes
restrictions over the interaction between sequences along
the chain, however this is the minimum model to make
progress in calculating the partition function. This im-
plies that the free energy of a sequence depends only
on the length of the sequence and not on the position
along the chain where it occurs, nor on the length of the
neighbouring sequences. Hence, the statistical weight of
a sequence of coil states ¢ residues long can be written as

ui = exp[=Gi(c)/RT]
and similarly for a j residue long helical state
v; = exp[—G;(h)/RT]

It is also seen that the helix and coil sequences al-
ternate, hence allowing the devision of any conformation
into pairs of sequences containing one helical and one coil
sequence. Hence

Z(N) =Y exp[-G{h,c¢}/RT] =) [[uw; (2
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B The a-Helix Model
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FIG. 2: A representation of the a-helix model

The structure of the a-helix as seen in Fig 2. has the
NH group of the i-th residue hydrogen bonded to the CO
group of the (i+4)-th residue, thus spanning the covalent
bonds (about which internal rotations can take place) of
three residues. Thus two residues of the helical sequence
are free, i.e. in a j-residue long helical sequence only
(j — 2) hydrogen bonds are formed.

Thus, there are three types of states in the polypeptide
chain: (1) a coil state; (2) a helical state with a hydrogen
bond; and (3) a helical state without a hydrogen bond.
The statistical weights of these states are tabulated below

Table 1
Statistical wight

State I 11
Coil u u/u=1
Helix with

hydrogen bond w w/u=s
Helix without

hydrogen bond v v/u=¢'/?

Here the statistical weights have been normalised with
respect to the all-coil state. The physical picture of this
assignment is as follows: the hydrogen bond determines
the stability of the helix and hence w ~ exp(—Ey /RT),
with Ex being the energy of formation of the bond; the
internal rotations make up the free energy of the random
coil and hence u ~ exp(—S/R). When the ratio w/u = s
becomes greater, less than, or equal to unity, helix is, re-
spectively, favoured, unfavoured, and of equal probability
with respect to the coil.

Since the helical sequence has only two units which
contribute neither to the coil entropy, nor a hydrogen
bond, 0 = (v/u)? should be less than unity, reflecting
the low probability of occurrence of the ends of the helical
sequence. Thus, in this model the helix-coil transition is
an order-disorder transition, as s the ratio of helix to coil
is decreased (e.g. as the temperature is increased) the
ordered low energy helix transforms to the disordered,
high entropy coil.

From the definition, the parameter s can be expressed
as

s = exp[~AG)_./RT] (3)
= exp[—(AHj_. — TASy_.)/RT] (4)

where AG},_., is the difference of the free energies of the
two states.

Thus we can formulate the statistical weights of the
sequences, that of an ¢ unit long coil sequence being u; ~
1 on normalisation, and for the helical sequence of j > 2
unit the weight being v; = v?w/~? = 5s/~2. The weight

of the unit long helical sequence is of course just v = ''/2.

C Long Sequence Tendency

For a j residue long helical sequence, the negative free
energy per residue is given by

(1/4)(G;/RT) = (1/)logv; = logs — (1/4) log(s* /o)

For s ~ 1, the negative free energy is maximised for large
values of j, thus indicating that the most probable helical
sequence will be the longest possible. This gives rise to
the “all-or-none” transformation between complete helix
and random coil. In this approximation the only two
probable states gives rise to the simplest partition func-
tion

Z(N) =vN + oV (5)



Rearranged, this becomes
Z(N) = uN[osV 72 +1]

and the hydrogen bond fraction being

O'SN_2

o) = o

In the limit of long chain, this becomes the step function.
O(N = 00) =0O(s—1)

The above equations do not represent the total free
energy of a given length chain. In an N residue long
chain with a sequence of j residues, there are a number
of ways of placing the sequence on the chain, i.e. the
combinatorial entropy. Thus there is a competition for
the helical sequences.

Short Chain All-or-none
Medium Length One h sequence of any size
Long Chain Many of medium length

Though this drastic approximation has to be improved
for the model to be more realistic, the simplicity of the
model helps to show some general structures. This model
is then generalised under different modifications and re-
finements for different chain lengths, and gives a better
picture of the poly-amino acid.

Allowing all possible conformations the partition func-
tion becomes

Z(N) = (u+o)N =uV (1 + )N

where u = 1. Under this less drastic approximation, the
average helical fraction is

o )_l(%nZN_ s
= Notns 1+s

This also shows the behaviour of a step function as we
will see below.

D The Transition Temperature

In spite of the simplicity of the model, an estimate of
the transition temperature can be made. We see that a
transition occurs at s = 1, or when half of the molecules
are in the h and c states; we denote this temperature
as the melting temperature 7,,,. This is the temperature
where AGp_. = 0. This gives

AI'Ih—c

ASp_. = T,

Hence, s can be written as

where a = AHp,_./RT,,. Since AHp, . < 0, (since we
lose heat in helix formation), a is negative. Rearranging

_ 1
T Ty eat
where t = (T — T},,)/T.

o(t)
1

0.8
~1/a
(=1
0.

0/2

-0.4 -0.2 0.2 0.4

FIG. 3: The helical density under a relaxed approxima-
tion

The sharpness of this transition depends on the mag-
nitude of a ie. of AHp .. But in general 5 <
|AHp_.| < 10kcal/mol, so the sharpness of the tran-
sition is limited. However from experimental values
ASp_. ~ —22cal/mol /°K, its negative since the helix
has less entropy, so

_AHp_. —Tkcal /mol

Tm — ~
ASp_.  —0.022kcal/mol /°K

~ 318°K

i.e. 45° which agrees fairly well with the data from the
plots of optical density, though the curve should have
been sharper. In order to simulate the sharpness of the
curve correctly, interaction between the different parts is
essential.

Further refinement of this model is carried out by in-
corporating the transfer matrix method in evaluating the
partition function for the helix modelled after the Ising
model. For details see [1].

III. MODIFICATIONS FOR THE DNA

In developing the theory for the DNA two major mod-
ifications are necessary; first the double stranded helix
can unwind in two different ways by unwinding from the
ends or by forming internal loops; and secondly the com-
position of the chain is heterogenous even within a given
sequence. In the first part of this section I’ll discuss the
results obtained from incorporating the heterogeneity. In
the latter part the unwinding transition will be treated
in greater detail.



A The Heteropolymer Model

The simplest refinement considers two types of units,
A and B, in a specific sequence, where each unit can be
in one of the two states, h or ¢. This involves assigning
different statistical weights (four in all) for each of these
units, even within a given sequence of coil or helix, and
incorporating nearest neighbour interaction. The weight
for all combinations are obtained by formulating four ma-
trices, and writing the partition function in terms of these
matrices. In another method the weights depend on the
neighbouring states h or ¢, but not on the neighbour type
(A or B).

These models agree fairly well with the Monte Carlo
simulations, and show that the breadth of the transition
is broader for the heteropolymer than the homopolymer
model discussed earlier. This is understood as follows:
the types A and B are considered as weak and strong
helix formers, respectively, i.e. A units melt at a much
lower temperature than B, hence spreading the transition
over a broad temperature range. Calculations show that
a random sequence consists of rather short sequences of
A and B, and the physical picture of the heteropolymer
will be much different from the homopolymer case, for
example the end-to-end distance distribution function in
the transition region would be drastically affected.

B Role of the Solution

The essential features of the DNA molecule that are
different from polyamino acids, which must beincluded
in the model are:

(1) The backbone is a polyelectrolyte containing charged
phosphate groups.

(2) The formation of the double-stranded helix requires
the association of two chains.

(3) The double stranded helix can unwind from the ends,
forming free chains, or in the interior, forming loops.

(4) Natural DNA is a specific-sequence copolymer.

The uncoiling transition has recently been studied by
Galindo and Sokoloff [10] by using a model incorporating
these general ideas.

The dissociation of the double stranded DNA into sin-
gle strands involve two steps: the uncoiling of the he-
lix and separation of the strands in which a complete
breaking of the hydrogen bond takes place. The solution
is described by the solvent, concentration, and type of
counterions. In early studies, the effects of the ionic con-
centration on the DNA melting temperature, the counte-
rion distribution, and binding were addressed by solving
the Boltzmann equation.

The computational model of the a-helix is shown in
Fig 4. In this model aj is the radius of the imaginary
cylinder over which the two helical strands are wrapped.
The distance between two consecutive charges on the
same chain is denoted by d,,, the positions of a pair
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FIG. 4: The DNA modelled for computational purposes
[10]

of charges associated with a neucleotide pair can be used
to generate the positions of the consecutive pair by rota-
tion about the axis, 1y, and a translation along the axis,
h(1y). dpy is the distance between a pair of charges that
correspond to the phosphate groups in a pair of comple-
mentary nucleotides.

The coiling-uncoiling transition is described in terms
of two conformations: the first X, in which the helix is
completely uncoiled, ¢y = 0, and h(0) = dp, (i.e. two
parallel charge chains); the second conformation Y, in
which the helix is coiled with an angle ¥y, and h(¢y <
dpp)- The change in free energy per helix between the
two conformations is

+oo
AW(Y,X)= Y W (6)

where
W = Wi (V) = W (X)

and the W,,’s are sum of terms like

_ @ exp[=k(r—o)]
W= =

€(1 + ko) r
Here € is the dielectric constant of the solvent, ¢ the
charge of the species and

k= (4r Z ng? |ekpT)*/?




From these calculations its found that decreasing the di-
electric constant of the solvent near the DNA, causes the
change in free energy to decrease and the minimum ap-
proach zero for a critical value.

Small radii of counterions seem to destabilise the DNA,
since the change in the free energy becomes smaller with
reduction in radii. It is also seen from these calculations
that there is an uncoiling transition at sufficiently high
concentrations.

As mentioned earlier, since the temperature of the bi-
ological system remains stable, the transition is not in-
duced by changes in temperature. Study of hydrostatic
pressure on the thermal stability shows that surface pres-
sure creates a compressive stress in the inter base hydro-
gen bonds, and this might also cause the transition [13].

IV. ISIT A PHASE TRANSITION ?

Fundamental work on critical phenomenon shows that
phase transition can’t occur in one dimensional systems
with finite range interaction, however the sharp nature of
the helix-coil transition makes it a very strong candidate.
Recently, it has been conjectured that this transition is
due to long range interactions, and the fact that the DNA
is not one-dimensional.

The theory of finite size scaling has also started to
play a very important role in this field. As is known, the
fluctuations away from the transitions being small, the
system is unaware of its finite size, and the behaviour
appears to be critical. However approaching the transi-
tion temperature, the fluctuations tend to diverge but are
limited by the finite system size, and the behaviour devi-
ates from that of a true phase transition. The observables
remain finite, but reach a maxima at some temperature
below that for the infinite system.

Now any discontinuity in the thermodynamic observ-
ables of interest should reflect itself in the non-analyticity
of the partition function. For the DNA, the quantity of
interest is the fraction of helical content

. 1 6€TLZN
0(s) = N 0fn s

Hence a discontinuity Aé in 6, would imply a first order
transition. A study of the partition function zeroes will
hence yield information about the nature of the phase
transition.

In the work of Hansmann et. al. [15] the partition func-
tion is written as

where n(E) is the density of states and u = e™#. The
energy E includes the Coulomb, Lennard-Jones terms as
well as that arising from the hydrogen bonds and tor-
sional deformations. The FSS relation for the zeroes

S0 = v+ () " ™

shows that the distance of the zeroes from the value for

the infinite system scales with the relevant system size
L~ N/,
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FIG. 5: Calculation of Cy for different chain lengths [15]

However, the most important point of this analysis is
that there is no theoretical indication to assume d as
a particular integer. The specific heat curve obtained
from the energy fluctuations show the finite size effects, it
reaches a maximum at some value of temperature which
gives an estimate for the value of u.. Choosing T7(N)
and T>(N) such that

C(Th) = 1/20(T.) = O(Ty)
the following scaling for the width of the specific heat
To(N) = Ty(N) = Ty (N) oc N1/ 8
and the specific heat exponent « is obtained from
opar o N/

Using these equations, they obtain dv = 0.98, and a =
0.86,v = 1.06. The scaling plot for the specific heat
is shown in figure 5: curves of all length chains nicely
collapse on each other, indicating the reliability of these
exponents. Within the error bars these agree with the
scaling relation

dv=2-«

The renormalisation group values are dv = 1 and a =
v = 1 for the first order transition, however the error
bars are queit large.

Further studies [14] have been done on minimal models
without any system specifics show that there is universal-
ity in the scaling behaviour within the finite-size scaling
analysis.



V. CONCLUSIONS

The field of biopolyers, and especially the DNA is so
vast that it is not possible to cover all the aspects of
the helix-coil transition in this short report. Some ma-
jor phenomena like fluctuations, and loop formation has
been left out. Extensive experimental studies have been
carried out in this feild, but that too could not be cov-
ered. This is a relatively old field which has received a
great boost in recent years. Many new avenues are open-
ing up especially in the role of different parameters such
as solution properties or pressure in bringing about the
transformation. This is becoming more important since
its is assumed that the helix-coil transition plays a major
role in the early stages of protein formation, and hence a
more detailed understanding of the process is necessary.
The study of the scaling behaviours is very recent, and
there is much work to be done in this sub-field, since most
of the calculations done so far are not very conclusive. It
has not been yet convincingly proved that the transition
is indeed first order, the Hansmann [14] calculations have
large error bars, which leaves room for the transition to
be second order.
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