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Abstract

In this essay, we review recent research on the interaction between machine learning,
renormalization group and phase transition. There are two important questions to be ad-
dressed. The first one is how to understand and improve machine learning algorithms from
the perspective of physics while the second one is how to apply machine learning to study
physics problems. For the first direction, an attempt to construct a mapping between vari-
ational renormalization group and deep learning is presented. For the second direction, an
unsupervised learning algorithm has been demonstrated to study the 2D Ising Model phase
transition. Discussions on other possibilities between machine learning and physics have also
been included.
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1 Introduction

In recent years, machine learning has become a fascinating topic in both science and engi-
neering. Practically, it has been applied to many different fields, such as image recognition
[1] , business analysis [2], and drug design [4]. Theoretically, the mechanisms behind certain
machine learning algorithms, such as neural network, have not been fully understood. It has
attracted great interests in understanding and designing machine learning algorithms.

One common feature between physics and machine learning is that they both investigate
systems with many degree of freedoms. Physics studies many-body interaction while machine
learning handles data in high dimension. In this paper, we will illustrate several recent studies
on the interaction between machine learning and physics. There are two big questions of
interest. The first one is how to understand and improve machine learning algorithms from
the perspective of physics. The second question is how to apply machine learning to solve
physics problems. In particular, we focus on the topic of machine learning, renormalization
group and phase transition. On one hand, renormalization group, which is a fundamental
methodology in physics, provides an attempt to understand machine learning. On the other
hand, machine learning provides a new way for studying phase transition problem in physics.

The rest of the paper is organized as follows. Section 2 introduces an attempt to under-
stand machine learning from the perspective of renormalization group. Section 3 illustrates
a new way of studying 2D Ising model phase transition using machine learning. Section 2
and Section 3 provides a flavor to address the two big questions mentioned above. Further
discussion is given in Section 4 on other possibilities between machine learning and physics,
followed by a conclusion.

2 Deep Learning and Renormalization Group

Renormalization group is a natural and fundamental way to handle complex systems with
many degrees of freedom in physics. In machine learning community, deep learning al-
gorithms are powerful tools to extract important features from a large amount of data.
Conceptually, renormalization group and deep learning share the similar spirit of simplifying
the problem, which makes people wonder whether there is certain relation between the two.
Recently, Pankaj Mehta and David J. Schwab have proposed an argument to interpret the
Restricted Boltzmann machine (RBMs) [7] algorithm through the variational renormaliza-
tion group method [11]. The material in this section is written based on the paper by Pankaj
Mehta and David J. Schwab [12]. We will first introduce variational renormalizatin group
and Restricted Boltzmann Machines. After that we will establish the mapping between the
two and examine their relation.

2.1 Variational Renormalization Group

Variational renormalization group was introduced as a method to perform renormalization
group by Kadanoff [11]. Consider a N binary spin system {vi} on a lattice, where {vi} =
±1 for each spin. The partition function and the probability distribution for configuration
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{vi} are given as follows.

Z = Tr{vi} e
−H({vi}) (1)

P ({vi}) =
e−H({vi})

Z
(2)

In general, the Hamiltonian H({vi}) has the following form.

H({vi}) = −
∑
i

Kivi −
∑
i,j

Kijvivj −
∑
i,j,k

Kijkvivjvk + ... (3)

Renormalization group is a mapping to transform the original Hamiltonian to a new
Hamiltionain with a different set of coupling constants {K ′i1i2i3...} and coarse grained variables
{hi}.

HRG({hi}) = −
∑
i

K ′ihi −
∑
i,j

K ′ijhihj −
∑
i,j,k

K ′ijkhihjhk + ... (4)

It can be shown that after many iterations of RG mappping, certain coupling constants
will disappear while some remain [6]. The remaining coupling constants are called relevant
operators, which will play important roles. To realize the conceptual idea of RG, we need a
concrete RG mapping. Variational renormalization group is one of the schemes to perform
RG transformation, which can be implemented numerically. The variational renoramlization
group introduces an operator Tλ({vi, hj}) based on a set of parameters {λ}. The Hamiltonian
after each RG transformation is constructed as follows.

e−H
RG
λ ({hi}) = Tr{vi} e

Tλ({vi,hj})−H({vi}) (5)

After choosing certain form of Tλ({vi, hj}), we need to minimize the following quantity
to zero as close as possible by variation of the parameter set {λ}.

log(Tr{vi} e
−H({vi}))− log(Tr{hi} e

−HRG
λ ({hi})) (6)

Notice that when the following condition holds, the above quantity becomes zero and the
RG transformation is called exact.

Tr{hi} e
Tλ({vi,hj}) = 1 (7)

Later we will see how to choose the form of Tλ({vi, hj}) so that the variational RG
corresponds to the Restricted Boltzamann Machines.

2.2 Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMs) is one of the popular deep learning algorithms. The
simplest RBMs has two layers, one visible layer with input {vi} and one hidden layer with
output {hj} as Figure 1 shows.
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Figure 1: Restricted Boltzmann Machines with a visible layer and one hidden layer

In general, we can keep adding new hidden layers after one hidden layer, which results in
a deep learning structure. There is a set of parameter λ = {bj, wij, ci} stored between two
layers in RBMs structure. A energy function for RBMs can be expressed using the above
parameters.

E({vi}, {hj}) =
∑
j

bjhj +
∑
i

civi +
∑
ij

wijvihj (8)

The goal for RBMs is to return a probability distribution pλ({vi}) as close as possible to
the input data probability distribution P ({vi}). Notice that a joint probability distribution
for RBMs can be defined as follows.

pλ({vi}, {hj}) =
e−E({vi},{hj})

Z
(9)

We sum over {vi} and {hj} respectively to attain the marginal probability distribution
pλ(vi) and pλ(hj).

pλ({vi}) = Tr{hj} pλ({vi}, {hj}) (10)

pλ({hj}) = Tr{vi} pλ({vi}, {hj}) (11)

The values for the parameter set λ = {bj, wij, ci} are attained through the minimization
of the Kullback-Leibler divergence.

DKL(P ({vi})‖pλ({vi})) =
∑
{vi}

P ({vi})log(
P ({vi})
pλ({vi})

) (12)

When DKL(P ({vi})‖pλ({vi})) = 0, the distribution pλ({vi}) produced by RMBs is the
same as the data distribution P ({vi}). Before we establish the mapping between variational
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RG and RBMs, it is useful to introduce the notation of RBMs variational Hamiltonian for
visible layer and hidden layer, e−H

RBM
λ and e−H

RBM
λ , which satisfy

e−H
RBM
λ ({vi})

Z
= pλ({vi}) =

Tr{vi} e
−E({vi,hj})

Z
(13)

e−H
RBM
λ ({hj})

Z
= pλ({hj}) =

Tr{hi} e
−E({vi,hj})

Z
(14)

2.3 A Mapping Between Variational RG and RBMs

The crucial step to establish the mapping between variational RG and RBMs is to choose
the following form for the variational operator Tλ({vi, hj}).

Tλ({vi, hj}) = −E({vi}, {hj}) +H({vi}) (15)

It implies two important results. The first one is that the probability distribution pλ({hj})
in the hidden layer is the same as the Boltzmann distribution given by the renormalized
Hamiltonian HRG

λ ({hj}), which is proved as follows.

pλ({hj}) =
e−H

RBM
λ ({hj})

Z
=

Tr{vi} e
−E({vi,hj})

Z
(16)

e−H
RG
λ ({hi})

Z
=

Tr{vi} e
Tλ({vi,hj})−H({vi})

Z
=

Tr{vi} e
−E({vi,hj})

Z
(17)

It further implies that renormalized Hamiltonian HRG
λ ({hj}) will be the same as the

RBMs Hamiltonian in the hidden layer. Therefore, each RG transformation produces a
same Hamiltonian as the one that RBMs produces in one hidden layer.

HRG
λ ({hj}) = HRBM

λ ({hj}) (18)

The second result is that the exact variational RG condition is the same as DKL = 0. It
can be proved that

eTλ({vi,hj}) = pλ({hj}|{vi})eH({vi})−HRBM
λ ({vi}) (19)

The exact variation RG conditon in Equ.(7) implies that

H({vi}) = HRBM
λ ({vi}) (20)

p({vi}) =
e−Hλ({vi})

Z
=
e−H

RBM
λ ({vi})

Z
= pλ({vi}) (21)

The minimization condition in each RG step is similar to the minimization in RBMs.
Under the exact RG condition, the data distribution p({vi}) can be reproduced by the
variational distribution pλ({vi}) so that DKL = 0. Similarly, DKL = 0 will imply the
exact RG condition from Equ.(19). Based on the above two results, a mapping between
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a variational RG and RBMs is established. To further demonstrate the idea, the authors
implement RBMs on the 2D Ising model.

H({vi}) = −J
∑
ij

vivj (22)

The authors first use standard equilibrium Monte Carlo techniques to generate 20,000
samples on a periodic 40×40 2D Ising model at temperature J = 0.408, which is below the
critical temperature Jc = 0.4352. A RBMs with four layers, which are of size 40×40, 20×20,
10×10, 5×5 are constructed to extract information from the Ising Model. It is shown that
local spin structure emerges from the training of RBMs, which is a suggestion that RBMs
may perform block spin renormalization.

Even though the authors claim that they have constructed an exat mapping between
variational RG and deep learning, there are still questions about the relation between renor-
malization group and machine learning. On one hand, there are many different machine
learning algorithms. More than 20 different structures of neural network have been recorded
up to now [9] and Restricted Boltzmann Machines is just one of them. On the other hand,
an important idea behind RG is to simplify the model instead of data. The essence of RG
transformation is to establish a equation between the coupling constants and see how the
coupling constants evolve in the RG iteration. In most discussion of machine learning algo-
rithms, even though they are capable of extracting important variables of the problem, such
as dimension reduction, seldom discuss how machine learning really simplifies the model
and whether machine learning is able to track the flow of coupling constants and detect the
universality class. The issues are worth further investigations.

3 Machine Learning for Phase Transition Study

3.1 Approach from Machine Learning

The power of machine learning lies in its ability to detect pattern from a large amount of
data. In particular, for unsupervised learning, the algorithm is able to detect the underlying
pattern of the data without extra information of the system given. It is natural to ask the
question whether it is possible for machine learning to come up with the ordered parameter
from data and detect the phase transition in physics problems.

Compared to the traditional theoretical modelling approach, which writes down an equa-
tion and solves it, the machine learning approach for phase transition study adopts a totally
different philosophy. There are two important steps. The first one is to generate a large
amount of data for the system using Monte Carlo or other simulation techniques. The sec-
ond step is to apply unsupervised learning algorithms to analyze the data and figure out the
ordered parameter and other phase transition information. Notice that the machine learning
approach can be self-contained theoretically, which doesn’t rely on experimental data. The
success of the approach depends on both the data quality and the ability of the learning
algorithm.

In the following subsection, we present a case study for 2D Ising Model Phase Transition
using unsupervised machine learning algorithm from a recent paper [8]. In the paper, it
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examines two unsupervised learning algorithms, PCA [10] and autoencoder [7], to various
models, including the square and triangular-lattice Ising models, the Blume-Capel model, a
highly degenerate biquadratic-exchange spin-one Ising (BSI) model, and the 2D XY model.
For simplicity, we only focus on studying 2D Ising Model using PCA.

3.2 Principle Component Analysis

Principle Component Analysis (PCA) is a simple unsupervised learning algorithm. PCA
has been applied in many different settings and it is closely related to the singular valued
decomposition [10]. The basic idea of PCA is to extract the major information from the
data set by projecting the data to certain important basis. More details can be referred to
[10]. To apply PCA to the Ising model, we implement the following steps.

The first step is to generate the configuration matrix S, where each row stores a listing
of spin configuration from a Monte Carlo simulation. The total number of rows of S, which
is also the total number of configurations, is denoted by M . Usually M = nt, where t is
the number of different temperatures and n is the number of configurations under the same
temperature. A ’centered data matrix’ X is constructed by subtracting each column of S by
the column mean value mj = (1/M)

∑
i Sij.

The second step is to look for the eigenvalues and eigenvectors of the matrix XTX as
follows.

XTXwn = λnwn (23)

We only keep the first k largest eigenvalues λk and the corresponding eigenvectors wk.
The principle component pij is calculated as

pij = Siwj (24)

The ’quantified principle component’ is defined as the averages of pij

< |pi| >=
1

n

∑
i

|pij| (25)

3.3 Case Study: 2D Ising Model Phase Transition

PCA is applied to study the 2D Ising Model phase transition. The details for data generation
and results are presented as follows.

Notice that the critical temperature for 2D Ising model is Tc=2.269. The data is generated
using Monte Carlo simulation from T = 2.0 to 2.8 under t = 40 different temperatures with
increment ∆T = 0.02. For each temperature, n = 10, 000 uncorrelated spin configurations
are generated and thus the number of rows for the configuration matrix S is M = 400, 000.
The system size is denoted as L and calculation has been repeated for L = 20, 30, 40, 50.

PCA is implemented on the configuration matrix S. The first two largest eigenvalues p1,
p2 are kept and the corresponding eigenvectors are chosen as principle axis. The results are
summarized in the following figures. In Figure 2 [8], the data points above Tc concentrate but
the data points below Tc separate, which indicates symmetry breaking for 2D Ising Model.
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Figure 3 [8] shows that |p1|/L drops as T increases from 2.0 to 2.8. In particular, as the
system size L increases, it becomes clear that there is a sharp drop around Tc. It indicates
that p1 is actually the magnetization ordered parameter. Figure 4 [8] shows that |p2|/L first
increases and then drops from T = 2.0 to 2.8. The peak around Tc becomes clearer as the
system size L increases. It implies that p2 is actually the susceptibility ordered parameter.
We can further calculate Tc by plotting the peak location versus 1/L as Figure 5 [8]. It is
shown that the critical temperature is Tc = 2.278± 0.015.

Figure 2: Data projection to the two largest quantified principle components

Figure 3: The first quantified principle component vs. temperature

Figure 4: The second quantified principle component vs. temperature
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Figure 5: Calculation of critical temperature

This is an example of applying machine learning to phase transition study. Notice that
PCA successfully detects the two most important ordered parameters, magnetization and
susceptibility. We can further identify the nature of the phase transition and calculate the
critical temperature using the information provided by PCA.

4 Further Discussion

In the above two sessions, we mention two examples on the interaction between machine
learning and physics, with focus on renormalization group and phase transition study. How-
ever, more investigations are going on in this interesting field. To better explore the interplay
between physics and machine learning, it is important to integrate ideas from mathematics,
physics and information theory. It is found by people in the information geometry commu-
nity that most models for complex system have the property to be ’sloppy’, which means
that the model is controlled by a relatively small number of parameter combination [16].
This is similar to the idea from RG that most models only have a few relevant operators.
Besides the conventional data analysis by machine learning, people have also developed al-
gorithms to inference natural laws and models based on data. The algorithm by Michael
Schmidt and Hod Lipson is able to automatically discover Hamiltonians, Lagrangians and
equations of motions using physical system data, such as simple harmonic oscillators and
chaotic double-pendula [14]. Ideas from information theory and machine learning can be
powerful tools for theoretical physics research as well.

Besides understanding machine learning from physics, another interesting question to ask
is whether it is possible to design machine learning algorithms using physics ideas. In the
paper by Serena Braddea and William Bialek [3], they propose a new way to analyze neu-
ral activity data in the retina using renormalization group idea, where the PCA algorithm
doesn’t work well. More inspirations come from quantum mechanics. In recent years, the ad-
vance of quantum information provides the important information perspective to understand
quantum mechanics. Powerful algorithms based on the ideas of information and entangle-
ment are proposed to solve many body problem, such as tensor network. Since machine
learning is also dealing with information and data in high dimension, it is natural to think
about bridging the two fields. Recently, people have developed several machine learning al-
gorithms using ideas in quantum mechanics, such as supervised learning with tensor network
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[13], reinforcement learning using quantum Boltzmann machines [5]. It will be exciting to
see new algorithms for machine learning generating from physics ideas in the future.

To close our discussion, we would like to mention an application of machine learning to
physics experiment. In the above two sessions, we mainly focus on the interplay between
theoretical physics and machine learning. As data analysis is an important part for experi-
mental physics, machine learning will be a powerful tool for experimental physicists in the
future. The research of quantum state tomography (QST) is to reconstruct the complete
quantum state based on limited measurement. It is a challenge subject and recently people
have designed a machine learning approach to QST. The key idea is to represent a quantum
state by Restricted Boltzmanns Machines, which can be trained with experimental data and
help to reconstruct the complex many-body states [15]. It is believed that the technique will
benefit the experimental study of quantum device, such as quantum computer, quantum
simulator and quantum microscopes.

5 Conclusion

In this essay, we have reviewed several recent studies on the interaction between physics and
machine learning. We mainly try to address two important questions. The first one is how to
understand and improve machine learning algorithms from the perspective of physics, while
the second one is how to apply machine learning to study physics problems. Two interesting
examples have been examined for the above questions respectively. A mapping between
variational renormalization group and Restricted Boltzmann Machines has been proposed to
investigate the first question. Principle component analysis is used to study 2D Ising Model
phase transition, which gives a flavor for the research in the second question. We also include
discussion on other possibilities between machine learning and physics, which may point to
more discoveries in the future.
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