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The transition to turbulence in wall-bounded shear flows is typically subcritical, with a poorly
understood interplay between spatial fluctuations, pattern formation, and stochasticity near the critical
Reynolds number. Here, we present a spatially extended stochastic minimal model for the energy budget in
transitional pipe flow, which successfully recapitulates the way localized patches of turbulence (puffs)
decay, split, and grow, respectively, as the Reynolds number increases through the laminar-turbulent
transition. Our approach takes into account the flow geometry, as we demonstrate by extending the model
to quasi-one-dimensional Taylor-Couette flow, reproducing the observed directed percolation pattern of
turbulent patches in space and time.
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Several important classes of flow, such as Keplerian
accretion disks in astrophysics [1] and wall-bounded
turbulent shear flows [2], become turbulent through a
subcritical transition. In such systems, turbulent structures
coexist with laminar flow and exhibit highly nonlinear and
complex features. In pipe flow, for example, following a
“finite-amplitude” perturbation, transient turbulent local
patches, known as “puffs,” arise [3] and subsequently
decay, split, [4], or grow (in which case they are known
as “slugs”) [5], depending on the Reynolds number,
Re≡UD=ν. Here U is the characteristic flow speed (such
as the mean cross-sectional average of the flow speed in a
pipe), D is the characteristic length of the system (such as
the diameter of a pipe), and ν is the kinematic viscosity of
the fluid. The slug regime contains two phases, sometimes
termed weak and strong slugs [5]. In the weak slug regime,
there is one upstream sharp laminar-turbulent front and no
downstream sharp front. In the strong slug regime, there are
two sharp fronts, one upstream and one downstream.
Experiments and direct numerical simulations (DNSs)

have shown that, near the laminar-turbulent transition in a
quasi-one-dimensional (quasi-1D) Taylor-Couette flow, the
fraction of turbulence in the system scales with a power law
of the deviation of Re from its critical value Rec, with
scaling exponents consistent with a nonequilibrium tran-
sition in the universality class of directed percolation (DP)
[6], as anticipated by theory [2,7–14]. DP describes the
stochastic evolution of active states that coexist with
the absorbing state. In terms of transitional turbulence,
the local patches of turbulence are an active state, while the
laminar state is the absorbing state. Below the critical point,

Re < Rec, turbulence decays at long time, while above the
critical point Re > Rec, turbulence can not only be sus-
tained, but also expands and takes over a portion of the
system. At the critical point Re ¼ Rec turbulence can just
be sustained, and critical behavior is observed.
Away from the critical regime, the strong nonlinearity of

the Navier-Stokes equations has led researchers to propose
closure and low-order models to try and capture the
emergent features of the flow, including the self-sustaining
process [15] and exact coherent structures [16–19]. Near
the transition region itself, simulations of a single isolated
puff on scales of up to 20 pipe diameters reveal that small-
scale turbulence generates an emergent weak large-scale
flow that through shear suppresses the turbulence that
created it, an activator-inhibitor (or predator-prey) inter-
action [9,20]. On larger scales, a mean-field model that
includes streamwise interactions, based on an analogy of
subcritical transitional flows with excitable media, captures
much of the flow phenomenology described above [5,8,21–
23]. However, none of these approaches provide a complete
explanation of the mechanism of puff splitting, puff-puff
interactions (pushing), and the puff-slug transition [5,23],
nor can they unify the transitional phenomena observed in
different flow geometries, such as pipe or quasi-1D Taylor-
Couette flow [6].
The purpose of this Letter is to show that the rich

phenomenology of quasi-one-dimensional transitional flow
can be mimicked (or recapitulated) by a minimal stochastic
spatially extended model of the energy budget [24]. We
develop a stochastic model for the energy budget and show
that it accounts for the full range of transitional phenomena,
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including puff decay, splitting, and pushing, as well as the
existence and growth of weak and strong slugs. We show
that the puff, puff-splitting, and pushing and weak slug
regimes are strongly influenced by stochastic effects arising
from the limited energy budget available at low Reynolds
numbers and is not captured by a leading-order mean-field
limit of the governing equations. The strong slug regime
occurs at higher Reynolds numbers when the available
energy budget is sufficient to drive two fronts. We
emphasize the flexibility of our modeling approach in
other geometries. For example, it correctly recapitulates the
main differences between transitional pipe and quasi-1D
Taylor-Couette flows by changing the boundary conditions
associated with the mechanism of energy input [6].
Energy budget in pipe and quasi-1D Taylor-Couette

flows.—DNS of the Navier-Stokes equations in transitional
pipe flow [24] reveals in spatially resolved detail how
turbulent energy production mainly arises from the extrac-
tion of kinetic energy from the mean flow by large eddies
and is balanced by local energy dissipation. This is depicted
in Fig. 1(a): large eddies (pictured by the red swirls) extract
laminar energy and cause the mean flow speed (spatial
profile represented by the blue arrows and energy level by
the mean flow energy figure) to decrease. The mean
velocity profile (blue curve) becomes blunt compared to
the laminar Hagen-Poiseuille flow. The recovery of mean
flow kinetic energy as driven by pressure is slower than
the extraction of energy by eddies. The difference in
timescales results in an energy depletion zone [as indicated
in Fig. 1(a)] downstream of turbulent patches where
laminar energy is recovered.
Minor differences in energy balance due to the boundary

conditions imposed in various geometries can cause quali-
tative differences in phenomenology. For instance, as
depicted in Fig. 1(b), the uniform recovery of mean flow

kinetic energy as driven by shearing of the rotating
boundary in quasi-1D Taylor-Couette flow is responsible
for the lack of energy depletion zone. Such seemingly
slight differences induce significant changes in the dynam-
ics of turbulent patches. Our modeling strategy well
describes such changes and applies to both geometries
equally well.
Stochastic model of the energy transfer process.—

Simulations of a single puff in both 10- and 20-diam-
eter-long pipes showed that small-scale turbulence activates
a large-scale azimuthal flow structure (zonal flow), which
in turn inhibits the turbulence by isotropizing the Reynolds
stress [9,20]. This activator-inhibitor relationship resembles
that between prey (the activator) and predator (the inhibi-
tor) in a simple ecosystem [25]. That turbulence could
excite predator-prey oscillations was predicted nearly
30 years ago [26] and subsequently observed [27] near
the low-to-high mode transition in tokamaks.
Note that the predator-prey (or activator-inhibitor) for-

malism could also potentially apply to other processes that
are operative in transitional flows, such as the self-sus-
taining process [15]. There, vortex rolls give rise to (i.e.,
activate) streaks, and the energy of the rolls is partly lost to
the streak (i.e., inhibited).
These single-puff processes need to be supplemented by

the streamwise flow in order to handle puff interactions and
provide a complete description of the energy budget
including the depletion zone. Let Ai represent a predator
(energy of the inhibitory mode) at position i on a spatial
lattice, Bj represent a prey (turbulence energy) at position j,
and Nk represent nutrient (laminar baseline energy) at
position k. The model is formally two dimensional, but is
effectively one dimensional because the width of the pipe is
much smaller than the length, so that it is a good
approximation to average over the width of the pipe.
Neighboring individuals are denoted by hiji and all
reactions take place only between neighbors, in all four
directions with the same probability. In stochastic spatial
ecological models such as this, the number fluctuations are
controlled by the parameter V that represents the correla-
tion volume of the system [28].
Energy is extracted from the laminar baseline flow (N)

and transferred to turbulence (B), represented by

Bi þ Nj ⟶
b=V

hiji
Bi þ Bj. Turbulent energy (B) can be trans-

ferred to the inhibitory mode (A) through the reaction

Ai þ Bj⟶
p=V

hiji
Ai þ Aj. This reaction reflects the activator-

inhibitor relation between B and A. In addition, the
interaction by which A is generated through a mutation
of B is allowed by symmetry and so cannot be excluded

a priori. Thus, we include Bi⟶
m

Ai. These two reactions
were already present in the single-puff model [9] that led to
the DP universality class [29] for the laminar-turbulent
transition. Dissipation of turbulence (B) and zonal flow

(a) (b)

FIG. 1. Schematic of energy profile in (a) pipe flow and
(b) Taylor-Couette flow with rotating outer boundary, as studied
in [6]. The top figure of (b) shows the enlargement of the thin
layer between concentric cylinders shown below. The turbulence
energy and mean flow energy snapshot figures are given by the
stochastic model. Because of the difference in boundary con-
ditions and energy input, the energy depletion zone (previously
termed “refractory region” in [22,23]) is present in pipe flow but
absent from the quasi-1D Taylor-Couette flow.
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energy (A) is described by the reactions Ai⟶
dA

ϕ and

Bi⟶
dB

ϕ, where ϕ represents the null state in the population
model, corresponding to the laminar state of the fluid.
There are also two diffusion reactions that describe the

spreading of A and B. Ai ⟶
DA

hiji
Aj and Bi⟶

DB

hiji
Bj.

We include the deterministic advection of mean flow (N)

by the reaction Ni ⟶
speed¼U

prob¼1
Niþ1. This is implemented at the

end of a time step, when all the N’s hop forward for one
lattice spacing. The advection speed U is realized by
rescaling all the other reaction rates and time by 1=U.
With this rule, puffs form in the frame of the simulation, but
this is not the laboratory frame. Because of the predation

reaction Bi þ Nj ⟶
b=V

hiji
Bi þ Bj, nutrient effectively attracts

prey [29], causing prey patches to drift upstream as shown
in Fig. 2. Such drifting is emergent and is observed not just
in our ecological model but in numerical simulations of
turbulence [30].

Finally, the recovery of the mean flow energy is given by
a growth reaction ϕ⟶

g
Ni. The reaction rate g is the only

nonconstant rate in the model and scales as g ∝ U2,
reflecting the fact that the laminar solution in pipe flow
grows with rate ∝ U2 in actual pipe until the steady state
Hagen-Poiseuille flow is formed (see Supplemental
Material [31] for details).
There is a capacity constraint on the N field mimicking

the upper bound on mean flow energy density in the actual
system, corresponding to that of the steady laminar Hagen-
Poiseuille flow. The hard constraint on site capacity for A
and B is represented in the ecological model as a soft
constraint (in the conventional way, see, e.g., [32,33]) by

two competition reactions 2Ai⟶
cA=VAi and 2Bi⟶

cB=VBi that
enforce the logistic growth and saturation of A and B. We
set N at the left boundary of the pipe to be the maximum
capacity, representing the maximum saturated Hagen-
Poiseuille mean flow upstream of turbulence. The system
has periodic boundary conditions on the width of the pipe,
while the boundaries on the pipe length axis do not matter
since the system is large enough that the reactants do not
touch the boundaries.
Phase diagram.—We simulate the individual-level

predator-prey (PP) model on a two-dimensional lattice of
size 20 × 3000 using a Monte Carlo algorithm, described in
detail in the Supplemental Material [31].
Figures 2(a)–2(c) and 2(j) are typical space-time plots of

the intensity of B given by the PP model averaged over the
width of the pipe. The horizontal axis of the figures is the
distance along the pipe, and the vertical axis is time. For
each of the figures, we initially perturb the system by
randomly generating prey (B) and predator (A) in a small
area of size 20 × 30 in the middle of the lattice, and let the
system evolve to form a puff or slug. Figures 2(d)–2(f) are,
respectively, snapshot figures of a puff, weak slug, and
strong slug of the PP solution, with the vertical axis being
the density of prey, representing the turbulent intensity.
Likewise, Figs. 2(g)–2(i) are the corresponding snapshots
of the nutrient level of the puff, weak slug, and strong slug
in Figs. 2(d)–2(f). The figures of puffs and slugs generated
by the model closely resemble those seen in DNSs [4,5].
The front speed as a function of U measured from the

space-time plots is shown in the main plot of Fig. 3 and is
qualitatively comparable to the experimental figure in [5].
The characteristic asymmetry of down- and upstream front
speeds in the puff and slug regimes is well captured.
Energy balance and the strong-weak slug transition

given by the model.—How does the PP model capture the
weak-strong slug transition as U increases? The size of the
energy depletion zone in the PP solution is controlled by
the nutrient growth rate g ∝ U2. The larger U is, the less
constraint on prey production is placed by nutrient level, as
shown in Figs. 2(g)–2(i). Specifically, when g is large
enough, prey production exceeds dissipation, which results
in an expanding prey cluster, the slug. The discreteness of

(a)

(d) (e) (f)

(g) (h) (i)

(b) (c)

(j)

FIG. 2. Monte Carlo simulation of the predator-prey model for
transitional pipe turbulence as a function of U (i.e., Reynolds
number), showing space (horizonal axis)-time (vertical axis)
trajectories of (a) puffs (U ¼ 0.0165), (b) weak (U ¼ 0.1125)
and (c) strong (U ¼ 0.525) slugs, and (j) puff splitting
(U ¼ 0.01725). Simulations used a 2D lattice of size 20 ×
3000 for 30 000 time steps (a)–(c) and 100 000 time steps (j).
Turbulence (prey) profile within puffs and slugs is shown in (d)–
(f), mean flow (nutrient) is shown in (g)–(i).
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our underlying description is also essential to properly
capture the correct phase diagram, because nutrient is
absorbed by the prey in quanta. At low U the upstream
front absorbs all the incoming quanta, and there are not
enough to support a downstream front, leading to a weak
slug. At higher U, some quanta pass unabsorbed through
the upstream front, enough that a downstream front can be
supported; this results in a strong slug with two sharp
fronts, one upstream and one downstream. The existence of
asymmetric fronts in the weak slug phase are not captured
by the leading-order mean-field approximation of the
stochastic model—one needs the next order term in
1=

ffiffiffiffi

V
p

that accounts for the underlying discreteness (see
Supplemental Material [31] for derivation). As shown in
the inset of Fig. 3, the up- and downstream fronts given by
the deterministic theory are entirely symmetric. The
detailed mathematical description of these fronts is pre-
sented elsewhere [35], but we announce the result here: the
mean-field theory for the individual-level model shows that
the fronts are related to the well-known Kolmogorov-
Petrovsky-Piskunov-Fisher waves [36,37] and are related
to the bistable fronts arising in the excitable media models
[23] through structural stability [38]. The discreteness in
our formulation ultimately corresponds to the subcritical
nature of the transition, which implies that transitions
between different states are controlled by nonlinear spa-
tially localized modes akin to nucleation phenomena,

leading to superexponential scaling of the timescales
associated with puff dynamics [39].
Mechanism for puff splitting.—In the puff phase, nutrient

recovers much slower than in slug phases. Nevertheless,
when the energy production rate only just exceeds the
dissipation rate, a prey cluster can expand. However, it does
not form a slug, because when the expanding cluster of prey
reaches the energy depletion zone, which is larger with
lower U due to the slow nutrient recovery rate, they are
more likely to decay. Prey that survives this high decay
probability and reaches the end of the energy recovery zone
have access to recovered nutrient again and can be locally
sustained. When viewed kinematically, the above process
appears as if the upstream puff pushes the “daughter” puff
away. Note that the entire puff-splitting and pushing
process as given by the PP model is stochastic. The low
energy influx and stochasticity are the two fundamental
ingredients of puff splitting in the model.
With the increase of U, the energy depletion zone

becomes smaller, and hence the puff splits more frequently.
No clear boundary between puff and weak slug regimes is
observed: when the model puffs split with large enough
frequency and puffs densely occupy space, they form a
slug. This description of the ecological model phenom-
enology is consistent with previous work [23].
Application to quasi-1D Taylor-Couette flow.—To apply

our ecological model to quasi-1D Taylor-Couette flow, we
simply note that the forcing on the two systems is different.
Pipe flow is pressure driven, and hence kinetic energy is
brought in by mean flow from the upstream direction. On
the other hand, Taylor-Couette flow is shear driven, which
results in uniformly transported kinetic energy from the
rotating boundaries to the fluid inside through shear, as
shown in of Fig. 1(b). In other words, the mean flow energy
in the quasi-1D Taylor-Couette system recovers uniformly
with the recovery rate depending on the drive of the rotating
boundary, reflected by rotation speed ω. As a result, there is
no energy depletion zone in quasi-1D Taylor-Couette flow,
and hence the mean flow energy level no longer sets a
strong constraint on the growth rate of turbulence.
To model the difference in the driving, we simply replace

the local nutrient recovery reaction ϕ⟶
g
Ni with a global

one that reflects the global recovery of mean flow energy—
when the nutrient growth reaction is triggered, nutrient N
no longer just spontaneously grows on a specific site but
instead grows uniformly on all sites, unless the site capacity
is reached locally. Again, we impose a limited site capacity
for nutrients to represent the upper bound for mean flow
energy. All the other features of the model for pipe are kept
the same.
Space-time plots generated by the PP model below, at,

and above the critical point are shown in Fig. 4, replicating
the experimental results in quasi-1D Taylor-Couette geom-
etry [6]. Below the critical point, the initial patches of prey
B decay, and the system eventually enters an absorbing

0 0.2 0.4 0.6

-0.018

-0.009

0

0.009

0.018

FIG. 3. Mean speed of the upstream front (blue dots) and
downstream front (red dots), as functions of U, computed from
ten realizations of the Monte Carlo simulation of the stochastic
model. Error bars show the standard error of the mean speed and
are in some cases not visible. The inset shows absolute value of
the deterministic speed of the upstream front (red dots) and the
downstream front (orange circles) as a function of speed U
calculated from the mean-field limit of the model [31]. The theory
curve shown in the inset was calculated using marginal stability
analysis [34] described in detail elsewhere [35].
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state with the extinction of B. At the critical point, B is
sustained and exhibits scale-invariant fractal structure.
Above the critical point, B begins to occupy a portion of
the system at long times. The resulting spatiotemporal
distribution of turbulence follows the DP pattern clearly
seen in quasi-1D Taylor-Couette flow experiments [6].
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This document contains details of calculations for:

• Derivation of the mean field limit of the stochastic model, from which the inset of Fig. 3 in the main text is calculated.

• Description of the Monte Carlo simulation for Figures (2) and (3) of the main paper

• Explanation of the dependence of nutrient growth rate g on U .

I. DERIVATION OF STOCHASTIC HYDRODYNAMICS

In this section, we derive the stochastic partial differential equations (PDEs) in the main text, starting from the stochastic

individual-level reactions that take place in the system, which are,

Ai
dA−−→ φ, Bi

dB−−→ φ, Ai +Bj
p/V−−−→
<ij>

Ai +Aj ,

Bi +Nj
b/V−−−→
<ij>

Bi +Bj , Bi
m−→ Ai,

Ai
DA−−−→
<ij>

Aj , Bi
DB−−−→
<ij>

Bj , φ
g−→ Ni

2Ai
cA/V−−−→ Ai, 2Bi

cB/V−−−→ Bi

Ni
speed=U−−−−−−→
prob.=1

Ni+1.

(S.1)

In the continuum limit, the change of number of A, B and N particles with space can be written as functions of space x as

NA(x), NB(x) and NN (x). We coarse-grain the particle number and introduce a coarse-grained particle density centered at x

over a length scale K with a uniform kernel.

A(x) =
1

K

! K/2

−K/2

NA(x+ y)dy,

B(x) =
1

K

! K/2

−K/2

NB(x+ y)dy,

N(x) =
1

K

! K/2

−K/2

NN (x+ y)dy,

(S.2)



We define the lattice density operator Ex and E−1
x acting on a functional f [M(y)] as,

Exf [M(y)] = f(M(y) +∆δ(y − x)),

E−1
x f [M(y)] = f(M(y)−∆δ(y − x)).

(S.3)

where ∆ = 1/K, and M(x) denotes the coarse-grained particle number at x. M(x) could be A(x), B(x) or N(x). The master

equation can then be written as,

∂tP (A,B,N ; t) =

! "
dA(E

A
x − 1)A(x, t) + dB

#
EB

x − 1
$
B(x, t)

%
P (A,B,N ; t)dx

+

!!
p/V

&
EB

y

#
EA

x

$−1 − 1
'
A(x, t)B(y, t)δ(x− y − ε)P (A,B,N ; t)dxdy

+

!!
p/V

&
EB

y

#
EA

x

$−1 − 1
'
A(x, t)B(y, t)δ(x− y + ε)P (A,B,N ; t)dxdy

+

!!
b/V

&
EN

y

#
EB

x

$−1 − 1
'
N(x, t)B(y, t)δ(x− y − ε)P (A,B,N ; t)dxdy

+

!!
b/V

&
EN

y

#
EB

x

$−1 − 1
'
N(x, t)B(y, t)δ(x− y + ε)P (A,B,N ; t)dxdy

+

!
m

&
EB

x

#
EA

x

$−1 − 1
'
B(x, t)P (A,B,N ; t)dx

+

!!
DA

&
EA

y

#
EA

x

$−1 − 1
'
A(y, t)δ(x− y + ε)P (A,B,N ; t)dxdy

+

!!
DA

&
EA

y

#
EA

x

$−1 − 1
'
A(y, t)δ(x− y − ε)P (A,B,N ; t)dxdy

+

!!
DB

&
EB

y

#
EB

x

$−1 − 1
'
B(y, t)δ(x− y + ε)P (A,B,N ; t)dxdy

+

!!
DB

&
EB

y

#
EB

x

$−1 − 1
'
B(y, t)δ(x− y − ε)P (A,B,N ; t)dxdy

+

!
[g
&#

EN
x

$−1 − 1
'
(V −N) + cA/V

#
EA

x − 1
$
A2(x, t)]P (A,B,N ; t)dx

+

!
cB/V

#
EB

x − 1
$
B2(x, t)P (A,B,N ; t)dx,

(S.4)

where V is site capacity of nutrient and also defined as system size and ε is lattice spacing. Note that the predatory, birth and

diffusion reaction are nearest-neighbour reactions, and the reaction is symmetric in space (i.e. the probability of the reaction

occurring on left nearest neighbour site and on the right nearest neighbour site is the same). That is why for the terms in

equation (S.4) that corresponds to each of these reactions, there is a term with δ(x−y+ ε) (left nearest neighbour), and another

term with δ(x− y − ε) (right nearest neighbour). The width of the pipe is much smaller than its length, so we treat the pipe as

a quasi-one-dimensional system here, with the position parameter x and y being scalars corresponding to length of the pipe.

Applying van Kampen’s expansion and neglecting higher order terms (h.o.t.) beyond second order, we get,

EA/B/N
x M(y, t) = 1 +

1√
V

∂

∂ξA/B/N (x, t)
+

1

2V

∂2

∂ξA/B/N (x, t)2
+ h.o.t.

(EA/B/N
x )−1M(y, t) = 1− 1√

V

∂

∂ξA/B/N (x, t)
+

1

2V

∂2

∂ξA/B/N (x, t)2
+ h.o.t.

M(x, t) = V ρA/B/N (x, t) +
√
V ξA/B/N (x, t) + h.o.t.

P (A,B,C; t) → Π(ξA, ξB , ξN ; t)

(S.5)
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Equation (S.4) becomes,

LHS =
∂Π

∂t
−
√
V

∂Π

∂ξA

∂ρA
∂t

−
√
V

∂Π

∂ξB

∂ρB
∂t

−
√
V

∂Π

∂ξN

∂ρN
∂t

RHS =
1√
V

!
∂

∂ξA(x, t)
dA(V ρA(x, t) +

√
V ξA(x, t))Πdx+

1

2V

!
∂2

∂ξA(x, t)2
dA(V ρA(x, t) +

√
V ξA(x, t))Πdx

+
1√
V

!
∂

∂ξB(x, t)
dB(V ρB(x, t) +

√
V ξB(x, t))Πdx+

1

2V

!
∂2

∂ξB(x, t)2
dB(V ρB(x, t) +

√
V ξB(x, t))Πdx

+
1√
V

!
[

∂

∂ξB(x, t)
p/V (V ρA(x− ε, t) +

√
V ξA(x− ε, t))(V ρB(x, t) +

√
V ξB(x, t))]Πdx

− 1√
V

!
[

∂

∂ξA(x, t)
p/V (V ρA(x− ε, t) +

√
V ξA(x− ε, t))(V ρB(x, t) +

√
V ξB(x, t))]Πdx

+
1

2V

!
[

∂2

∂ξA(x, t)2
p/V (V ρA(x− ε, t) +

√
V ξA(x− ε, t))(V ρB(x, t) +

√
V ξB(x, t))]Πdx

+
1

2V

!
[

∂2

∂ξB(x, t)2
p/V (V ρA(x− ε, t) +

√
V ξA(x− ε, t))(V ρB(x, t) +

√
V ξB(x, t))]Πdx

− 1

V

!
[

∂2

∂ξA(x, t)∂ξB(x, t)
p/V (V ρA(x− ε, t) +

√
V ξA(x− ε, t))(V ρB(x, t) +

√
V ξB(x, t))]Πdx

+
1√
V

!
[

∂

∂ξB(x, t)
p/V (V ρA(x+ ε, t) +

√
V ξA(x+ ε, t))(V ρB(x, t) +

√
V ξB(x, t))]Πdx

− 1√
V

!
[

∂

∂ξA(x, t)
p/V (V ρA(x+ ε, t) +

√
V ξA(x+ ε, t))(V ρB(x, t) +

√
V ξB(x, t))]Πdx

+
1

2V

!
[

∂2

∂ξA(x, t)2
p/V (V ρA(x+ ε, t) +

√
V ξA(x+ ε, t))(V ρB(x, t) +

√
V ξB(x, t))]Πdx

+
1

2V

!
[

∂2

∂ξB(x, t)2
p/V (V ρA(x+ ε, t) +

√
V ξA(x+ ε, t))(V ρB(x, t) +

√
V ξB(x, t))]Πdx

− 1

V

!
[

∂2

∂ξA(x, t)∂ξB(x, t)
p/V (V ρA(x+ ε, t) +

√
V ξA(x+ ε, t))(V ρB(x, t) +

√
V ξB(x, t))]Πdx

+
1√
V

!
[

∂

∂ξN (x, t)
b/V (V ρB(x− ε, t) +

√
V ξB(x− ε, t))(V ρN (x, t) +

√
V ξN (x, t))]Πdx

− 1√
V

!
[

∂

∂ξB(x, t)
b/V (V ρB(x− ε, t) +

√
V ξB(x− ε, t))(V ρN (x, t) +

√
V ξN (x, t))]Πdx

+
1

2V

!
[

∂2

∂ξN (x, t)2
b/V (V ρB(x− ε, t) +

√
V ξB(x− ε, t))(V ρN (x, t) +

√
V ξN (x, t))]Πdx

+
1

2V

!
[

∂2

∂ξB(x, t)2
b/V (V ρB(x− ε, t) +

√
V ξB(x− ε, t))(V ρN (x, t) +

√
V ξN (x, t))]Πdx

− 1

V

!
[

∂2

∂ξN (x, t)∂ξB(x, t)
b/V (V ρB(x− ε, t) +

√
V ξB(x− ε, t))(V ρN (x, t) +

√
V ξN (x, t))]Πdx

+
1√
V

!
[

∂

∂ξN (x, t)
b/V (V ρB(x+ ε, t) +

√
V ξB(x+ ε, t))(V ρN (x, t) +

√
V ξN (x, t))]Πdx

− 1√
V
[

∂

∂ξB(x, t)
b/V (V ρB(x+ ε, t) +

√
V ξB(x+ ε, t))(V ρN (x, t) +

√
V ξN (x, t))]Πdx

+
1

2V

!
[

∂2

∂ξN (x, t)2
b/V (V ρB(x+ ε, t) +

√
V ξB(x+ ε, t))(V ρN (x, t) +

√
V ξN (x, t))]Πdx

+
1

2V

!
[

∂2

∂ξB(x, t)2
b/V (V ρB(x+ ε, t) +

√
V ξB(x+ ε, t))(V ρN (x, t) +

√
V ξN (x, t))]Πdx

− 1

V

!
[

∂2

∂ξN (x, t)∂ξB(x, t)
b/V (V ρB(x+ ε, t) +

√
V ξB(x+ ε, t))(V ρN (x, t) +

√
V ξN (x, t))]Πdx

(S.6)
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+
1√
V

!
[

∂

∂ξB(x, t)
m(V ρB(x, t) +

√
V ξB(x, t))]Πdx

− 1√
V

!
[

∂

∂ξA(x, t)
m(V ρB(x, t) +

√
V ξB(x, t))]Πdx

+
1

2V

!
[

∂2

∂ξB(x, t)2
m(V ρB(x, t) +

√
V ξB(x, t))]Πdx+

1

2V

!
[

∂2

∂ξA(x, t)2
m(V ρB(x, t) +

√
V ξB(x, t))]Πdx

− 1

V

!
[

∂2

∂ξA(x, t)∂ξB(x, t)
m(V ρB(x, t) +

√
V ξB(x, t))]Πdx

+
1√
V

!
∂

∂ξA(x, t)
DA[(V ρA(x, t) +

√
V ξA(x, t))− (V ρA(x+ ε, t) +

√
V ξA(x+ ε, t))]Πdx

+
1

2V

!
∂2

∂ξA(x, t)2
DA[(V ρA(x, t) +

√
V ξA(x, t)) + (V ρA(x+ ε, t) +

√
V ξA(x+ ε, t))]Πdx

− 1

V

!!
∂2

∂ξA(x, t)∂ξA(y, t)
DA(V ρA(y, t) +

√
V ξA(y, t))δ(x− y + ε)Πdxdy

+
1√
V

!
∂

∂ξA(x, t)
DA[(V ρA(x, t)

√
V ξA(x, t))− (V ρA(x− ε, t) +

√
V ξA(x− ε, t))]Πdx

+
1

2V

!
∂2

∂ξA(x, t)2
DA[(V ρA(x, t) +

√
V ξA(x, t)) + (V ρA(x− ε, t) +

√
V ξA(x− ε, t))]Πdx

− 1

V

!!
∂2

∂ξA(x, t)∂ξA(y, t)
DA(V ρA(y, t) +

√
V ξA(y, t))δ(x− y − ε)Πdxdy

+
1√
V

!
∂

∂ξA(x, t)
DB [(V ρB(x, t) +

√
V ξB(x, t))− (V ρB(x+ ε, t) +

√
V ξB(x+ ε, t))]Πdx

+
1

2V

!
∂2

∂ξB(x, t)2
DB [(V ρB(x, t) +

√
V ξB(x, t)) + (V ρB(x+ ε, t) +

√
V ξB(x+ ε, t))]Πdx

− 1

V

!!
∂2

∂ξB(x, t)∂ξB(y, t)
DB(V ρB(y, t) +

√
V ξB(y, t))δ(x− y + ε)Πdxdy

+
1√
V

!
∂

∂ξB(x, t)
DB [(V ρB(x, t) +

√
V ξB(x, t))− (V ρB(x− ε, t) +

√
V ξB(x− ε, t))]Πdx

+
1

2V

!
∂2

∂ξB(x, t)2
DB [(V ρB(x, t) +

√
V ξB(x, t)) + (V ρB(x− ε, t) +

√
V ξB(x− ε, t))]Πdx

− 1

V

!!
∂2

∂ξB(x, t)∂ξB(y, t)
DB(V ρB(y, t) +

√
V ξB(y, t))δ(x− y − ε)Πdxdy

− 1√
V

!
∂

∂ξN (x, t)
g(V − (V ρN (x, t) +

√
V ξN (x, t)))Πdx

+
1

2V

!
∂2

∂ξN (x, t)2
g(V − (V ρN (x, t) +

√
V ξN (x, t)))Πdx

+
1√
V

!
∂

∂ξA(x, t)
cA/V (V ρA(x, t) +

√
V ξA(x, t))

2Πdx+
1

2V

!
∂2

∂ξA(x, t)2
cA/V (V ρA(x, t) +

√
V ξA(x, t))

2Πdx

+
1√
V

!
∂

∂ξB(x, t)
cB/V (V ρB(x, t) +

√
V ξB(x, t))

2Πdx+
1

2V

!
∂2

∂ξB(x, t)2
cB/V (V ρB(x, t) +

√
V ξB(x, t))

2Πdx

(S.7)

Expanding out all the terms and keeping terms up to second order, we obtain:

RHS =
√
V [

!
dAρA(x, t)

∂

∂ξA(x, t)
Πdx] +

√
V [

!
dBρB(x, t)

∂

∂ξB(x, t)
Πdx]

+ [

!
∂

∂ξA(x, t)
dAξA(x, t)Πdx+

dA
2
ρA

!
∂2

∂ξA(x, t)2
Πdx] + [

!
∂

∂ξB(x, t)
dBξB(x, t)Πdx+

dB
2
ρB

!
∂2

∂ξB(x, t)2
Πdx]

(S.8)
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+
√
V

!
pρA(x− ε, t)ρB(x, t)

∂

∂ξB(x, t)
Πdx−

√
V

!
pρA(x− ε, t)ρB(x, t)

∂

∂ξA(x, t)
Πdx

+
√
V

!
pρA(x+ ε, t)ρB(x, t)

∂

∂ξB(x, t)
Πdx−

√
V

!
pρA(x+ ε, t)ρB(x, t)

∂

∂ξA(x, t)
Πdx

+

!
pρA(x− ε, t)

∂

∂ξB(x, t)
ξB(x, t)Πdt+

!
pρB(x, t)ξA(x− ε, t)

∂

∂ξB(x, t)
Πdt

−
!

pρA(x− ε, t)
∂

∂ξA(x, t)
ξB(x, t)Πdt−

!
pρB(x, t)

∂

∂ξA(x, t)
ξA(x− ε, t)Πdt

+
1

2

!
pρA(x− ε, t)ρB(x, t)

∂2

∂ξA(x, t)2
Πdx+

1

2

!
pρA(x− ε, t)ρB(x, t)

∂2

∂ξB(x, t)2
Πdx

−
!

pρA(x− ε, t)ρB(x, t)
∂2

∂ξA(x, t)∂ξB(x, t)
Πdx

+

!
pρA(x+ ε, t)

∂

∂ξB(x, t)
ξB(x, t)Πdt+

!
pρB(x, t)ξA(x+ ε, t)

∂

∂ξB(x, t)
Πdt

−
!

pρA(x+ ε, t)
∂

∂ξA(x, t)
ξB(x, t)Πdt−

!
pρB(x, t)

∂

∂ξA(x, t)
ξA(x+ ε, t)Πdt

+
1

2

!
pρA(x+ ε, t)ρB(x, t)

∂2

∂ξA(x, t)2
Πdx+

1

2

!
pρA(x+ ε, t)ρB(x, t)

∂2

∂ξB(x, t)2
Πdx

−
!

pρA(x+ ε, t)ρB(x, t)
∂2

∂ξA(x, t)∂ξB(x, t)
Πdx

+
√
V

!
bρB(x− ε, t)ρN (x, t)

∂

∂ξN (x, t)
Πdx−

√
V

!
bρB(x− ε, t)ρN (x, t)

∂

∂ξB(x, t)
Πdx

+
√
V

!
bρB(x+ ε, t)ρN (x, t)

∂

∂ξN (x, t)
Πdx−

√
V

!
bρB(x+ ε, t)ρN (x, t)

∂

∂ξB(x, t)
Πdx

+

!
bρB(x− ε, t)

∂

∂ξN (x, t)
ξN (x, t)Πdt+

!
bρN (x, t)ξB(x− ε, t)

∂

∂ξN (x, t)
Πdt

−
!

bρB(x− ε, t)
∂

∂ξB(x, t)
ξN (x, t)Πdt−

!
bρN (x, t)

∂

∂ξB(x, t)
ξB(x− ε, t)Πdt

+

!
1

2
bρB(x− ε, t)ρN (x, t)

∂2

∂ξB(x, t)2
Πdx+

!
1

2
bρB(x− ε, t)ρN (x, t)

∂2

∂ξN (x, t)2
Πdx

−
!

bρB(x− ε, t)ρN (x, t)
∂2

∂ξB(x, t)∂ξN (x, t)
Πdx

+

!
bρB(x+ ε, t)

∂

∂ξN (x, t)
ξN (x, t)Πdt+

!
bρN (x, t)ξB(x+ ε, t)

∂

∂ξN (x, t)
Πdt

−
!

bρB(x+ ε, t)
∂

∂ξB(x, t)
ξN (x, t)Πdt−

!
bρN (x, t)

∂

∂ξB(x, t)
ξB(x+ ε, t)Πdt

+

!
1

2
bρB(x+ ε, t)ρN (x, t)

∂2

∂ξB(x, t)2
Πdx+

!
1

2
bρB(x+ ε, t)ρN (x, t)

∂2

∂ξN (x, t)2
Πdx

−
!

bρB(x+ ε, t)ρN (x, t)
∂2

∂ξB(x, t)∂ξN (x, t)
Πdx

+
√
V

!
mρB(x, t)

∂

∂ξB(x, t)
Πdx−

√
V

!
mρB(x, t)

∂

∂ξA(x, t)
Πdx+m

!
∂

∂ξB
ξBΠdx−m

!
ξB

∂

∂ξA
Πdx

+
1

2

!
mρB(x, t)

∂2

∂ξB(x, t)2
Πdx+

1

2

!
mρB(x, t)

∂2

∂ξA(x, t)2
Πdx−

!
mρB(x, t)

∂2

∂ξA(x, t)∂ξB(x, t)
Πdx

+
√
V

!
DA(ρA(x, t)− ρA(x+ ε, t))

∂

∂ξA(x, t)
Πdx+

!
∂

∂ξA(x, t)
DA(ξA(x, t)− ξA(x+ ε, t))Πdx

+
1

2

!
DA(ρA(x, t) + ρA(x+ ε, t))

∂2

∂ξA(x, t)2
Πdx−

!!
DAρA(y, t)δ(x− y + ε)

∂2

∂ξA(x, t)∂ξA(y, t)
Πdxdy

+
√
V

!
DA(ρA(x, t)− ρA(x− ε, t))

∂

∂ξA(x, t)
Πdx+

!
∂

∂ξA(x, t)
DA(ξA(x, t)− ξA(x− ε, t))Πdx

+
1

2

!
DA(ρA(x, t) + ρA(x− ε, t))

∂

∂ξA(x, t)2
Πdx−

!!
DAρA(y, t)δ(x− y − ε)

∂2

∂ξA(x, t)∂ξA(y, t)
Πdxdy

(S.9)
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+
√
V

!
DB(ρB(x, t)− ρB(x+ ε, t))

∂

∂ξB(x, t)
Πdx+

!
∂

∂ξB(x, t)
DB(ξB(x, t)− ξB(x+ ε, t))Πdx

+
1

2

!
DB(ρB(x, t)− ρB(x+ ε, t))

∂

∂ξB(x, t)
Πdx−

!!
DBρB(y, t)δ(x− y + ε)

∂2

∂ξB(x, t)∂ξB(y, t)
Πdxdy

+
√
V

!
DB(ρB(x, t)− ρB(x− ε, t))

∂

∂ξB(x, t)
Πdx+

!
∂

∂ξB(x, t)
DB(ξB(x, t)− ξB(x− ε, t))Πdx

+
1

2

!
DB(ρB(x, t)− ρB(x− ε, t))

∂

∂ξB(x, t)
Πdx−

!!
DBρB(y, t)δ(x− y − ε)

∂2

∂ξB(x, t)∂ξB(y, t)
Πdxdy

−
√
V

!
g(1− ρN (x, t))

∂

∂ξN (x, t)
Πdx+

!
g

∂

∂ξN (x, t)
ξN (x, t)Πdx+

1

2

!
g(1− ρN (x, t))

∂2

∂ξN (x, t)2
Πdx

+
√
V cAρA(x, t)

2

!
∂

∂ξA(x, t)
Πdx+

√
V cBρB(x, t)

2

!
∂

∂ξB(x, t)
Πdx

+ cAρA(x, t)

!
∂

∂ξA(x, t)
ξA(x, t)Πdx+

1

2
cAρA(x, t)

2

!
∂2

∂ξA(x, t)2
Πdx

+ cBρB(x, t)

!
∂

∂ξB(x, t)
ξB(x, t)Πdx+

1

2
cBρB(x, t)

2

!
∂2

∂ξB(x, t)2
Πdx.

(S.10)

We can then perform a Taylor expansion,

ρ(x± ε, t) ≈ ρ(x, t)± ε∂xρ(x, t) +
1

2
ε2∂2

xρ(x, t). (S.11)

and similarly for the δ(x− y + ε) and δ(x− y − ε) terms:

!!
∂2

∂ξA(x, t)∂ξA(y, t)
[DAρA(y, t)δ(x− y + ε) +DAρA(y, t)δ(x− y − ε)]Πdxdy

=

!!
∂2

∂ξA(x, t)∂ξA(y, t)
[DAρA(x, t)δ(y − x+ ε) +DAρA(x, t)δ(y − x− ε)]Πdxdy

=

!!
∂2

∂ξA(x, t)∂ξA(y, t)

(
DAρA(x, t)[δ(y − x) + εδ′(y − x) +

ε2

2
δ′′(y − x) + δ(y − x)− εδ′(y − x) +

ε2

2
δ′′(y − x)]

)
Πdxdy

=

!!
∂2

∂ξA(x, t)∂ξA(y, t)

(
DAδ(y − x)[ρA(x, t)− ε∂xρA(x, t) +

ε2

2
∂2
xρA(x, t) + ρA(x, t) + ε∂xρA(x, t) +

ε2

2
∂2
xρA(x, t)]

)
Πdxdy

=

!!
∂2

∂ξA(x, t)∂ξA(y, t)
DA[2ρA(x, t) + ε2∂2

xρA(x, t)]δ(y − x)Πdxdy

(S.12)

and:

!!
∂2

∂ρB(x, t)∂ρB(y, t)
[DBρB(y, t)δ(x− y + ε) +DBρB(y, t)δ(x− y − ε)]Πdxdy

=

!!
∂2

∂ξB(x, t)∂ξB(y, t)
DB [2ρB(x, t) + ε2∂2

xρB(x, t)]δ(y − x)Πdxdy.

(S.13)
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Collecting the
√
V terms, we obtain the deterministic PDEs:

∂ρA(x, t)

∂t
= −dAρA(x, t) + 2pρA(x, t)ρB(x, t) + pρB(x, t)ε

2∂2
xρA(x, t) +mρB(x, t) +DAε

2∂2
xρA(x, t)− cAρA(x, t)

2,

∂ρB(x, t)

∂t
= −dBρB(x, t)− 2pρA(x, t)ρB(x, t)− pρB(x, t)ε

2∂2
xρA(x, t) + 2bρB(x, t)ρN (x, t) + bρN (x, t)ε2∂2

xρB(x, t)

−mρB(x, t) +DBε
2∂2

xρB(x, t)− cBρB(x, t)
2,

∂ρN (x, t)

∂t
= −2bρB(x, t)ρN (x, t)− bρN (x, t)ε2∂2

xρB(x, t) + g(1− ρN (x, t)).

(S.14)

From the next order O(1) terms, we obtain:

∂tΠ = −
!

A33
∂

∂ξN (x, t)
ξN (x, t)Πdx−

!
A22

∂

∂ξB(x, t)
ξB(x, t)Πdx−

!
A11

∂

∂ξA(x, t)
ξA(x, t)Πdx

−
!

A12
∂

∂ξA(x, t)
ξB(x, t)Πdx−

!
A21

∂

∂ξB(x, t)
ξA(x, t)Πdx−

!
A23

∂

∂ξB(x, t)
ξN (x, t)Πdx−

!
A32

∂

∂ξN (x, t)
ξB(x, t)Πdx

+
1

2

!!
∂2

∂ξN (x, t)∂ξN (y, t)
B33Πdxdy +

1

2

!!
∂2

∂ξA(x, t)∂ξA(y, t)
B11Πdxdy +

1

2

!!
∂2

∂ξB(x, t)∂ξB(y, t)
B22Πdxdy

+
1

2

!!
∂2

∂ξA(x, t)∂ξB(y, t)
B12Πdxdy +

1

2

!!
∂2

∂ξN (x, t)∂ξB(y, t)
B23Πdxdy

+
1

2

!!
∂2

∂ξA(x, t)∂ξB(y, t)
B21Πdxdy +

1

2

!!
∂2

∂ξN (x, t)∂ξB(y, t)
B32Πdxdy,

(S.15)

where

A11 = −dA + pρB(x, t)(2 + ε2∂2
x) +DA(ε

2∂2
x)− cAρA(x, t),

A22 = −dB − p(2ρA(x, t) + ε2∂2
xρA(x, t)) + bρN (x, t)(2 + ε2∂2

x)−m+DB(ε
2∂2

x)− cBρB(x, t) +m,

A33 = −b(2 + ε2∂2
x)ρB(x, t)− g

A12 = p(2 + ε2∂2
x)ρA(x, t) +m

A21 = −pρB(x, t)(2 + ε2∂2
x)

A23 = b(2 + ε2∂2
x)ρB(x, t)

A32 = −bρN (x, t)(2 + ε2∂2
x)

B11 = [dAρA(x, t) + pρB(x, t)(2 + ε2∂2
x)ρA(x, t) +mρB(x, t)− 2DA(2ρA(x, t) + ε2∂2

xρA(x, t)) + 4DAρA(x, t)

+DAε
2∂2

xρA(x, t) + cAρA(x, t)
2]δ(x− y)

= [dAρA(x, t) + pρB(x, t)(2 + ε2∂2
x)ρA(x, t) +mρB(x, t) + cAρA(x, t)

2 −DAε
2∂2

xρA(x, t)]δ(x− y),

B22 = [dBρB(x, t) + pρB(x, t)(2 + ε2∂2
x)ρA(x, t) + bρN (x, t)(2 + ε2∂2

x)ρB(x, t) +mρB(x, t)

− 2DB(2ρB(x, t) + ε2∂2
xρB(x, t)) + cBρB(x, t)

2 + 4DBρA(x, t) +DBε
2∂2

xρB(x, t)]δ(x− y)

= [dBρB(x, t) + pρB(x, t)(2 + ε2∂2
x)ρA(x, t) + bρN (x, t)(2 + ε2∂2

x)ρB(x, t) +mρB(x, t) + cBρB(x, t)
2

−DBε
2∂2

xρB(x, t)]δ(x− y),

B33 = [bρN (x, t)(2 + ε2∂2
x)ρB(x, t) + g(1− ρN (x, t))]δ(x− y),

B12 = B21 = [−pρB(x, t)(2 + ε2∂2
x)ρA(x, t)−mρB(x, t)]δ(x− y),

B23 = B32 = [−bρN (x, t)(2 + ε2∂2
x)ρB(x, t)]δ(x− y).

(S.16)
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The corresponding Langevin equation in the Itô sense can be written as,

∂tρA = A11ρA +A12ρB + ηA(x, t),

∂tρB = A21ρA +A22ρB +A23ρN + ηB(x, t),

∂tρN = A32ρB +A33ρN + ηN (x, t),

< ηA(x, t)ηA(x
′, t′) > = B11δ(t− t′),

< ηB(x, t)ηB(x
′, t′) > = B22δ(t− t′),

< ηN (x, t)ηN (x′, t′) > = B33δ(t− t′),

< ηA(x, t)ηB(x
′, t′) > =< ηB(x, t)ηA(x

′, t′) >= B12δ(t− t′),

< ηB(x, t)ηN (x′, t′) > =< ηN (x, t)ηB(x
′, t′) >= B23δ(t− t′).

(S.17)

and

A11 = −dA + pρB(2 + ∂2
x) +DA(∂

2
x)− cAρA,

A22 = −dB − p(2ρA + ∂2
xρA) + bρN (2 + ∂2

x)−m+DB(∂
2
x)− cBρB +m,

A33 = −b(2 + ∂2
x)ρB − g

A12 = p(2 + ∂2
x)ρA +m

A21 = −pρB(2 + ∂2
x)

A23 = b(2 + ∂2
x)ρB

A32 = −bρN (2 + ∂2
x)

B11 = [dAρA + pρB(2 + ∂2
x)ρA +mρB + cAρ

2
A −DA∂

2
xρA]δ(x− y)

B22 = [dBρB + pρB(2 + ∂2
x)ρA + bρN (2 + ∂2

x)ρB +mρB + cBρ
2
B −DB∂

2
xρB ]δ(x− y)

B33 = [bρN (2 + ∂2
x)ρB + g(1− ρN )]δ(x− y),

B12 = [−pρB(2 + ∂2
x)ρA −mρB ]δ(x− y),

B23 = [−bρN (2 + ∂2
x)ρB ]δ(x− y).

(S.18)

Setting the lattice spacing ε = 1 and adding in the deterministic advection term, we obtain:

∂ρA
∂t

= −dAρA + 2pρAρB + pρB∂
2
xρA +mρB +DA∂

2
xρA − cAρ

2
A,

∂ρB
∂t

= −dBρB − 2pρAρB − pρB∂
2
xρA + 2bρBρN + bρN∂2

xρB −mρB +DB∂
2
xρB − cBρ

2
B ,

∂ρN
∂t

= −U∂2
xρN − 2bρBρN − bρN∂2

xρB + g(1− ρN ).

(S.19)

The calculation outlined here is systematic but only within the applicability of the van Kampen expansion. This expansion is

appropriate when the number of degrees of freedom in all field variables is much larger than unity, so it is sometimes called a

system size expansion. In other words, it is a mean field theory. This limit is self-consistent when the ecosystem representing

the laminar-turbulent interactions is well-supplied with energy from the mean flow, but will fail to be self-consistent at fronts

where the energy is vanishingly small and the number of quanta of the nutrient is of order unity. There is no fully systematic

solution to this problem known to us, and we mention the following heuristic considerations to motivate the way that we have
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approached making a physically realistic approximation.

Due to the constraint set by the nutrient capacity, densities of predator and prey can be low in some regions of space, and the

van Kampen expansion will not reflect the correct growth behavior. Specifically, in the ρN equation of equation (S.19), we note

that the term g(1 − ρN ) does not reflect the correct growth behavior under site capacity constraint – without nonlinear terms,

the curvature of the growth rate does not vary close to the site capacity, so ρN does not saturate close to the upper bound as

one would expect based on logistic growth, for example. One way to address this is to ask what would have been obtained in a

model that does not impose strict number constraints on site occupancy (so-called “urn” models). The alternative is to impose

carrying capacity by adding an additional competition term in the individual-level reactions for the prey; this has the effect

of limiting the growth to an emergent value of the carrying capacity which depends on the competition coupling constant [1].

These terms would naturally generate a term such as −cNρ2N term, and result in:

∂ρA
∂t

= −dAρA + 2pρAρB + pρB∂
2
xρA +mρB +DA∂

2
xρA − cAρ

2
A,

∂ρB
∂t

= −dBρB − 2pρAρB − pρB∂
2
xρA + 2bρBρN + bρN∂2

xρB −mρB +DB∂
2
xρB − cBρ

2
B ,

∂ρN
∂t

= −U∂xρN − 2bρBρN − bρN∂2
xρB + g(1− ρN )− cNρ2N ,

(S.20)

which is the final result of the deterministic mean field PDEs for the three trophic level model. Eqn. (S.20) is solved numerically

to calculate the mean field front speed in the inset of Fig. 3 of the mean text.

II. ALGORITHM FOR THE MONTE CARLO SIMULATION

The Monte Carlo simulation is performed on a 2D lattice of size 20 × 3000. We initially perturb the system by randomly

generating prey B (with probability 2/5) and predator A (with probability 2/5) in a small area of size 20× 30 in the middle of

the lattice. Simulation results are not sensitive to the initial composition of predator and prey. The number of nutrients upstream

of the predator and prey is set to the nutrient site capacity, while the nutrient number is set to zero downstream to avoid the

transient growth in prey and predator population at the beginning of the simulation and help the system get to the steady-state

faster.

The predator and prey experience rigid wall boundary conditions at the boundary.

During the simulation, the predator and prey may not cross the boundary of the system. For nutrients, however, in addition

to having a periodic boundary condition, the number of nutrients is refilled to the site capacity on the left boundary.

The simulation procedure for one time step is as follows,

• A random site is selected. In one time step, 20× 3000 lattice sites are selected in total to make sure that every site on the

lattice is visited once on average.

• A random number R is generated between 0 and 1. The value of the number R determines which reaction will take place

on the selected lattice site. Generate another random number R1 between 0 and 1. The value of the number R1 determines

whether the selected reaction occurs on the selected site. If R ≤ 1/10, predator diffusion reaction is selected. And then,

if R1 ≤ 1− exp(−DA × number of predator on the lattice) (the form of the probability will be derived below), the

predator diffusion reaction occurs. One of the predators on the lattice site will hop to one of the four nearest-neighbor

sites.
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• If 1/10 < R ≤ 2/10, prey diffusion reaction is selected. And then, if R1 < 1−exp(−DB×number of prey on the lattice),

the prey diffusion reaction occurs. One of the prey on the lattice site will hop to one of the four nearest-neighbor sites.

• If 2/10 < R ≤ 3/10, prey birth reaction is selected. Then, if R1 < 1− exp(−b/V ×number of prey on the lattice×
number of nutrient on the lattice) (V is system size, a parameter that controls the strength of noise), the prey birth

reaction occurs. One of the prey on the lattice site generates another prey on one of the four nearest-neighbor sites and

consumes the nutrient on that site.

• If 3/10 < R ≤ 4/10, the predatory reaction is selected. Then, if R1 < 1−exp(−p/V×number of prey on the lattice×
number of predator on the lattice), the predatory reaction occurs. One of the predators on the lattice site generates

another predator on one of the four nearest-neighbor sites and consumes the prey on that site.

• If 4/10 < R ≤ 5/10, predator death reaction is selected. Then, if R1 < 1−exp(−dA×number of predator on the lattice),

the predator death reaction occurs. One of the predators on the lattice site dies.

• If 5/10 < R ≤ 6/10, prey death reaction is selected. Then, if R1 < 1− exp(−dA × number of prey on the lattice),

the predator death reaction occurs. One of the prey on the lattice site dies.

• If 6/10 < R ≤ 7/10, mutation reaction is selected. Then, if R1 < 1− exp(−m×number of prey on the lattice), the

mutation reaction occurs. One of the prey on the lattice site dies, while a predator is generated on the same site.

• If 7/10 < R ≤ 8/10, predator competition reaction is selected. Then if R1 < 1−exp(−cA/V×number of predator on the lattice×
(number of predator on the lattice−1)), the predator competition reaction occurs. One of the predators on the lattice

site dies.

• If 8/10 < R ≤ 9/10, prey competition reaction is selected. Then, if R1 < 1−exp(−cB/V×number of prey on the lattice×
(number of prey on the lattice− 1)), the prey competition reaction occurs. One of the prey on the lattice site dies.

• If 9/10 < R ≤ 1, nutrient growth reaction is selected. Then, if R1 < 1 − exp(−g), nutrient on the site increase by 1,

unless number of nutrient on the site = nutrient site capacity.

• Once the procedures above have already been executed for all 20 × 3000 sites, we make all the nutrients hop one site

forward and increase the time by one. Then we loop back to repeat the above procedure.

To continuously change the advection speed of the nutrient, we scale all the reaction rates by 1/U (e.g. p̃ = p/U , g̃ = g/U ,

etc.), and the simulation time by 1/U . Parameter values used in the simulation are DA = DB = 0.125, dA = dB = 0.02,

p = 0.05, m = 0.0002, b = 0.05, cA = cB = 0.04, g = 20U2/9, site capacity of N = 5, and cN = 0.2. The qualitative

features of the phase diagram are not sensitive to small variations in these parameter values.

Simulation of our model is much faster than DNS of the Navier-Stokes equations, because only the large-scale features are

mimicked.
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III. SCALING OF NUTRIENT GROWTH RATE

The reason g has a quadratic dependence on U is based on an energy balance argument in pipe flow. Starting from the fluid at

rest, the Navier-Stokes equation for the velocity u(r, t) as a function of radial distance r in cylindrical geometry has a solution,

u(r, t) = −∂xp

4µ
(R2 − r2) +

2(∂xp)R
2

µ

∞*

n=1

1

λ3
x

J0(λnr/R)

J1(λn)
e−λ2

n
νt
R2 , (S.21)

where J0 is the Bessel function of the first kind of order zero, λn are the positive roots of this function and J1(λn) is the Bessel

function of the first kind of order one. In the expression in Eqn. (S.21), angular perturbation is ignored, and symmetry in

the radial direction is assumed. These are good enough approximations in systems with high aspect ratio like the quasi-one-

dimensional pipe flow studied in the present work.

From Eqn. (S.21), the growth rate of u is,

∂tu ∼ ∂xp, (S.22)

while the recovery rate of laminar energy is proportional to ∂tu
2. Since

u2(r, t) = (∂xp)
2

+
− 1

4µ
(R2 − r2) +

2R2

µ

∞*

n=1

1

λ3
x

J0(λnr/R)

J1(λn)
e−λ2

n
νt
R2

,2

, (S.23)

we get the scaling

∂tu
2 ∼ (∂xp)

2. (S.24)

Note that this is nothing but a result of dimensional analysis and symmetry argument. Since the pressure gradient along the

x-direction is the driving force, and the rate of change in kinetic energy (∝ ∂tu
2) should not depend on the direction of pressure

gradient, it must scale as (∂xp)2.

Since U in pipe flow satisfies,

∂xp ∼ U, (S.25)

the growth rate of the nutrient that represents the recovery rate of laminar solution scales as g ∼ U2.
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