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Abstract

In this paper, the problem of fully developed turbulence is discussed using the formalism of mul-
tifractals. After an introduction of the subject matter of fluid dynamics and turbulence, a treatment
of the Kolmogorov theory of turbulence is given, followed by a discussion of energy cascades. The
multifractal formalism is then introduced and applied to the study of intermittency in turbulence.
Scaling behavior of the velocity and dissipation fields in turbulent flows are discussed throughout
this paper, always keeping experimental results in perspective. A presentation of the concepts of
multifractal phase transitions is given to conclude the paper.



1 Introduction

The problem our fluid turbulence as puzzled the minds of scientists for almost four centuries. Leonardo
da Vinci himself sunk its teeth into the problem a long time ago. Turbulence has even inspired the minds
of poets. Despite all the efforts over the years, the solution is still elusive. An entire slew of techniques
have been used to try and solve the problem. An extensive review of all the recent work in the field was
recently published by Sreenivasan [1]. The interested reader is referred to this review. In this paper,
we shall not even attempt to mention the different approaches used by many people. We will look at
only one subfield of turbulence. Using the framework of multifractals, we will attempt to describe what
is known as fully developed turbulent. Interestingly, some recent publications have suggested that such
fully developed turbulence might not even exist. The interested reader is referred to [1].

In this paper, we will first introduce some basic concepts of fluid dynamics, before we actually define
the phenomena of turbulence itself. This will be followed by an almost mandatory treatment of the
Kolmogorov theory and energy cascades. We will then discuss fractals and multifractals as well as how
they can be used to model intermittency in turbulence, concluding with a treatment of multifractal phase
transitions.

2 Basics of Fluid Mechanics

We start by introducing some basic aspects of the theory of fluid dynamics which are necessary for the
development of a theory of turbulence. We first make an assumption which will hold for our entire
discussion. We assume that all the length scales under investigation are much larger than the mean free
path of the fluid particles. Under this condition, we can treat the entire fluid as a continuum and not
worry about the actual atoms present. The theory thus derived will be valid for all structures larger than
the mean free path, which is the well known classical limit of thermodynamics. This means we need only
concern ourselves with a classical theory of fluid turbulence and we can completely forget about quantum
mechanics. The fluid is then expected to obey Newton’s law of motion. Rewriting Newton’s second law
for a small volume contained in a continuum yields the celebrated Navier-Stokes equation [2] which has
been known since the time of Navier(1823).
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where ¥ is the velocity of the fluid, v is the kinematic viscosity, p is the pressure and f is any external
force. This equation on its own is not sufficient to specify the fluid flow. Extra constraints are required.
One such constraint is the fact that the total quantity of fluid must be conserved. We then have the
continuity equation
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where p is the density of the fluid. We will be interested below in a theory of incompressible fluids
with a uniform densities. The continuity equation (2) then reduces to V - @ = 0, which is known as the
incompressibility condition. Often this incompressibility condition and Equation (1) are taken together
and referred to as the Navier-Stokes equations. Along with suitable initial and boundary conditions, these
equations are “believed” to represent any fluid flow. We must emphasize here on the word believed since
existence and uniqueness of the solution are yet to be proven in more the 2 dimensions. The difficulty
comes from the second term in the equation, known as the nonlinear term. The fourth term is known as
the viscous term.

It is convenient to write the Navier-Stokes equation in terms of dimensionless variable. This can be

achieved via the following transformation : z' = £, v' = &, p' = & and t' = % Here, L and U

are characteristic length and velocity scales of the flow respectively. The non dimensional Navier-Stokes
equation now reads
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where we dropped the external forcing term and introduced the Reynolds number Re = % The

Reynolds number is a dimensionless parameter which turns out to be very important in fluid mechanics.
As can be seen from above, the dimensionless Navier-Stokes equation (3) depends only on Re. It is
universal for a specified value of Re and identical boundary conditions, which means that Re is the only
control parameter. Then two different flows with the same geometry and same Re will have identical
dimensionless solutions. Hence, one characterizes a fluid flow by its Reynolds number only instead of
specifying its mean velocity for example. The Reynolds number also has a physical significance. It is
the ratio of the nonlinear or inertial term to the viscous term. In the large Re limit, the dimensionless
Navier-Stokes equation becomes

Byt + 0 - V'l = —V'p/ (4)

and the region where this equation is valid is known as the inertial range since the dynamics are dominated
by the inertial term. Notice that the large Re limit is equivalent to the low viscosity limit (v — 0), an
important limit in turbulence. In the low Re limit or when the viscosity becomes large, the dissipation
gets more important and the Navier-Stokes equation becomes
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The regime dominated by the viscous term is known as the dissipation range.

3 Turbulence

For low Reynolds number, a fluid flow will be smooth and uniform or what is known as laminar. As Re is
increased, by either reducing the viscosity, increasing the mean velocity or the size of the system, the flow
becomes increasingly more wild or turbulent. We here look at an example taken from [3] and [4] to see
what the transition to turbulence looks like. Figure 1(a) shows a flow past a cylinder at Re = 0.16. In the
case of a flow past a cylinder, the characteristic length scale in Re is taken to be the radius of the cylinder.
At such low Reynolds number, the flow is very uniform and displays some symmetries. The flow is seen
to be time invariant, invariant under up-down reversal and almost invariant under left-right reversal.
Except for the left-right symmetry, which is broken by the nonlinear term of the Navier-Stokes equation
by introducing a preferred direction of the flow, all these symmetries are allowed by the Navier-Stokes
equation. However, as we increase the Reynolds number, those symmetries are successively broken. This
can be seen on Figure 1(b) which shows Karman vortex streets which clearly break the continuous time
invariance of the flow, replacing it by a discrete time invariance. As we increase Re even more, the flow
becomes even more turbulent. Figure 1(c) now shows the flow behind two cylinders. The presence of the
second cylinder does not affect the point we want to make here. One should note that at such a high
Reynolds number, the flow looks “uniform” when it is sufficiently coarse grained. That is the symmetries
have been restored but only in a statistical sense. Every point in time and in space for a region behind
the cylinder looks the same statistically. This allows us to formulate the following definition of fully
developed turbulence. When some or all the symmetries of the Navier-Stokes equation are restored, from
a statistical point of view, the turbulence is then said to be fully developed. All the models which will
be discussed below apply to fully developed turbulence.

There are many known symmetries of the Navier-Stokes equation and we shall take here a close look
three of them which are of special interest. The first two are invariance under space and time translation
as discussed above and can be visualized on Figure 1. These symmetries are relevant because of the way
measurements on fluid flow are usually made. One cannot have sensors at every point along the flow
since those would disrupt the flow. It is then impossible to measure the velocity at all points at the same
time. The common practice is to sample the flow at a single point along it and collect a time series of
data. If the time translation symmetry holds and the space translation also holds approximately, one can
then transform the time series into a space series by the simple transformation ¢ = Ut where U is the
mean velocity of the flow. Clearly, this is justified only if the flow is statistically the same for all spatial



and time translation within the series. This transformation from time to space is known as Taylor’s
hypothesis. It is only justifiable for low turbulent intensity since at high intensity, the time it takes for a
structure to travel from its original position to the sensor will be longer than the time it takes the flow
to deform this structure. In such a case, the time series will not yield the same measurement as a real
spatial snapshot (See [3] for details).

Figure 1: (a) Uniform flow around a cylinder at Re = 0.16. (b) Kérman vortex streets behind a cylinder
at Re = 140. (c) Turbulant wake behind 2 cylinders at Re = 1800. Pictures taken from [3].

The third symmetry, which will be the most important one for us, is the scaling symmetry. That is
if we rescale the parameters such that

t, &7 — N 7ht, A7 A\ (6)

then the Navier-Stokes equation looks the same, almost! In fact, under this transformation, every term in
Equation (1) or (3) picks up an extra factor of A2*~1 except for the viscous term which gets multiplied by
AP=2_ This would mean that only h = 1 is an acceptable scaling exponent. However, in the limit of low
viscosity or large Reynolds number, we can neglect the viscous term and there is an infinite number of
allowed scaling groups labeled by the scaling exponents h. This will be important when we discuss scaling
in the inertial range in the framework of Kolmogorov’s theory, as well as when we discuss multifractals.

It was pointed out earlier that the Navier-Stokes is believed to represent any fluid flow. Then it also
probably contains within it all there is to know about turbulence. However, the very large range of scales
which display structure, as well as the extreme sensitivity to initial conditions makes it impossible to
solve the Navier-Stokes equation deterministically. One then resorts to a statistical stochastic treatment
of turbulence. Modeling a deterministic equation like the Navier-Stokes equation by random or stochastic
statistical models can be justified (see [3]).

4 Old Theory of Turbulence

We shall here motivate and describe the old theory of turbulence, leading to the Kolmogorov theory and
the Richardson cascade model.

4.1 Energy Budget Scale-by-Scale

We start by deriving an exact result known as the energy budget scale-by-scale from the Navier-Stokes
equation. We define the high and low pass filtered functions
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where fj, is the discrete Fourier transform of f(7) and f(7) = f #(F) + [ (7). We can define the low pass
operator Pk : ¥(F) — U (7) and act on the Navier-Stokes equations (1) with this new operator. We then
get

Ok + Pr (0% +T%) - V(g +7%) = —Vpg + vV20g + [ (8)
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We take the scalar product of Equation (8) with U5 and than take ensemble averages. Then, using the
facts that Pk is a projection operator, commutes with V and V? and is self-adjoint (see [3]), we get
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where £k is the energy contained in structures having wavevectors k < K, Qk is called the enstrophy
for k < K, Fk is the energy injection for ¥ < K and Ilg is the energy flux through the structures of
wavevectors k < K. The terms are interpreted as follows : Fx is the energy injection at scales down to
0= K~', —20Qk is the energy dissipated at scale ¢, 8;£x is the total change in energy at scale £ and
IIg is the energy flux coming from larger to smaller scales. Usually, the energy injection occurs only at
the largest scales (integral scale) and the dissipation occurs only at the smaller scales (low Re limit or
dissipation range). Then, in the inertial range defined earlier, we have Fx = —2vQk = 0 and we get that
the change in energy only comes from a redistribution of energy from large to small scales. The main
thing to notice here is that the flux (Ilx) arises from the nonlinear term of the Navier-Stokes equation.
Hence, we conclude that it is this nonlinear term which causes this redistribution of energy.

4.2 Kolmogorov’s 1941 Theory (K41)

In 1941, A.N. Kolmogorov published a series of three papers [5], [6], [7] in which he elaborated a theory of
fully developed turbulence based on a few simple reasonable assumptions. He derived what is known as
the four fifth law from simple arguments. Some of these arguments have since been found to not be quite
correct but the important end results have been shown to be valid even when less stringent assumptions
are made. The Kolmogorov theory, often referred to as K41, is the starting point of any more refined
theory of turbulence and we shall review it here. We will not derive the results but merely state them
while emphasizing on the underlying physical assumptions made. It is important to understand the K41
theory since it is its apparent flaws that prompted the study of intermittency and the development of
multifractal models of turbulence.

We shall make here three key hypotheses about fully developed turbulence. Those are not assumptions
made by Kolmogorov himself. In his work, he assumed universality, meaning that all turbulence behaves
in an identical fashion no matter how it was generated, i.e. independent of the boundary conditions on
the flow. This argument has been rejected by Landau and cannot be expected to hold true in general
(see [3]). The assumptions we make here are more general and are still consistent with Kolmogorov’s
original idea. These assumptions were taken directly from [3].

(i) - In the limit of infinite Reynolds number, all the symmetries of the Navier-Stokes equation,
usually broken by the mechanism producing the turbulent flow, are restored in a statistical
sense at small scales and away from boundaries.

This deserves some comments. First of all, by small scales it is meant scales that are small compared
to the size(£g) of the object producing the turbulence. We call this scale £y the integral scale of the flow
and it is the length scale used in the Reynolds number. The length scale of observation also cannot be
so small as to reach the Kolmogorov dissipation scale. We are then concerned with only what we defined
earlier as the inertial range. It is important to recall that only the time translation symmetry is expected



to be exact in fully developed turbulence. Other symmetries like space translation invariance will only
hold for certain ranges of scales and only at certain positions in the flow. Here and below we will be
considering the velocity increments defined as

66(7, ) = 5(7, ) — #(F) (11)

The space translation symmetry, or the small scale homogeneity implies that
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where equality in law means they are equivalent statistically. So the velocity increments look the same,
from a statistical point of view, everywhere in the inertial range of the turbulent flow.

(ii) - The flow is self-similar at all scales and possesses a single scaling exponent h.

It was mentioned above that in the inertial range, an infinite number of scaling exponents h are allowed.
However, we postulate here that the flow is characterized by only one such exponents to be determined
later. Then if we rescale the scale of observation £ — \¢, the velocity increment scales as \*.

G- G) (13)

(iii) - The turbulent flow has a finite non-vanishing mean rate of dissipation per unit mass ().

This simply represents the fact that experiments all seem to show that there is a non zero rate of
dissipation when the viscosity goes to zero. If we take a particular turbulent flow and keep its root mean
square velocity as well as its integral length scale £y constant and make the viscosity as small as possible,
then the rate of dissipation € goes to a constant finite value. This might come as a surprise since one
would expect no dissipation when there is no viscosity but all experiments tend to show finite dissipation.

From these three assumptions, it is possible to derive Kolmogorov’s four fifth law, which goes as
follows [3].

S3(f) = <(<517’|(F,€_))3> = —%66 (14)

where the function S3(¢) is called the (longitudinal) third order structure function. This result is exact
not only under the assumptions made but also for all homogeneous isotropic turbulence. The constant
—% is universal. We can use Equation (14) to determine the unique scaling exponent h. We have seen
from Equation (13) that the velocity increment scales as A\*. Thus, the left hand side of Equation (14)
scales as A\3® while the right hand side scales as A. For the equation to be consistent, we require h = %

We can note here that Kolmogorov’s original assumption of universality said that all structure func-
tions of all orders p could be written as S, = C,eP/3¢P/® where all the C,’s are universal constants.
This was however shown by Landau to be incorrect [3]. It is believed that some form of scaling similar
to that exists but the constants C, cannot be universal. We will come back to that when discussing
intermittency.

An important experimental result is that the power spectrum of turbulence behaves as a power law
in the wavevector k in the inertial range. Figure 2(a) shows one such spectrum and Figure 2(b) an
example of structure function. The Kolmogorov theory implies that the power spectrum is given by
E(k) ~ €*/3k=5/3 where k is the wavevector. This relation was first written down by Obukhov [8], [9]
in 1941 and can be easily obtained by simple dimensional analysis but can also be obtained from the
following statistical relation between the second order structure function and the power spectrum. If
E(k) o< k=™ then Sy o (€)"~!. We get from Kolmogorov’s theory that h =n —1 = Z, hence n = 5/3
and the spectrum behaves as k~%/3. Figure 2 shows that there seems to be an inertial range where these
power laws are valid. We also mentioned earlier that the data is usually collected in the time domain
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Figure 2: (a) Typical example of a power spectrum for the streamwise component(white circles) and
lateral component (black circles) of the velocity fluctuation in the time domain for a jet at Re = 626.
(b) Typical example of a second order structure function of wind tunnel data in the time domain. Some
scaling range can be observed for both. Pictures taken from [3].

and not in the space domain. Using the Taylor hypothesis, when valid, we can modify the above results
to get the second order structure function and the spectrum in the time domain. Hence

E(k) < k573 Taylor E(w) w33
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4.3 Richardson Cascades

A simple picture of turbulence representing the results obtained so far is given by the energy cascade
model known as the Richardson cascade. Figure 3 below depicts the process. As we mentioned earlier, the
energy injection in turbulence occurs mostly at the largest scales, near the integral scale. The dissipation
on the other hand, as shown, occurs at the smallest scales, near the Kolmogorov scale (). For the
intermediate scales, the nonlinear term of the Navier-Stokes equation redistributes the energy from the
larger scales without dissipation (according to K41). The larger eddies break off into smaller eddies,
which then break up into even smaller ones and so on until the dissipation scales are reached. At every
step of the cascade, the size of the new eddies are related to the old ones by lpeyy = rfp1q Where r = 1/2
is a common choice. It is important to notice that this model assumes that all the space occupied by
the mother eddies is completely filled by the daughter eddies. If this was really the case, the K41 theory
would be exactly true in the inertial range. However, there is no reason why this should be so and
non-space filling models can be developed to model intermittency. Those seem to model the data better
and are called multifractal models.

5 Fractals and Multifractals

Before we discuss intermittency and how multifractals can be used to describe it, we should digress shortly
and introduce some basic concepts of fractals and multifractals. A fractal set can be loosely defined as
a set which shows irregularity on all scales [10]. The most common example of this is the measure of a



e, OQO M/Mjﬁtliljn ol
COCTEy &

OO0

Py OO Flux of
Pl oo tasasd Stadannd HIRIEY £
g |
g e O R O R Digsipation of
\:Mtg}r &

h

Figure 3: The Richardson cascade model according to K41 theory. Notice that at each step the eddies
are space filling. Picture taken from [3].

coastline. If one uses an increasingly small length of reference or measurement and looks at the shoreline
with more and more precision, it seems like the total length of the shoreline increases infinitely. Thus
fractal measures depend on the scale of observation. We shall talk here only about random fractals since
deterministic or exact fractals do not seem to make sense in the context of turbulence. For example,
in the Richardson cascade model discussed above, there are no good reason to believe that every eddy
breaks off exactly in half at each step of the cascade. One could imagine that on average, eddies split
roughly in half but each realization does not have to have a ratio of 1/2. There is then a need to take
averages, hence a need for random fractals (see [10]).

5.1 Homogeneous Random Fractals

We here look at a simple example to see what is meant by random fractals and how we define the fractal
dimension. Figure 4(a) below shows the process we wish to describe. A square is split into four identical
squares only two of which are full or active. One can think of these boxes as eddies being either active
or inactive. We can define a mass ratio 8 between the two steps. In this case, § = % = % As shown,
there are different combinations possible for which two squares are occupied. If this choice is made at
random, we have a random fractal. This particular fractal, shown after two iterations on Figure 4(b) is
an homogeneous fractal since § is kept constant at each step of the process. The fractal dimension D

is given by D = d + llgi g where d is the dimension of the space which supports the fractal (in this case

d = 2). This dimension D can be found from a single iteration. We have 2¢3 new elements, each of size
1/2, hence we get 2¢3(1/2)P = 1.
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Figure 4: (a) (Top picture) This shows the generator of the random fractal. (b) (Bottom picture) Shows
the random fractal generated after 2 iterations. Pictures taken from [10].




5.2 Heterogenous Fractals

This is the type of fractals which is of most interest to turbulence. We look at a similar example as the one
above but we now let 5 be a random variable satisfying 0 < # < 1. What we obtain is an heterogeneous

random fractal. The fractal dimension is now D = d + % where () is the average value of 5. The
process is shown on Figure 5.
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Figure 5: (a) (Top picture) This shows the heterogeneous generator. Notice the different 8’s. (b)

(Bottom picture) The heterogeneous fractal generated after 2 iterations. Notice the difference between
the heterogeneous and homogeneous case. Pictures taken from [10].

The relevance of fractals to turbulence comes from the scale invariance or self-similarity of fractals.
For fractal measures M (L), we get under rescaling that M (bL) = bP M(L). This kind of scaling is what
we encountered earlier when discussing the scaling behavior of structure functions in turbulence flows.

We now turn to multifractals which are more easily introduced within a discussion of intermittency.
Hence, we move directly on to a discussion of intermittency.

6 Intermittency in Turbulence

The K41 theory tells us that in the inertial range, the velocity function is a random function which scales
as (" under coarse graining operations on the length scale of observation. This means that the velocity
profile under K41 theory is self-similar, i.e. it looks the same (statistically) at all scales in the inertial
range. Such a self-similar function is by definition not intermittent. An intermittent function is one that
is “on” or not zero only a certain fraction of the time. An example of this in turbulence could be the
high pass filtered velocity function defined earlier. The high pass filter will keep only the structures that
have wavevectors larger than some vector K7, hence the structure with ¢ < ¢;. If we tune the value of
K to correspond to the Kolmogorov dissipation scale i, we can filter out all the data which is not in the
dissipation range. The dissipation is not expected to be uniform because different structures of different
size should dissipate differently. The signal will then vary a lot in time and look very intermittent.
There is very little doubt that intermittency does indeed take place in the dissipation range and that
fact does not violate the K41 theory which applies only to the inertial range. We shall not say anymore
about the dissipation range intermittency. Instead, we will focus our attention on intermittency models
for the inertial range of fully developed isotropic homogeneous turbulence. In particular, we will look
at multifractal models based on the local velocity and multifractal models based on the local rate of
dissipation and see how the two are related.



6.1 Preliminary Discussion

We shall assume from now on that velocity structure functions of all order exist. This might not be the
case since for long tails of the probability distribution, moments of order higher than a critical value
will diverge. We will look at those long tails when we discuss multifractal phase transitions. But for
now we simply assume finite structure functions. Furthermore, we shall assume that all the structure
functions follow a power law behavior : S,(I) = ((6v(£))?) ox £°» where the (,’s are called the exponents
of the structure function. This is very similar to the K41 theory except that now the ¢, # p/3, with the
restriction that (3 = 1, which should hold regardless of the validity of K41. This power law behavior
as been shown to be reasonable for values of p up to 15 or 20. This is roughly to upper limit reachable
from the finite size of the data sample. Larger and larger samples are needed to evaluate higher order
moments. One should keep in mind that all the discussion below is only valid for isotropic, homogeneous,
fully developed turbulence where the finite dissipation limit (ii_r)%e = const) holds. One exact result in

intermittency can be obtained for the functional form of ((p). Frisch [3] shows that {(p) has to be a
convex up non decreasing function of p.

6.2 Models based on the velocity

6.2.1 The S-model
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Figure 6: Energy cascade according to the S-model. Notice that with each step the eddies become less
and less space filling. Picture taken from [3].

The B-model comes from a simple modification of the Richardson cascade discussed earlier. Figure 6
illustrates the situation. The only difference between this picture and the one shown on Figure 3 is that
the daughter eddies are not fully space filling. One can see this as following. The mother eddies split up
in the exact same way as before but now only a fraction of the daughter eddies are active (in the same
way as our simple fractal example earlier). The fraction of the space occupied, or the fraction of space
active at scale £ = r"™{, is

log(£) A
po= " = pre =(%) (16)

where 3— D = %é_f- The value of r is once again usually chosen to be 1/2 for simplicity. The parameter

D is recognized as being the fractal dimension. In the case above, we worked in three dimensions,
hence the factor 3 — D. We can extend this to d dimensional space and get d — D = 288 We can

— logr”
identify this quantity as the codimension of the singularities as we will see later. We can now use simple



phenomenological arguments to see how the K41 theory is modified. The energy at scale £ is given by
~ v? times the probability p, that the scale £ is active. Then

1\ P
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where t; = % is the eddy turnover time, or the time taken by an eddy of size £ to undergo significant
distortion. Under our basic assumption that at high Reynolds number II, = ¢, a constant, we get from

Equation (18)
o\
Vg ~ Vo <%) (19)

This is equivalent to saying that the velocity scales as h = + — (232). We notice here that if D = 3, we
get back, as we should, the K41 value of h = 1/3. We now use the result of Equation (19) to calculate the
structure functions. There are two contributions : the value of v} and the fraction py of volume occupied.
We then get for the exponents ¢,

cp=%+(3—D)(1—§) (20)

We again recover the K41 result when the fractal dimension D is equal to the dimension of space (D = 3).
We can use the value of the exponent of the second order structure function to calculate the power
spectrum. We then see the E(k) £(3-%52) which is steeper than the Kolmogorov-Obukhov spectrum
for D < 3. Some experiments do indeed measure spectra steeper than k~5/3. It is worth noticing that
the f-model yields a linear function of p for (,, as does the K41 theory. The only differences are that
the two models have different slopes and the S-model is linear plus a constant. A comparison of the two
models can be seen on Figure 8.

6.2.2 The Bifractal Model

The simplest multifractal model one can think off is the bifractal model. We just saw that the S-model
means that the velocity function has a scaling exponent A on a fractal set £ of dimension D. We can
extend the idea to a bifractal model by postulating the existence of two exponents, h; and hs, belonging
to sets £1 and L5 of dimensions D, and Ds. In this case it is simple to show that

g (0 ; ph1+(3—D1) ) pha+(3—D2)
AC . (_) - <_> (21)
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where p1 and ps are constants of order unity and represent the relative weight of the two sets. We then
have a superposition of two power laws. We are interested in the inertial range, for which the condition
¢/l << 1 applies. The smallest exponent will thus dominate and the exponents {, will be the smaller
of the two given by

(o = min(phy + 3 — D1, pha + 3 — D>) (22)

The exponents are determined by which of the two types of singularities dominates. It is interesting to
look at an example. We choose D; = 3 (K41 value) and Dy = D, where 0 < D < 3. Then for p < 3,
the K41 singularities dominate while for p > 3, the second type takes over. The function ((p) is shown
on Figure 7. One should notice the kink, or discontinuity in the slope at p = 3. This is an example of
multifractal phase transition.
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Figure 7: Exponents (, for the bifractal model. The change of slope at p = 3 represents a multifractal
phase transition. Picture taken from [3].

6.2.3 The Multifractal Model

One can readily extend the bifractal model to an infinite set of scaling exponents h. As we recall from
our earlier discussion of the symmetries of the Navier-Stokes equation, such an infinite set is allowed in
the inertial range. This however clearly violates the second assumption we made earlier in the context of
the Kolmogorov theory. There, we assumed the existence of a single exponent. We can reformulate this
assumption as follows (taken from [3])

The turbulent flow is assumed to possess a range of scaling exponents I = (Amin,Pmaz)-
For each h in this range, there is a set L of fractal dimension D(h) such that as £ — 0,

- h
due(F) (%) . The exponents hpin, and Ay, and the function D(h) are postulated to be

vo
universal.

From this, one gets in a way similar to the bifractal case

SZ_?) . /Idu(h) ( é )ph+<3D(h>> 23)

where the sum has been replaced by an integral over the entire range I. Once again, for small /, the
singularities with the smallest exponent will dominate. Once gets from a steepest descent calculation

¢, = infy(ph + 3 — D(h)) (24)

where inf;, means the infimum of the function or set of points with respect to h. The relation in Equation
(24) can be inverted to get

D(h) = infn(ph + 3 — ((p)) (25)

and one recognizes Equations (24) and (25) as Legendre transforms of each other and since {(p) is convex
up in p, D(h) is convex up in h (see [3] for details).

A comparison of the models discussed so far and others to be discussed later can be made with the
experimental data. This is shown on Figure 8. One can see that the data does not seem to display a
kink as in the bifractal model. Also, the linear aspects of the K41 theory and the -model do not seem
to represent the data well above orders 6 or 8. However, it should be pointed out that this data is still
not sufficient to completely dismiss any model, even the K41 theory. Many experimental problems could
cause the deviations observed, the most important being the finite size of the data sample which implies
unconverged statistics for higher order moments. Such a lack of convergence tends to bend the curve
down for larger values of p. On Figure 8 is also shown a curve for the log-normal model which is a simple
multifractal model we will discuss shortly.
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6.3 Intermittency models based on the dissipation
6.3.1 Multifractal Dissipation

In a previous section, we used simple phenomenological arguments to find how the velocity field scales.
One can go through a similar argument for the local dissipation rate at scale £ (g¢). If one assumes the

a—1
existence of singularities as above, the following relation holds : Ufé% ~ (%) . The analogy with the
0

velocity case is clear. We have scaling exponents o — 1 on sets D,, of dimensions F'(a). The analogue of
the velocity structure functions are the moments of order ¢ of . Then, we have

(D) (1)

The exponents 7, are found in a similar fashion as the (,. We can relate 7, to F(a) by a Legendre
transform

7(q) = infa(g(a — 1) + 3 — F(a))
F(a) = infy(g(a —1) +3 - 7(g)) (27)

6.3.2 Relating velocity based and dissipation based multifractality

To do this, we need a result first derived by Kolmogorov and Obukhov in 1962 [11], [12]. The result relies
on the fact that in K41 theory, vy ~ (¢£)'/3. One can replace € by &, and non-dimensionalize the velocity
increment. If we assume that the non-dimensionalize velocity increments and the local rate of dissipation
are statistically independent, we then get the following relations

p
h=3 D) =F@) G="1+nys (28)
which relate both types of multifractality. It is not clear whether this assumption known as Kolmogorov’s
Refined Similarity Hypothesis is really justified but it has been studied experimentally in [13].

7 Multiplicative Random Cascades

A simple way to generate multifractal dissipation is by constructing what are known as multiplicative
random cascades. As in the cascade models discussed so far, we start with a large eddy breaking up in
equal parts of size £/2 and so on. For each of these new eddies, the dissipation variable is assigned a
random weight W > 0 which also obeys the constraints (W) = 1 and (W?) < oo for all positive values of
g. After n steps, the size of the eddies is (£y/2)™ and the value of the local dissipation variables are given
by e, = eW Wy ---W,,. The W’s are independent and uniformly distributed. One can readily see that
some combinations of W’s will give rise to values of €, which are very large while some others will be
very close to zero (O(27™)). This creates a very intermittent field for ,. Such a cascade can be shown
to lead to power laws for the moments of €, such that

g = —loga(W) (29)
If we take a simple two state model for W so that W = 1/ with probability 5 and W = 0 with probability

1 — 3, it can be shown using the Refined Similarity Hypothesis that we get back the S-model previously
obtained (see [3]). We can also develope a more involved model known as the log-normal model. In the
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case, we assume that W = 27™ where m is a Gaussian (or so-called normal) variable. This is equivalent
to saying that the log of W is a Gaussian variable, hence the name log-normal. This model can be shown
to yield

n=5a-) G=5+4Gr-5) (50)

where u = 2m is the autocorrelation exponent. Figure 8 shows the predictions of the lognormal and
other models. It should be noted that despite the fact that it fits the data seemingly well for small p, the
log-normal cannot be correct since for large p since it predicts that ¢, is a decreasing function of p, which
violates the incompressibility condition. As it turns out, the S-model, as well as the log-normal model
are only special cases of what are known as Universal Multifractals. More details and another look at
multiplicative cascades can be found in [14].

7 lognormal

Figure 8: Comparison of the exponents ¢, of the structure function for different models. Notice that both
the K41 model and the f-model give linear relations. Experimental data from different experiments are
plotted. Notice that that bending of the experimental curve at large p can be attributed to unconverged
statistics. Picture taken from [3].

7.1 TUniversal Multifractals

In the previous section, we looked at discrete multiplicative cascades in which at each level, the larger
eddies are split by a certain finite fraction. It has been shown by Schertzer and Lovejoy [15] that multifrac-
tal measures can be produced from continuous multiplicative cascades with continuous increments in the
eddy size. They showed that such processes lead to the following relation for 7, (they used K(g) = —7(q))

-Cy
= @ _ ]_
=7~ (31)
where 0 < a < 2 is called the Levy index. The case a = 1 is marginal and yields 7, = —Cig¢lng.

This result was given the name universal multifractals. The interesting thing to notice here is that the
two multifractal models discussed above, namely the f-model and the lognormal model are contained
within the framework of universal multifractals. For the g-model, we have a = 0 and C; = —pu. For the
lognormal model, we get o = 2 and C; = =*. Even more complex models such as the log-Levy model
are contained within universal multifractals (a« = 1.5). Then, the universal multifractal formalism is seen
to be more general. However, for & > 1, we encounter the same problem as we did for the lognormal
model, namely that (, is a decreasing function of p for large enough p. This problem can seemingly be
resolved by a subtle distinction between what are known as “bare” and “dressed” quantities. This leads
to what is known as multifractal phase transitions [15], [16], [17].
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7.2 Multifractal Phase Transitions

It was predicted by Mandelbrot in 1974 [18] that higher order moments of the dissipation will diverge
when measured from a point probe. This is the starting point of the description of multifractal phase
transitions. The key question in an experiment on turbulence is : What exactly does the wind probe
measure? We will try to answer that question here. When a finite multiplicative cascade is generated,
the field which is generated (be it the velocity or the dissipation field) is called a “bare” field. That is
the quantities generated by a theoretical modeling of a finite cascade down to scale £ are bare quantities.
However, when one collects experimental data, one is forced to use a probe of finite size, usually larger
than the Kolmogorov dissipation scale. This probe then measures averages across its entire sensing area.
The probe measures what are known as dressed quantities. These dressed quantities are those obtained
from averaging the quantities generated by a completed cascade, that is one with an infinite number of
steps. Thus, the local dissipation at scale £ is obtained by averaging the bare quantities over all structures
of size < £. One could argue that a cascade is never complete since it cannot propagate down to £ = 0
because it dissipates at small scales. However, the cascade always terminates at scales smaller than the
size of the probe. The Kolmogorov scale in the atmosphere is of order of a millimeter or less while the
smallest hot-wire probes are of order of a few millimeters. Thus, the probe always measures dressed data.
We shall below denote bare and dressed quantities with b and d subscripts respectively. Bare quantities
cannot lead to divergence of moments but dressed quantities are predicted to.

7.2.1 Analogy with Thermodynamics

As mentioned above, the functions 7(¢) and F(«) are related to each other by a Legendre transform. It
is here convenient to make the following change of variables : @« — 1 — «, 3 — F(a) — ¢(v) where ¢(v) is
the codimension of the singularities. Then we can write from Equation (27)

—7(q) —c(v) = qv (32)

We recall that in thermodynamics a Legendre transform associates the free energy F' to the entropy S as
F(T) = E—TS(E). We can then loosely identify « as the energy, c(y) as the entropy and 7(g) as the free
energy. (see [16]). In this analogy, discontinuities in the slope of 7(¢) can be thought of as multifractal
phase transitions. One should note that multifractal phase transitions in this description are not actual
phase transitions. There is no physical observable change in the physical system. The framework is
merely an analogy.

7.2.2 First Order Multifractal Phase Transitions

The singularities with very large order v are rare events. They make up the tail of the probability
distribution. Thus, one needs a very large data set to be able to reach these large orders of singularity.
It was argued by [14] that for atmospheric turbulence, samples of 10'2 data points are needed which is
unattainable. However, the only data available is on atmospheric turbulence and we shall look here at
the results of one experiment. It was shown in [16] that for the dressed local rate of dissipation

— T(q) q S qd,crit
Td(q) B { —Ys,dq + A, g> qd,crit (33)
where gq, .- is the critical dressed order moment, 7, 4 is the maximum reachable singularity from the
finite size of the sample and A; = d + log N,/ log(¢o/£), with N being the number of realizations. A
realization is one set of data in the inertial range. For example, if one collects data for 60 seconds but the
inertial range is valid only for structure of size smaller than U x 1sec, from Taylor’s hypothesis, then one
would split the 60 seconds of data into 60 realizations which show scaling individually. Figure 9 below
shows K4(q) = —74(q) for 4 and 704 realizations of atmospheric wind data. One can see that K;(q)
becomes linear for ¢ > g4 i+ = 2.4, thus showing apparently a first order multifractal transition.
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Kig)

Figure 9: Empirical scaling exponent function K (q) = —7(q) for 4 realizations(crosses) and 704 realiza-
tions (dots) compared with theoretical universal multifractal curves. Notice that there is a discontinuity
in the slope at p =~ 2.4 and the linear slope for large p increases with the number of realization. This is
a first order multifractal transition. Picture taken from [16].

7.2.3 Second Order Multifractal Phase Transitions

Second order multifractal phase transitions are postulated to be observable when the size of the sample
is not large enough to reach the critical order of singularity vq,criz. Then the first order transition cannot
be reached and one can show that (see [16])

ao={ 30, 45k 2

1/a
where ¢; = (é—f) is the critical order moment. It can be shown that Equation (34) leads to 74(q)
being linear above g5 with a discontinuity in the second derivative at ¢ = ¢;, thus leading to a second
order multifractal phase transition.

8 Concluding Remarks

It must be pointed out that the topics discussed in this paper are still under debate. The difficulty in
performing experiments and the need for large data sets makes it still impossible to fully dismiss the
K41 theory. Furthermore, there seems to be two types of experimental results. On the one hand, wind
tunnel experiments allow one to have a good control over the conditions and make sure that the Taylor
hypothesis is valid. But these experiments can only produce 1 or 2 decades of scaling in the power
spectrum. These wind tunnel experiments seem to validate the multifractal nature of turbulence but do
not show any multifractal phase transitions or divergence of moments. On the other hand, one can set
up his measuring apparatus outside in a corn field and measure atmospheric turbulence and get easily 4
or 5 decades of scaling behavior. This would seem to be favorable. However, atmospheric flows are far
from constant. The direction and magnitude of the r.m.s velocity are not well defined over long periods
of time, thus seemingly making it difficult to justify Taylor’s hypothesis. Nevertheless, the atmospheric
experiments seem to validate the divergence of high order moments and the framework of multifractal
phase transitions. However, these experiments might still suffer very much from finiteness of the sample
size.

There is then no definite answer to the problem of turbulence. It is also very plausible that the
framework of multifractals is not really valid. Some other techniques such as Renormalization Group, or
closure methods might have a better chance at ultimately solving the problem of turbulence.
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