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Abstract
Biological organisms experience constantly changing environments, from sudden changes in
physiology brought about by feeding, to the regular rising and setting of the Sun, to ecological
changes over evolutionary timescales. Living organisms have evolved to thrive in this changing
world but the general principles by which organisms shape and are shaped by time varying
environments remain elusive. Our understanding is particularly poor in the intermediate regime
with no separation of timescales, where the environment changes on the same timescale as the
physiological or evolutionary response. Experiments to systematically characterize the response to
dynamic environments are challenging since such environments are inherently high dimensional.
This roadmap deals with the unique role played by time varying environments in biological
phenomena across scales, from physiology to evolution, seeking to emphasize the commonalities
and the challenges faced in this emerging area of research.
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1. Introduction

Arvind Murugan and Kabir Husain

James Franck Institute, Department of Physics,
University of Chicago, Chicago, IL 60637, United
States of America

Email: amurugan@uchicago.edu and kabirh@
uchicago.edu

The natural world is ever changing, and living
organisms evolve to thrive in these changing cir-
cumstances. Available sugars change over the course
of a bacterium’s lifetime, pathogens seen by our
immune systems change with the seasons, and an
organism’s ecological niche can change over evolu-
tionary timescales. Biological organisms have mech-
anisms to respond to such dynamical environments
on all these scales. However, the response to dynam-
ical environments has been hard to study in a sys-
tematic manner since the space of dynamical envi-
ronments is inherently high dimensional, requiring
high-throughput time-resolved measurements. What
are the outstanding challenges and opportunities in
studying such dynamic phenomena? In this roadmap,
we present perspectives from such diverse fields as
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evolution and ecology, cellular signaling, develop-
ment, and circadian biology.

Biology in time-varying environments has
been mostly studied when there is a separation of
timescales between environmental dynamics and
the biological response. Such dynamics fall into two
limits that we can understand using effective static
frameworks. Slow changes in the environment elicit
a ‘quasi-static’ response that is well-adapted to the
effectively static environment at that moment in
time. Conversely, rapid environmental variations
faster than biological response timescales are filtered
out, and enter only as enhanced fluctuations around
a static backdrop.

In contrast to such fast or slow variations,
if the environment changes on an intermediate
timescale—that is, on timescales comparable to the
biological response—adaptation to one environmen-
tal condition is only partially complete when adapta-
tion to another condition must begin. The dynamics
of the environment thereby couple to biological tran-
sients, and adapting organisms must reckon with both
changes in their surroundings as well as the precise
time over which they occur.

In this roadmap, we present perspectives from
diverse fields of biology, highlighting how probing
biological systems at these intermediate timescales
can elicit novel, history-dependent responses from
cells, organisms, and populations. These include
regular environmental rhythms, such as the 24 h
day–night cycle. Rust explores how the need to reli-
ably process temporal information constrains the
architecture of biological circuits, while Hepler and
Bass describe the delicate coupling between metabolic
and circadian cycles that underlie health and disease.
Other temporal cues may be less predictable, such as
the intermittent onset of extracellular stresses. New
technologies are required to probe cellular responses
to these signals. Pietsch and Swain describe how
microfluidics, combined with single cell imaging, can
be used to study the encoding of extracellular stim-
uli in intracellular dynamics, while Jena and Toettcher
draw lessons from optogenetic studies of the meta-
zoan Ras/Erk system to outline the role of signaling
dynamics in homeostasis and development.

Time varying environments can also be exoge-
nously applied as a control strategy, directing bio-
logical processes to desirable outcomes. Chakraborty
and Sprenger describe temporal vaccination proto-
cols that direct the immune system toward broadly
neutralising antibodies (Abs) that can bind multi-
ple antigens. In contrast, Wood describes how time-
varying doses of antibiotics can slow the evolution of
microbes resistant to multiple drugs. Mora, Walczak,
and Rivoire situate these protocols in classic strategies
for bet-hedging, while Wang describes how immune
systems learn from, generalise, and affect a changing
pathogenic environment.

Time-varying environments on longer timescales
can shape evolutionary processes. Skanata and Kus-
sell describe the evolution of regulated cellular growth
as a response to fluctuating environments seen over
evolutionary history. Further, time-varying environ-
ments seen in the past may imprint themselves physi-
cally into the products of evolution, as described by
Ranganathan for the evolution of allostery in pro-
teins. Finally, Shih and Goldenfeld take into consid-
eration that time-varying environments are often not
set externally by abiotic factors but by other coevolv-
ing species, giving rise to a rich set of self-tuned,
eco-evolutionary dynamics.

2. Biological oscillators as signal
processing devices

Michael J Rust

Department of Molecular Genetics and Cell Biology,
University of Chicago, Chicago, IL 60637, United
States of America
Department of Physics, University of Chicago,
Chicago, IL 60637, United States of America

Email: mrust@uchicago.edu

2.1. Status
Most laboratory experiments in biology involve cells
or organisms in culture living either in constant con-
ditions, or in conditions that have a simple time-
varying structure. In contrast, the natural environ-
ments under which these organisms evolved have
rhythms and fluctuations on many timescales. Some
of this temporal structure corresponds to signals that
are potentially actionable in the sense that they carry
predictive information about the future. Familiar
examples include the daily rhythm of day and night,
the annual rhythm of seasons, and the diurnal, semid-
iurnal, and monthly rhythms of the tides. Beyond
these astrophysical rhythms, many microbes may live
in environments with varying degrees of regularity.
For example, bacteria living in the human gut may
experience pulsatile nutrient rhythms corresponding
to human mealtimes.

These potentially predictive signals are usually
contaminated with noise, irrelevant fluctuations that
do not contain usable information. For any particu-
lar case, noise will be strongest at different parts of
the frequency spectrum. As an example, consider the
obvious day–night rhythm in illumination. This sig-
nal is partially obscured by higher frequency fluctua-
tions due to cloud cover etc. Temperature also exhibits
daily cycles, but these rhythms are more prominently
obscured by low frequency fluctuations due to longer
timescale change in the weather (figure 1(A)).

2.2. Current and future challenges
These observations naturally raise the question of
which strategies living systems might use to deal

3

mailto:mrust@uchicago.edu


Phys. Biol. 18 (2021) 041502 Roadmap

Figure 1. Signal processing by spiral node dynamics. (A) Cartoon of day–night cycles in irradiance (top) and temperature
(bottom). (B) Phase plane dynamics of a symmetric spiral node. ω characterizes the angular frequency, μ characterizes the rate of
decay. (C) Signal amplification by linear oscillator as a function of the relative mismatch between the natural frequency ω and the
signal frequency Ω. (D) Simulated example of a regular rhythm heavily contaminated by noise at many different frequencies
proposed by a spiral node network. (E) Environmental and internal factors predicted to favor increasing or decreasing the
damping biological oscillators.

with the challenge of perceiving an informative
signal in the presence of irrelevant noise. In the case of
daily cycles, two general behaviors have been observed
experimentally. The first is physiology that responds
rhythmically to daily rhythms in the environment,
but these rhythms fade out when the environment
is held constant. Damped daily rhythms have been
reported in many organisms, especially microbes,
including budding yeast [1], pseudomonads [2],
purple bacteria [3], and the cyanobacterial clade
Prochlorococcus [4]. An alternative is rhythmic phys-
iology that is self-sustaining in constant conditions,
known as a circadian rhythm, the name referring to
internally generated rhythm that is about a day in
period. Most animals and plants, some fungi, and
many cyanobacteria show self-sustaining rhythms.
These timing mechanisms are in general implemented
by elaborate biochemical circuitry, and as the details
may vary markedly from species to species, it may
be impossible to make truly general statements about
molecular mechanism.

2.3. Advances in science and technology to meet
challenges
To attempt to make generic statements about phys-
iology in time-varying environments, we turn to an
idea from the study of dynamical systems called nor-
mal form theory. The idea is that, sufficiently close to
a fixed point of the system, many features of the sys-
tem can be approximately understood in terms of a
low-dimensional description that is universal, in the
sense that almost all systems with the same qualita-
tive behavior should follow equivalent equations. As a
first step, consider the behavior of a system, such as an
hourglass mechanism, which decays to a stable steady
state when the environment is constant. Sufficiently
close to the steady state, the dynamics can treated by

a linear approximation. In general, the eigenvalues of
the resulting linear system with the least negative real
part (and hence slowest decaying) will be a complex
conjugate pair. This results in the normal form for a
spiral node (figure 1(B)):

d

dt

(
x
y

)
=

(
μ −ω

ω μ

)(
x
y

)

where x and y are the most slowly decaying eigenvec-
tors of the system’s state variables, transformed so that
the steady state lies at the origin. When μ < 0, the
solutions to this equation spiral into the origin, com-
pleting one revolution in a time 2π/ω, and losing half
of the radial amplitude in a time −ln 2/μ.

To simulate the behavior of this system in a fluctu-
ating environment, we can add a driving term repre-
senting an external signal with frequency Ω and study
the behavior of the resulting equations:

d

dt

(
x
y

)
=

(
μ −ω

ω μ

)(
x
y

)
+ I

(
cos Ωt
sin Ωt

)

The linearity of this equation allows an exact solu-
tion. At long times, the system will show sinusoidal
oscillations at the same frequency as the driving term.
Assumingμ< 0, the amplitude A of these oscillations,
which is a measure of signal amplification, depends
on the mismatch between the natural frequencyω and
the driving frequency Ω as:

A =
I√

μ2 + (Ω− ω)2

The phase θ of oscillations relative to the driving
signal is given by:

tan θ =
Ω− ω

μ

4
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This analysis may be familiar from introductory
mechanics or engineering. My hope here is to provide
an application to biology where the perspective can be
quite different: rather than trying to design a system
with desired properties, we are often in the position of
trying to study systems created by nature that evolved
subject to unknown selective pressures. Simple math-
ematical arguments may be helpful in allowing us to
see otherwise mysterious relationships between sys-
tem properties and perhaps in inferring something
about the statistics of the environment under which
an organism evolved.

Some implications of the above equations are that
near a spiral node, a system will synchronize with a
driving signal regardless of its frequency. In this linear
system, the phase, analogous to the angle of entrain-
ment, is independent of the strength I of the driv-
ing signal. The selective amplification of frequencies
allows the spiral node to act as a signal processing
element, suppressing input signals with frequencies
far from the natural frequency ω (figure 1(C)). The
quality of this rejection of off-resonance frequencies
improves asμ→0. Note that although the response of
the system is a symmetric function of frequency, many
biology experiments are reported in terms of the oscil-
lator period, and the signal amplification peak is an
asymmetric function of period.

When μ is small, a spiral node system can be
very effective at removing noise from the input sig-
nal (figure 1(D)). The width of the resonant peak
becomes narrower, with a full width at half maxi-
mum 2√3μ. To be effective, the frequency of the input
should fall into the resonant peak. But in a biological
system, the time scale ω of the response will in general
depend on conditions, such as growth rate, tempera-
ture, nutritional status, gene expression fluctuations,
etc. Thus, for a given biochemical circuit there will
be some finite uncertainty Δω associated with the
response of the system. This argument leads to the
following heuristic:

∣∣∣∣Δω

ω

∣∣∣∣ ∼
∣∣∣μ
ω

∣∣∣
Which indicates that when the natural frequency of a
biochemical circuit is unreliable, the optimal choice
of μ will be pushed away from 0 toward finite val-
ues. Conversely, this argument predicts that when
rhythms are observed to rapidly die out in constant
conditions (large μ/ω) the frequency of the biological
oscillator may be expected to show increased variabil-
ity and depend of external conditions such as tem-
perature or growth rate (figure 1(E)). One illustra-
tive example is the case of conditional rhythms at
low temperatures in the cyanobacteria S. elongatus.
This microbe shows robust ∼24 h rhythms near 30
◦C. As temperature drops below 20 ◦C, temperature
compensating mechanisms break down and the oscil-
lator period approaches 30 h. Consistent with the
analysis here, these rhythms also lose stability as the

system moves further off resonance with the environ-
ment. Remarkably, this loss of stability is part of a
programmed regulatory process, since self-sustaining
rhythms can be restored at low temperatures by alter-
ing the codon usage of the kai genes [5].

Because of the linearity of the spiral node system,
inputs at multiple frequencies drive the system inde-
pendently. Thus it is straightforward to analyze sit-
uations where undesirable noise has a non-uniform
frequency spectrum (i.e. is not white noise). For
simplicity, imagine that noise is concentrated near
a single frequency Ωnoise. In this case, what is the
best-performing spiral node system? In general, it
is no longer optimal to match ω to the signal fre-
quencyΩ. This is because, although shiftingω reduces
the amplification of the signal, this is offset by a
stronger suppression of the noise. To obtain an ana-
lytical expression for the effect of noise on the opti-
mal oscillator frequency, one can write the shifted fre-
quency as ω = Ω + ε, where ε should be chosen to
maximize the ratio of signal amplification to noise
amplification. Proceeding by using the formula for
amplification above, we can find a maximum for the
ratio of amplifications by differentiating with respect
to ε and setting the resulting expression to zero. At
leading order, the shift is:

ω ≈ Ω +
μ2

Ω− Ωnoise

Thus, high frequency noise results in an optimal spi-
ral node that oscillates slower than the signal, and low
frequency noise leads to optimal oscillations that are
faster than the signal. This may have relevance for
classical patterns observed in the study of circadian
rhythms where the free-running periods of diurnal
mammals, birds, and plants tend to be longer than 24
h, and nocturnal mammals and arthropods tends to
have periods shorter than 24 h [6].

In general, the best performing spiral node sys-
tems are those where the time constant ω in the
underlying biochemical mechanism can be made
to be robustly independent of external conditions.
This allows μ to become small, reducing the stabil-
ity of the steady state, and reaping the benefit of a
strongly peaked signal amplification curve. But there
is an inherent contradiction in this argument! Let-
ting μ → 0 implies that the amplitude of the system
increases without bound, but the original argument
was that the spiral node normal form would be a good
description of the system sufficiently close to steady
state. Furthermore, chemical concentrations cannot
become negative, so additional terms must become
important as the system moves increasingly far away
from the steady state.

In general, higher order terms will limit the
response of the system to resonant driving as μ →
0, preventing an infinite amplitude. Monti et al have
studied the ability of such a system to extract a signal
from noise. They conclude that, when higher order
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terms become important, enhanced performance is
achieved by pushing μ to positive values through a
Hopf bifurcation, creating a self-sustaining oscilla-
tion [7]. One possible explanation for the appear-
ance of limit cycle oscillators (e.g. circadian rhythms)
could be that they are actually easier to evolve than
a highly underdamped spiral node in a biochemi-
cal circuit because the latter would require tuning all
higher-order terms to nearly vanish.

Once a limit cycle oscillation emerges, the result is
a biological oscillator whose response to weak driv-
ing is quite different from the linear model. In this
situation, the amplitude of oscillations is nearly inde-
pendent of the drive, instead being set by the size of
the limit cycle itself. In this way, a limit cycle oscilla-
tor can serve to remove fluctuations in the strength of
the input. The driving force acts now as an synchro-
nizing cue, with entrainment or phase-locking occur-
ring when the driving frequency is sufficiently close
to the natural frequency. The entrained phase of the
oscillator will in general depend on the drive strength,
again unlike a linear oscillator [8]. These properties
which allow amplitude normalization and tunable
entrained phase may provide additional benefits to
living organisms, favoring their evolution [9].

2.4. Concluding remarks
To summarize, a simple dynamical systems analysis
suggests that there may be unappreciated patterns in
biological rhythms that may be tested in future exper-
iments. Uncertainty and unreliability in biochemi-
cal mechanisms tend to favor dampened rhythms.
These perform modestly in separating signal from
input noise but are robust in the sense that their
performance is not compromised by either variabil-
ity in parameters or internal noise [10]. When bio-
chemical mechanisms are precise, performance can
be enhanced by relieving the damping on the system,
ultimately exposing nonlinearities in the system and
creating self-sustained oscillations. Simple arguments
suggest that the optimal choices of parameters will
depend on the spectrum of noise in the environment,
in general pushing the system slightly off resonance to
better suppress noise.

Many unanswered questions remain. Does the
‘just-so’ story above describe the actual evolutionary
trajectory of biological rhythms? What is the optimal
design of a limit cycle oscillator in the presence of
a given noise spectrum? Perhaps most importantly,
are damped rhythms widespread in nature that may
have received less attention because their properties
can tolerate more variability?
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3.1. Status
Daily circadian rhythms of feeding/fasting and wake-
fulness/sleep are coordinated by the light-responsive
pacemaker cells in the suprachiasmatic nuclei (SCN).
SCN neurons communicate through secreted factors
and projections onto nearby regions to synchronize
clocks in peripheral organs with the light–dark cycle.
A major output of the SCN are hypothalamic hunger
and energy sensing neurons, suggesting that these
regions participate in the entrainment of periph-
eral tissue clocks. Tissue-specific clocks can also be
entrained by a variety of hormonal, temperature, and
nutrient signals, such as timing of feeding. Genes
controlled directly by the molecular clock as well as
through clock interactions with tissue-specific tran-
scription factors regulate metabolic rhythms of res-
piration, ATP production, and metabolic pathways.
In turn, the rhythmic function of clock and collabo-
rating transcription factors lead to oscillation of gene
expression, translation, and protein processing, which
induce alternation between anabolic and catabolic
processes across tissues. Importantly, energy status
and metabolites also feedback to the circadian clock to
fine tune metabolic programming in cells. These bidi-
rectional interactions between the circadian clock and
metabolism are critical to coordinate energy balance
throughout the day, and disruption of this crosstalk
underlies metabolic disease.

Genetic evidence indicates that disruption of
the molecular circadian clock is strongly linked
to the development of metabolic diseases. Clock
mutant mice fed high fat diet (HFD) display altered
feeding rhythms accompanied by hyperphagia and
metabolic syndrome. Similarly, Bmal1 mutant mice
have impaired glucose homeostasis. These observa-
tions highlight the significance of an intact molecu-
lar clock in regulating metabolic rhythms and whole-
body energy homeostasis. Disruption of the clock
through housing mice under constant light con-
ditions also leads to glucose intolerance and ele-
vated adiposity. Chronic low-grade inflammation of
adipose tissue driven by NF-κB is a hallmark of
metabolic syndrome during obesity. Interestingly,
mice exposed to light at night also have an exagger-
ated inflammatory response to the pro-inflammatory
stimulus lipopolysaccharide. Recent data indicates
the p65 subunit of NF-κB represses transcription of
CLOCK/BMAL1 target genes through binding to the
promoters of genes encoding clock repressors in the
liver [11]. HFD feeding leads to reduced clock gene
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expression in a tissue-specific manner, particularly
in visceral adipose tissue. However, it is unknown
whether interactions between NF-κB and the circa-
dian clock in visceral adipose tissue drive chronic
inflammation and insulin resistance.

Timing of feeding and disruption of the
sleep/wake cycle are key determinants of metabolic
health. In nocturnal animals such as mice, much
of the excess caloric intake during ad libitum HFD
feeding occurs during the light period. Restricting
feeding to the light (inactive) period results in weight
gain and the development of metabolic syndrome
[12]. However, restricting feeding to the dark (active)
period protects mice from hepatic steatosis, glucose
intolerance, and weight gain, compared to isocaloric
feeding during the light. This indicates time restricted
feeding (TRF) is beneficial, independent of caloric
consumption. In humans, mistimed feeding as occurs
during shift work, jet lag, and sleep disorders may
lead to circadian desynchrony through resetting
peripheral tissue clocks. Mistimed feeding could
disrupt multi-organ metabolic rhythmic program-
ming in anticipation of normal feeding times and
lead to weight gain and metabolic disease. However,
the molecular mechanisms underlying the metabolic
benefits of TRF remain unclear.

3.2. Current and future challenges
Understanding the link between the circadian clock,
metabolism, and feeding time are critical to develop-
ing therapies that utilize TRF to promote metabolic
health and reduce obesity. Going forward, it will be
critical to determine which cell types and metabolic
pathways contribute to the improved metabolic
health during TRF. The beneficial effects in response
to eating during the optimal time likely involve coor-
dination between multiple tissues including the pan-
creas, liver, adipose, intestine, and muscle. In some
peripheral tissues, such as the liver, rhythmic gene
expression is programmed in response to feeding
time, whereas other tissues are primarily entrained
by light. This demonstrates the complexity of the
system-wide response to time-restricted feeding.

Much of the focus in time-restricted feeding has
been on the liver, while less is known about rhyth-
mic changes in response to feeding time in other
peripheral organs important in energy homeostasis.
However, it was recently demonstrated that Bmal1
and Reverbα/β in the liver are not required for the
reduced weight loss, decreased adiposity, and restored
glucose homeostasis driven by restricting feeding to
the dark period as compared to ad lib feeding [13].
This indicates other tissues may be responsible for
the beneficial effects of TRF. Global metabolite profil-
ing comparing chow-fed and HFD-fed mice revealed
heterogeneity in metabolites across tissues with a loss
of lipid oscillation in BAT after HFD feeding [14].
This data along with the prominent change in adi-
posity during TRF suggests adipose tissue metabolism

may play a role in mediating metabolic health during
rhythmic feeding. Indeed, restricting HFD to the dark
period induces Ucp1 expression in BAT and reduces
white adipocyte hypertrophy. BAT thermogenesis is
regulated in a circadian manner and is highest dur-
ing the active period [15]. Restricting feeding to the
light period leads to reduced body temperature dur-
ing the dark period, suggesting reduced thermogen-
esis [16]. This suggests adipose tissue thermogenesis
and lipid metabolism may underlie metabolic ben-
efits driven by eating at the optimal circadian time
of day.

Another major challenge in translating
metabolism research from the rodent to humans
is that research is typically performed during the
light period, during nocturnal rodents’ sleep phase.
Future work on the interplay between energy balance
and diet should focus on metabolic mechanisms in a
time-of-day dependent manner.

3.3. Advances in science and technology to meet
challenges
Two recent studies in humans indicated TRF
improves glucose homeostasis and blood pressure
in pre-diabetic men independent of weight loss
[17, 18]. However, the mechanisms underlying how
synchronizing feeding time with circadian rhythms
benefit metabolic health remain poorly understood.
The recent development of automated feeding equip-
ment that controls for amount, duration, and timing
of food availability greatly advances the ability to
study the interplay between circadian rhythms and
timing of feeding in mice [19]. Cistromic profiling in
different tissues revealed that clock components bind
to distinct tissue-specific enhancer sites, highlighting
the importance of studying circadian clocks in a
tissue- and cell-specific manner. CLOCK/BMAL1
co-localize with the pancreatic transcription factor
PDX1 in beta cells, distinct from the liver-defined
binding sites that program metabolic networks
[20]. The use of inducible genetic CRE models that
target individual cell populations combined with
floxed alleles provides temporal and spatial ablation
of genes, which is advantageous over constitutive
whole-body gene knockouts. Future work using
tissue-specific inducible genetic deletion is critical
to elucidate the heterogeneity of cellular responses
during TRF.

3.4. Concluding remarks
Oscillations in oxidative and reductive metabolism
are synchronized by circadian clocks in anticipation
of light/dark and feeding/fasting cycles. During feed-
ing, metabolic pathways are coordinated across multi-
ple tissues in order to achieve organismal homeosta-
sis. Elucidating circadian clock function in a tissue-
specific manner is essential to understanding how cir-
cadian desynchrony of feeding time participates in
metabolic disorders.
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4.1. Status
Cells have been selected for change. Even microbes
use current signals to prepare for the future [21], and
in our own cells circadian rhythms have hard-coded
such preparation into a daily occurrence. In natural
environments, be that a human tissue or as part of
a microbiome, extracellular signals are likely to be
multifarious, simultaneous, and continually varying.
Yet it is only recently that microfluidic technology
has allowed us to overcome the technical challenge of
mimicking such signals.

Signaling networks should perform best in natu-
ral environments, and using dynamic inputs is prov-
ing a powerful means to understand their internal
logic [22] (figure 2). There are mutants in the sig-
naling pathway responding to hyperosmotic stress
in budding yeast that only become distinguishable
from wild-type when exposed to time-varying inputs
[23], and some stress responses in bacteria respond
not only to stress but also to its rate of increase
[24]. Higher organisms may even regulate extracellu-
lar environments to become dynamic and use oscilla-
tory levels of cytokines to selectively entrain signaling
pathways [25].

Intracellular responses are dynamic too, and even
a step change in an extracellular concentration can

generate complex intracellular behavior. The levels
of second messengers, such as calcium and cAMP,
can spike or oscillate; metabolic cycles might change
phase; and some transcription factors pulse in and out
of the nucleus.

We are only beginning to understand why cells
might use such dynamic signaling over steady-state
responses. Dynamic responses are potentially quicker
than waiting for steady-state behavior and also may
carry more information because not only the ampli-
tude but also the timing of the response can be used
[26, 27]. Signaling pathways at steady-state appear
to encode only enough information to distinguish
between two types of environment, but the informa-
tion substantially increases if the downstream bio-
chemistry can sense the response’s dynamics. Encod-
ing different extracellular signals in the dynamics of
signaling molecules can also coordinate downstream
responses. A transcription factor that pulses in and
out of the nucleus with a frequency but not amplitude
that changes in different environments will always
have the same concentration when in the nucleus,
causing all regulated genes to respond together [28].

4.2. Current and future challenges
Characterising dynamic behavior requires finding
suitable reporters. Their quality constrains the time
resolution, the numbers of cells monitored, and
the numbers of variables measured. Reporters must
respond on appropriate time scales to capture
dynamics, be sensitive to short acquisition times,
and sufficiently responsive to excitation to limit
photo-toxicity. Although monitoring transcription
using RNA-binding proteins and signal transduction
through nuclear translocation are both fast, each can
potentially perturb intracellular dynamics.

A second challenge is choosing the input. Typi-
cally, we do not know the natural signals under which
cells have evolved, if the input should change with
time, or if it should appear alone or co-vary with oth-
ers. A dynamic input greatly increases the number of
variables—up to one for each time point. Exploring
such a vast space is daunting, and without efficient
methods we must make do with low sampling.

Studying individual cells itself raises problems
because cellular context can determine behavior. As
well as the inherent stochasticity of biochemistry, cel-
lular history—how cells were prepared and previous
exposure to signals—and cell state, such as phases of
the cell cycle, metabolic cycle, or circadian cycle, can
alter responses and confound interpretation. To make
matters worse, we often do not have reporters for such
endogenous rhythms. This variation means that we
need quantitative methods to compare collections of
time series. For example, there is no standard proce-
dure to determine statistically significant differences
between two sets of time series, such as for a wild-type
and mutant.
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Figure 2. Some cellular responses are only revealed by dynamic inputs. In steady-state experiments, the blue but not the red
molecule appears to respond to the input. A dynamic input, however, shows that the red molecule responds as strongly as the blue
molecule, but to the input’s time-derivative not its absolute value.

Although microfluidic technology has become
indispensable, the device’s design could bias intracel-
lular dynamics. Often a device favors particular cel-
lular shapes, and being confined can stress cells and
alter gene expression. As the experiment runs, the cells
under study can become unrepresentative of natural
populations. For example, multiple devices trap cells
but allow offspring to escape, and imaging for say
eight generations means that the trapped cells consti-
tute only 2−8 of a growing population. Further, poly-
dimethylsiloxane (PDMS), the polymer often used in
devices, can influence cellular behavior and absorbs
hydrophobic molecules, potentially distorting inputs.

4.3. Advances in science and technology to meet
challenges
Better reporters of intracellular activity would be
transformative. Cross-talk between fluorophores lim-
its most studies to two reporters, giving only a blink-
ered view of the response. Although we can con-
trol some signaling, such as kinases made sensitive
to 1-NM-PP1 and through targeted degradation and

optogenetics [29], we cannot measure in vivo the
drivers of cellular decision-making—active kinases
and phosphatases. Non-perturbative methods to fol-
low RNAs and cellular cycles as well as reporters
to quantify cellular context—levels of cofactors like
NAD+, of second messengers, and of energy (the ATP
to ADP ratio, proton motive force, and membrane
potential)—are all essential.

To mimic natural environments, we need repro-
ducible control of the dynamics of inputs, the abil-
ity to apply multiple inputs, both simultaneously and
sequentially, and optimization to efficiently explore
the space of inputs. Chemical methods to reduce the
hydrophobicity of PDMS, like silanization, will both
prevent microfluidic devices perturbing inputs and
enable new dyes as intracellular reporters.

Progress is needed on two bottlenecks: extract-
ing information from time-lapse experiments and
efficient means to search and share time-lapse data.
Many laboratories develop in-house software for
phenotyping cells that is too customized for data
from elsewhere, and results must often be manually
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corrected. Advances in convolutional neural networks
should fix both problems. With sufficient training
data, these algorithms work better and faster than
traditional approaches, and techniques for transfer
learning are facilitating sharing [30]. Agreeing on a
standard format for storing images, annotations and
associated meta-data will allow both exchanges and
the meta-analyses needed for ‘whole-cell’ modeling.

Perhaps the most impact will be from combin-
ing time-series experiments with single-cell’omics.
If a group of cells that has displayed a particular
dynamic phenotype could be selectively extracted
from a microfluidic device, then single-cell transcrip-
tomics and proteomics will give numbers of reporters
impossible to achieve with fluorescence, albeit at one
time point. We will then be able to determine how
the dynamics of inputs, movements of transcription
factors, individual cell physiologies, and phases of
endogenous rhythms in the recent past affect current
programmes of gene expression.
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5.1. Status
Physicists often study biological networks as
closed systems that evolve according to their own
autonomous nonlinear dynamics. For example, a cell
observed under the microscope will reliably move
through stages of growth, DNA replication, and
mitosis, taking an observer through each step of the
cell cycle. Such a system lends itself well to modeling,
and various emergent properties can be predicted:
the stable states the cell finds itself in for extended
periods of time, the speed at which it moves from
state to state, and the period of the cycle.

But our picture of the cell cycle as a closed sys-
tem is incomplete, as cell growth and division are
highly responsive to environmental cues: local cell
density, nutrient availability, the presence of permis-
sive growth factors, and even subtle variations in tem-
perature that elicit a biological stress response can
dramatically alter or halt cell cycle progression.

It may thus be more fruitful to view the cell not
as a closed, autonomous system but as a set of sig-
nal processing devices. We may borrow concepts from
information theory, circuit design, and control theory

to ask what dynamic filters, relays, and data compres-
sors may underlie the cell’s response to environmental
cues [31]. How are useful and pertinent signals deci-
phered from a sea of external chemical and mechani-
cal cues? Is there a ‘code book’ for intracellular signal
transmission?

5.2. Current and future challenges
A few key biological processes are emerging as
ideal context for studying cellular signal processing
(figure 3). One is embryo development, where almost
every transition is closely linked to a biological clock
or timer. After all, cells have a limited time to migrate,
divide or differentiate before the embryo proceeds to
its next developmental stage.

For example, the Drosophila embryo’s first four-
teen nuclear cycles occur under extremely stereotyped
time intervals and after approximately 3 h culminate
in the profound cell movements associated with gas-
trulation. The formation of the segmented body plan
and three germ layers must be completed on this
timeline, requiring fast (minutes–hours) signaling
events and transcriptional responses. Supporting this
view, we found that Erk-dependent differentiation
into gut endoderm and neural ectoderm was lim-
ited to a critical time window between nuclear cycle
10 (when nuclei move to the embryo’s surface and
can receive Erk-dependent signaling) and gastrula-
tion [32]. The total duration of Erk signaling deliv-
ered in this narrow, 90 min time window proved to
be essential for cell fate specification.

A second key context for dynamic signaling can be
found in the maintenance, homeostasis, and repair of
adult tissues. Numerous signaling pathways that were
crucial to embryo development are again repurposed
in the adult organism, where the objective is not the
timely progression through embryogenesis but rather
continuous tissue- and organism-level homeostasis.

Yet despite a high degree of molecular conserva-
tion, the requirements for homeostatic signaling are
quite different than those in development. Home-
ostatic signaling must be sensitive, detecting a sin-
gle defective cell among millions of normal ones;
in contrast, inductive developmental cues can be
produced at high concentrations. Homeostatic path-
ways must also respond to inputs with a huge range
of unpredictable spatial distributions and timescales
(e.g., wounds can be tiny or huge, acute or chronic),
whereas developmental cues usually occur in pre-
dictable time windows. A sophisticated degree of
information processing is essential to meet these var-
ied constraints.

Interestingly, mounting evidence suggests that cell
signaling in adult tissues also possesses its own com-
plex spatiotemporal behavior [33]. This may include
pulses of pathway activity, traveling waves across a tis-
sue field, or switch-like and irreversible cell–fate tran-
sitions (e.g., apoptosis). In some cases, it is not obvi-
ous which stimuli are responsible for the observed the
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Figure 3. Developmental and homeostatic signaling. Throughout development (A), signaling pathways (activity shown in
purple) can potentiate cell fate decisions, and do so in a very deterministic and stereotyped manner. However, during homeostasis
(B) and throughout the organism’s life, events such as wounding, immune responses, and programmed apoptosis in response to
stressors can activate the same pathway in a nondeterministic fashion.

signaling dynamics, such as in the case of the tumor
suppressor p53, which exhibits dynamic activity even
in the absence of any externally-applied stress [34]. It
remains an open question in the field to determine
which variations in signaling are due to actual changes
in an upstream input as opposed to autonomous,
stochastic activation of the pathway.

5.3. Advances in science and technology to meet
challenges
A first key to cracking the signaling code lies in sys-
tematically varying external signaling cues and mon-
itoring the cell’s resulting intracellular states. This
approach has been taken with regards to neural pro-
cessing: Hodgkin’s and Huxley’s seminal studies on
single neurons adopted an ‘input–output’ approach,
plugging in transmembrane voltage as an input and
measuring the resulting current flow to usher in the
era of quantitative neurobiology.

However, neurobiology is far from the only con-
text in which time-varying signaling takes place. One
difficulty in porting the neuroscientist’s toolbox to
cell biology has involved designing methods to accu-
rately define and vary an external cue. Membrane
potentials can be easily applied and removed with
high temporal accuracy, but receptor–ligand and pro-
tein–protein interactions have proven to be more
challenging to control. The recent development of
microfluidics, optogenetics, and live-cell fluorescent
biosensors provide a rich and growing toolbox for
overcoming this difficulty. Indeed, these new tools
have been applied with some success to study Rho
GTPase signaling in single cells [35], to control and
visualize the outcomes of NF-kB signaling [36], and
to map signal transmission through the Ras/Erk sig-
naling pathway [29].

What functional role might signaling dynam-
ics play—is there significance to whether a path-
way exhibits a sharp off-to-on transition versus peri-
odic pulses or waves of activity? In some cases, the
role of dynamics can be easily intuited. For example,
an ultrasensitive off-to-on protein switch enables
the cell to trigger a long-term, all-or-none change
to a transient stimulus, whereas a signaling pulse
arises naturally from sensory systems that adapt and
desensitize to a constant stimulus. However, other
dynamics observed in signaling pathways are not so
easy to explain. For many intracellular signals (e.g.,
p53, Crz1, Erk, Ascl1, and Msn2), different pul-
satile dynamics emerge from different inputs, sug-
gesting that they may represent a coding strategy to
share a single protein circuit between multiple cellular
response programs [28, 37, 38]. By directly control-
ling pathway dynamics and measuring responses, it
may be possible to deconstruct these coding strategies
(figure 4).

A case study for understanding signal multiplex-
ing is the metazoan Ras/Erk pathway. This pathway
has been found to respond to a wide range of inputs,
including a range of growth factors, cell–cell contact,
and even mechanical force. These inputs activate a
phosphorylation cascade that culminates in the acti-
vation of Erk and its translocation into the nucleus,
where it potentiates a cellular response through
gene expression. Using an optogenetic approach that
relies on light-controlled protein heterodimerization,
Toettcher et al were able to precisely control activa-
tion of the signaling pathway, demonstrating that it
acted as a low-pass filter that responded more read-
ily to longer input durations [29]. In subsequent
work, Wilson et al studied the resulting expression
of Erk-stimulated immediate-early genes (IEGs) [39].
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Figure 4. Decoding signals into appropriate genetic outcomes. Environmental signals sensed by receptors (in blue, red, and
yellow) can feed into the same pathway and cause distinct gene expression outcomes (blue, red, yellow genes). One hypothesis for
how this occurs is that the conserved pathway (green) can be repurposed in its dynamics to deliver constant linear activation,
oscillations of activation and inactivation, or a single transient pulse of activation, all of which are read out in distinct
ways.

Although the requirement for Ras/Erk signaling to
drive IEG expression was demonstrated decades ear-
lier, using optogenetics to deliver time-varying signals
led to the discovery that genes act as band-pass filters
for Erk signaling, suggesting that two separate filter
layers operate between Ras activation and the eventual
accumulation of target gene products.

Accumulating evidence demonstrates that Erk
signaling dynamics have real consequences in dis-
ease and development. It had long been known that
aberrant growth factor signaling led to uncontrolled
growth and cancerous phenotypes. However, it has
been broadly assumed that uncontrolled growth is
the result of constitutive, high signaling activity inde-
pendent of any time-varying stimulus. Surprisingly,
it was recently observed that dynamics play a role
in mutation-induced signaling as well. Using live cell

reporters and optogenetics, Bugaj et al quantified
signal transmission in tumor cells harboring a BRaf
P-loop mutation (G469A) [40]. The authors demon-
strated that mutant BRaf extended Erk signaling long
after stimuli had bene removed, leading to chronic
misinterpretation of dynamic stimuli and expanding
the set of stimuli capable of driving cell prolifera-
tion. Recently, we also found that Ras/Erk dynamics
also play a crucial role in Drosophila embryo develop-
ment. Using optogenetic control over Ras, we found
that simply increasing the duration of pathway activ-
ity could specify a single cell population to adopt
fates from two different germ layers (gut endoderm
vs neural ectoderm) [40].

Although progress has been made to define the
code book of Ras/Erk dynamics and their resulting
cell–fate outcomes, much remains unknown. What is
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the molecular origin of the seemingly spontaneous,
excitable Erk pulses that arise in so many cellular
contexts? Which molecular circuits interpret and fil-
ter dynamics into different gene expression programs?
Both the encoding machinery that initiates dynam-
ics and the downstream decoding machinery remain
undefined.

5.4. Concluding remarks
A grand unifying theory of dynamic encoding should
be able to explain how dynamics can be interpreted
on a molecular level, and the situations in which
they offer benefits that alternative strategies can-
not provide. There are other promising candidate
encoding–decoding strategies: combinatorial logic,
where responses are defined by two or more inputs;
or the action of morphogens, where a substance’s
concentration is interpreted into a defined cellular
response. One attractive hypothesis is that encoding
information in the timescale of protein activity
(rather than protein concentration) enables more
accurate decision-making, because biochemical
timescales (e.g., dissociation, degradation, or dif-
fusion rates) are less heterogeneous between cells
and over time than are protein levels. Circuits that
measure a process’ timescale may thus perform more
precise, reproducible computation.

A second possibility is that by coupling excitable,
noisy dynamics between many individual cells, a tis-
sue may be able to sense weak inputs that no sin-
gle cell could accurately detect on its own. This phe-
nomenon, related to the physics concept of stochas-
tic resonance, has been predicted to enable robust
input sensing in populations of neurons and oscil-
lations of cortical actin polymerization [41, 42]. Erk
dynamics, too, may entrain to sub-threshold EGF
doses [43].

The source of dynamics is also a mystery: how
do complex signaling dynamics emerge from con-
stant environmental input? It is unlikely that the same
sets of proteins give rise to dynamic responses across
diverse signaling pathways and contexts, yet a small
number of network architectures may recur across
these contexts. If so, are these networks moulded,
trimmed, and optimized over evolutionary time to
shift their dynamic responses based on the relevant
stimulus strengths and biological timescales in each
case? Using the quantitative tools and systems-level
approaches described here, the construction of a
‘periodic table’ of the signaling modules utilized by
living systems may be possible.
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6.1. Status
Effective vaccines protect humans from a particular
disease-causing pathogen by eliciting potent immune
responses that are specific for the pathogen, and
which can be rapidly recalled upon infection. Abs are
an important component of such immune responses.
B cells produce Abs by a Darwinian evolutionary pro-
cess called affinity maturation (AM) [44]. Most B cells
have a surface receptor (BCR) that is distinct from
those of other B cells. B cells whose receptors can
bind sufficiently strongly to the surface proteins of
a pathogen or vaccine component (called antigens)
can seed structures called germinal centers (GCs) in
lymph nodes. In GCs, the receptors of B cells mutate
rapidly, followed by a series of steps which stochasti-
cally select for those that bind more strongly to the
antigen. Some positively-selected B cells morph into
Ab-secreting plasma cells and exit the GC, while the
majority are recycled for further rounds of mutation
and selection. Thus, as time ensues, Abs with increas-
ing strength of binding, or specificity, for the antigen
evolve that can then neutralize the pathogen.

Highly mutable pathogens (e.g., influenza, HIV)
rapidly evolve their surface proteins, so Abs specific
for regions of these antigens that are mutable can-
not protect against diverse viral strains. The anti-
gens contain some regions that are relatively con-
served for functional reasons, but they are usually
surrounded by highly variable regions, thus compli-
cating Ab binding to the conserved regions. Recently,
Abs (present in low numbers) have been isolated from
some individuals infected with HIV and influenza
that can neutralize diverse viral strains [45]. These
broadly neutralizing antibodies (bnAbs) bind to the
conserved antigenic regions. This shows that the
human immune system can evolve such ‘generalists’,
albeit inefficiently. Many experimental efforts have
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Figure 5. Evolution of bnAbs. Vaccination with a single
antigen produces only strain-specific Abs, whereas more
complex, conflicting selection forces are required to evolve
bnAbs (see main text). These conflicting selection forces
frustrate the normal process of AM, and can lead to B cell
death in GCs. Hence, bnAb evolution walks a fine line,
requiring selection forces that are optimally imposed
during vaccination.

been launched to devise strategies to elicit bnAbs in
diverse people upon vaccination [45]. Fundamen-
tal studies of how to teach the immune system to
evolve bnAbs have also been reported [46–51]. Much
more work is required to obtain a deep understand-
ing of this complex problem at the intersection of sta-
tistical physics, immunology, and evolutionary biol-
ogy. Progress can help guide the design of life-saving
vaccines.

6.2. Current and future challenges
The process of AM will generate only strain-specific
Abs upon vaccination with a single antigen. The selec-
tion forces that need to be imposed on AM to evolve
bnAbs must therefore be comprised of multiple vari-
ant antigens that share the conserved regions, but dif-
fer in the variable regions. In the early stages of AM,
it is unlikely that B cell receptors have evolved strong
interactions with the conserved regions, and so bind-
ing to variant antigens sufficiently strongly to be pos-
itively selected is likely mediated by binding to both
variable and conserved regions. As the antigens have
different variable regions, they represent conflicting
selection forces [46, 47]; features that are favorable for
‘local stability’ (binding well to one antigen) are unfa-
vorable for ‘global stability’ (binding well to diverse
antigens). This facet of the system is analogous to frus-
tration in physical systems [52], but because AM is
driven off of steady-state, the frustration due to con-
flicting selection forces can result in B cell death in the
GC (figure 5) [46, 47].

The presence of conflicting selection forces or
frustration during AM poses a number of signifi-
cant current and future challenges that need to be
addressed, and requires fundamental advances in our
understanding of AM. In particular, how should frus-
tration be quantified in terms of simple metrics of

fitness, and are there optimal temporal patterns of
frustration that promote bnAb evolution? If so, what
are the mechanistic underpinnings that define such
optimal patterns in terms of the extent to which the
system is driven off of steady-state as time ensues?
In addition, how do the temporally varying selection
forces affect the diversity of evolving B cells, and are
there optimal levels of diversity that promote trajec-
tories that evolve bnAbs? How important is clonal
interference? More broadly, are there general princi-
ples pertinent to evolutionary biology and statistical
mechanics of learning that can be gleaned? How can
these principles be translated into efficient vaccina-
tion protocols? Insights obtained from studies pur-
suing these questions must be tested using animal
models, and iteration between such studies and the-
ory/computation will provide the principles that we
seek.

6.3. Advances in science and technology to meet
challenges
Theory and computation have played a key role in
helping to address some of the challenges outlined
above. Studies of how evolving systems can be pro-
gressively pushed out of equilibrium to evolve bnAbs
has begun to shed light on how different temporal
frustration patterns influence the outcomes of AM
[46–48]. Mechanistic insights from such studies can
be tested in settings where evolution occurs rapidly
in a real biological system, rather than in contrived
laboratory systems [53].

Computational studies have shown that if the
variant antigens that are administered differ signifi-
cantly in their sequences, and are present simultane-
ously in the GC, death is very likely [46]. Sequentially
administering the same variant antigens, which cor-
responds to a temporally varying pattern of imposed
selection forces, has been shown to be more effective
(figures 6(A) and (B)) [46]. It has also been proposed
that an optimal level of frustration exists when the
variant antigens are present simultaneously in the GC
(figure 6(C)) [47]. Too high a level of frustration leads
to B cell death, and too low a level results in posi-
tive selection of many B cells. Thus, the GC reaction
rapidly ends before B cells can acquire the necessary
numbers of mutations to evolve into bnAbs. A recent
theoretical study reports on an interesting effect of a
temporal pattern of oscillating selection forces with
increasing frequencies [48]. But, our understanding
is still highly incomplete, and important strides for-
ward in the development of a theory of how Abs learn
patterns in an evolving environment during AM are
required.

Further progress will require many additional
advances. For instance, how different should the vari-
able regions of the variant antigens be in order to
achieve a desired level of frustration, and how can
the temporal pattern of frustration be manipulated to
generate the optimal variation of B cell clonal diversity
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Figure 6. Principles gleaned from studies of AM. (A)
Cocktail immunization with four antigens (solid lines;
dotted lines = control), leads to high variability in binding
of the produced Abs for those antigens. (B) Sequential
immunization of the same antigens results in high Ab
binding to all antigens. (C) Optimal frustration conditions
exist for cocktail administration, including the number of
antigens and mutational distance between them. Figures
were adapted from references [46] (plots A, B) and [47]
(plot C).

to evolve bnAbs? Translating the principles derived
above into designs of specific variant antigens will
require atomistically detailed simulations and close
coupling to efforts of biologists engaged in immuno-
gen design. Can such studies be reliably done? The
first targets for translating principles to practice could
be HIV and influenza.

6.4. Concluding remarks
Despite many remaining challenges, the real possi-
bility of generating universal vaccines against highly
mutable pathogens by eliciting bnAbs has focused a
great deal of interest and research toward accomplish-
ing this goal. Solving this fundamental problem at
the crossroads of statistical physics, immunology, evo-
lutionary biology, and learning theory, will require
synergy between the efforts of statistical physicists,
biophysicists, and immunologists. We anticipate that
these efforts will lead to substantial advances in our
understanding of evolution in time-varying environ-
ments. Such advances will have far-ranging impli-
cations for preventing diseases caused by infectious
pathogens, a challenge that has plagued humanity
since antiquity.
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7.1. Status
The capacity to adapt to changing conditions is a hall-
mark of living systems. Examples of biological adapta-
tion range from the allosteric regulation of enzymes in
seconds to the fixation of genes in populations in the
course of years. Despite differences of scales, mech-
anisms of adaptation are all fundamentally coupled:
adaptations on short time scales are subject evolution
on longer time scales. Mechanisms of adaptation are
therefore potentially adaptations themselves, which
raises the possibility of understanding them within an
evolutionary framework.

One such framework, originally developed by
Kelly to analyze optimal strategies in horse races [54],
applies to populations of non-interacting individu-
als switching between pre-defined states [55]. In this
framework, the individuals reproduce based on their
state σ and on the state xt of the environment at time
t, which can fluctuate independently of the popula-
tion (figure 7(A)). Different strategies of adaptation
amount to different probabilities π(σ|σ′) of switch-
ing from an internal state σ′ to an internal state σ.
An optimal strategy is defined as maximizing the
long-term growth rate Λ of the population

Λ = lim
t→∞

1

t
ln
∑
σ

Nt (σ) (1)

where the number Nt(σ) of individuals in state σ at
generation t follows

Nt (σ) =
∑
σ′

π
(
σ|σ′) f

(
σ′, xt

)
Nt−1

(
σ′) (2)

How optimal adaptations depend on environmen-
tal fluctuations can then be summarized in a phase
diagram (figure 7(B)).

By incorporating sensing of the environment,
individual noise, costs or a distinction between geno-
type and phenotype, this formalism rationalizes the
existence of a number of puzzling biological features,
including phenotypic noise, non-genetic heredity and
Lamarckian mechanisms [56]. The recurrent finding
is that the statistics of environmental fluctuations is
a key parameter defining optimal adaptations. For
instance, we developed a model of immunity where
the diversity of observed immune systems is obtained
by varying the frequency and duration of the occur-
rence of pathogens [57].

Despite important limitations, such as not
accounting for population extinction, the approach
formalizes the informational language that pervades
informal biological descriptions and thus identifies
a level of coarse-graining that reveals commonalities
between systems irrespectively of specific imple-
mentations. In view of developing a theoretical
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Figure 7. (A) Illustration of Kelly’s formalism in a simple case where the environment fluctuates between two states, representing
for instance the absence (x = 1, in gray) or presence (x = 2, in blue) of a pathogen. This environment is experienced by a
population of reproducing individuals that can themselves be in two states, e.g., resistant (σ = 1, in gray) or not (σ = 2, in blue).
At each generation t, the environment has probability p(x|x′) to change from state x′ to state x. Each individual of the population
has also a probability π(σ|σ′) to change its state from σ′ to σ. An individual that has switched to state σ then contribute an
average of f (σ, x) individuals in state σ to the next generation. The dynamics is described by equations (1) and (2). (B) The
strategy π(σ|σ′) optimizing the long-term growth rate Λ depends on the nature of the environmental fluctuations, here the
frequency of the pathogen p(x = 2) and a characteristic time of environmental change tc that we define by e−1/tc = 1 − p(1|2) −
p(2|1). Taking f (σ = 1, x = 1) = 1, f (σ = 1, x = 2) = 0.3, f (σ = 2, x = 1) = 0.4, f (σ = 2, x = 2) = 1 to capture the relative costs
of immunity and infection, the results show that switching between the two states σ = 1 and σ = 2 is favored only in some
intermediate regime of environmental fluctuations (adapted from [58]).

understanding of living systems, extending this
approach beyond its current range of application
would be, in our opinion, very valuable.

7.2. Current and future challenges
Applications of Kelly’s formalism are currently lim-
ited by the requirements that environmental fluc-
tuations should be independent of the population
and operate on timescales much shorter than the

scale over which the mechanisms of adaptation
evolve. These assumptions are not applicable to many
instances of biological interest.

First, empirical analyses of environmental fluc-
tuations such as temperature or nutrient availability
show both a very broad spectrum of fluctuations and
long-term non-stationary trends.

Second, biological environments are shaped by
the populations that experience them. On short
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timescales a growing population depletes nutrients
from its environment while on longer timescales it
may fundamentally alter its nature, a phenomenon
known as niche construction. More generally, the
environment of an individual comprises the other
individuals from the same and different species,
which are themselves evolving.

In particular, all living organisms coevolve with
viruses that infect them. Viruses typically have a
shorter generation time than their host and are
thus able to evolve on shorter timescale than
them. Hosts survive through one universal strategy,
diversification, which may be either geno/phenotypic
(e.g., diversity of cell receptors) or environmental
(e.g., refuge in a biofilm). On long-time scales, these
mechanisms to generate diversity are subject to evo-
lution as are the mechanisms through which viruses
adapt. Should we expect a convergence or a separation
of time scales between host and viral adaptive strate-
gies? What is the interplay with intrinsic time scales
such as generation time and extrinsic time scales
such as seasonal changes? Can we justify our previ-
ous model [58] where the dynamics of pathogens is
independent of that of the host population?

Considering a stationary viral environment to
which the host population is subject (figure 8(A)) is
indeed not a priori justified. First, with a constant
selective pressure to diversify, a limited number of
pre-defined set of states is not realistic. A new viral
mutant (figure 8(B)) or a new host typeσ may appear,
an event that cannot be described by equation (1)
where all possible states σ are assumed to be popu-
lated at all times (Nt(σ) 
 1). Second, the dynam-
ics of the host population feedbacks on the viral
population, thus introducing a non-linear frequency
dependence (figure 8(C)). In this case, optimizing the
growth rate of the host population is no more justi-
fied than optimizing that of the viral population. With
no optimization principle, the concept of an optimal
strategy that is at the foundation of Kelly’s formalism
comes to naught.

7.3. Advances in science and technology to meet
challenges
We expect advances to come from a convergence
of mathematical developments and empirical find-
ings driven by the collection of large scale ecological
data. In this respect, the coevolution between bacteria
and their viruses (phages) seems to us a particularly
promising ecosystem to focus on.

Mathematically, multiple models of inter-
acting populations have been developed, from
Lokta–Volterra equations to evolutionary game
theory. These models, however, are not obviously
connected to the informational models developed
for independent environments. Instead, a natural
extension of Kelly’s formalism is to optimize the
parameters of the viral environment to minimize
the growth rate of the host population [59]. This

Figure 8. Scenarios of co-evolution between host and viral
populations. (A) Kelly’s formalism (figure 7) is able to
describe the long-time scale evolution of a population (e.g.
immune receptors, black line) in response to the known
albeit stochastic dynamics of a driving population (e.g.
virus, red line). (B) More realistically, other environmental
sources (e.g. other viral or bacterial populations, nutrient
sources, the emergence of new mutants, orange line) can
influence the dynamics of the driving population. (C)
Additionally, the evolution of the immune system
influences the evolution of the viral population, exerting
feedback on its dynamics. This feedback, which is at the
heart of the co-evolution problem, makes the dynamics
particularly challenging to describe on long timescales.

approach assumes, however, a separation of time
scales that is to be explained. A more relevant
mathematical formalism may be adaptive dynamics
[60]. In absence of feedback, invasion fitness, which
assesses the capacity of a new mutant to invade
a resident population, exactly corresponds to the
long-term growth rate of the population of mutants.
In the presence of feedback, however, invasion fitness
describes only the dynamics on short time scales.

Ecological observations should help direct the
development of relevant models. Data on co-existing
microorganisms in the oceans shows both extensive
diversification and specialization, as well as a lot of
diversity within each sub-population [61]. These pat-
terns of evolution, large diversity despite strong selec-
tion pressures, are not explained by traditional pop-
ulation genetics. The observed diversity may be tran-
sient and formalisms that deal with species extinction
need to be employed. Yet, even assuming stable pop-
ulations, accounting for a feedback of the population
onto its environment remains a challenge.

More specifically, data is available on the rela-
tive abundances of phages and bacteria in the oceans,
which displays a scaling law, albeit with a dependence
on depth [62]. Ample genomic data is also available,
which reveals a high diversity of gene content with
evidence that this diversity is both driven by the inter-
action with phages and providing a means to adapt
to environmental changes [63]. Phages may thus not
only be predators but provide a mechanism of reg-
ulation that confer on bacterial populations a long-
term advantage. As phages are very species-specific,
an optimization principle defined at the level of two
populations might thus be relevant, which could be
cast in Kelly’s formalism.
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7.4. Concluding remarks
Populations evolve constantly influenced by their
environments, and in turn influence changes in their
environments. For this reason, the basic concepts
of population genetics—mutation, selection, genetic
drift, recombination and even ‘population’—are not
sufficient to understand the course of evolution.
Keeping in mind the importance of timescales for all
participating interactions, insights from field data and
experiments should help us extend current theoretical
formalisms.
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8.1. Status
Evolution is an urge for novelty, because environmen-
tal pressures are ever changing. To persist in fluctuat-
ing conditions, evolving organisms must adapt to new
challenges, without degrading performance of prior
tasks. This remarkable ability to generalize manifests
at many scales, from biochemical (antibiotic resis-
tance) to ecological (cross immunity). At each scale,
it exemplifies an interplay of internal processing and
unique experiences—a basic feature of learning. In
this perspective, we consider evolutionary learning in
the adaptive immune system as a concrete example,
where evolution is rapid and learning tasks are com-
plex and changing. But the central questions are gen-
eral: how does the ability to generalize evolve, given
that benefits may only lie in the future? What envi-
ronmental variations might select for generalization,
if specificity more easily evolves in static conditions?

Facing the constant need to fend off novel
invaders, jawed vertebrates have developed adaptive
immune systems. This mode of protection relies on
an extremely diverse and variable repertoire of anti-
gen receptors expressed by B and T lymphocytes in an
individual. While T cells do not evolve, B cells produce
increasingly higher affinity Abs (secreted B cell recep-
tors) to neutralize pathogens—via a rapid evolution-
ary process known as affinity maturation (AM)—and
create immune memories.

Theoretical studies have examined adaptive strate-
gies of biological populations to persist in time-
varying environments (e.g. [58, 64, 65]). While slow

environmental variations appear to favor special-
ist strategies based on tracking or diversifying (bet
hedging), rapid fluctuations may support a non-
varying generalist strategy or smear out differences
among phenotypes. However, natural environments
may change neither too fast nor too slow compared
to population response; moreover, these changes are
not entirely random. For instance, rapidly adapting
pathogens like HIV generate escape mutations on
similar timescales to evoked reorganization of the
immune repertoire, resulting in an enduring coevo-
lutionary arms race in the host. Amazingly, following
the rise and fall of strain-specific responses that chase
after successional waves of HIV escape mutants, lin-
eages of bnAbs, capable of neutralizing a vast vari-
ety of HIV strains, emerge in a small fraction of
individuals [66].

However, these generalist Abs against HIV emerg-
ing years into infection never rise to a protective
level in any human, struggling to persist even after
viruses diversify. In contrast, other highly mutable
pathogens, including hepatitis C virus, may go extinct
following a faster development of bnAbs. Nearly six
decades after the discovery of AM by Herman Eisen
and Gregory Siskind in 1964, we still lack a complete
understanding of what determines the pace, course
and outcome of antibody evolution in dynamic envi-
ronments, which limits our ability to mitigate viral
evolution and to accelerate immune control.

8.2. Current and future challenges
Recent computational studies have tackled in var-
ious contexts how temporally structured environ-
ments impact selection of generalists (e.g. [46, 67]).
These works stress the importance of not only what
and how strong selective forces should be present, but
also the time over which they should apply. But the
space of possible dynamical protocols (e.g. vaccina-
tion strategies) is large and high dimensional: for a
small number of examples to enable generalization
to novel inputs, what commonality and distinction
should be encoded? When will the order of presen-
tation matter? How should one adjust the timescales
of variation to the correlations between examples?
We need a quantitative framework to provide guiding
principles for finding optimal protocols.

While discrete designer environments offer
opportunities to enumerate possible scenarios and
to obtain a fine view of molecular evolution, natural
pathways may display more regular and universal
features in continuous and lower-dimensional phe-
notype space [68]. Yet, current phenotypic models
of host–pathogen interaction often treat one or
the other as an effective environment, invoking
a separation of timescales. This leaves aside two
sources of feedback (key to any learning) that may
significantly affect evolutionary dynamics and fate:
first, mutual feedback between populations evolv-
ing on similar timescales leads to fundamentally
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Figure 9. Evolve and maintain generalists via time-varying environments. (a) Generalist antibodies (Abs) recognize the
conserved epitope of variant antigens (Ags) while specialist Abs bind well to a particular variable epitope. (b) An illustration of
our approach to constructing fitness landscapes that encode how specialists and generalists are organized in Ab sequence space.
Each Ag defines a distinct landscape with a distinct set of fitness islands around specialist peaks (blue and orange regions); the
generalist peak remains in almost the same location across Ags (overlapping shades). (c) Cycling of sufficiently dissimilar Ags at
intermediate timescales can evolve (s→ g) and maintain (g→ g) generalist Abs unobtainable under very fast or very slow cycling
(effectively static environments). Adapted from references [48, 69].

out-of-equilibrium dynamics and evasion from
steady state. These naturally intermediate-timescale
variations can no longer be described via effective
static environments valid only in the fast or slow
limit. Second, ecological processes, such as niche
construction, can strongly impact evolutionary
modes and phylogenetic patterns. Capturing this
interplay requires simultaneous consideration of
ecological interactions and evolutionary dynamics in
the same framework.

There is also a need for integrative methods in
order to shrink the gap between experiment and
theory. Immune functions often involve competing
needs, such as specificity and generalization, speed
and efficacy. Information processing on multiple
scales in time and space might complement each
other toward a common goal: active patterning of
receptors and ligands at cell–cell contacts enables
efficient cellular readout of threats; clusters of cells
search and compete for antigens distributed in tis-
sues; subdivided B and T cell populations collectively
extract antigenic features and encode memories in
an organism. This complexity calls for new statistical
mechanical descriptions, combined with information

measures, to predict emergent phenotypes for com-
parison with accumulating observations and to sug-
gest new experiments.

8.3. Advances in science and technology to meet
challenges
To build a quantitative framework to describe
dynamic selection of generalists, we need a better
understanding of how specialists and generalists are
organized in sequence space. On the molecular level,
this knowledge relies on high-throughput methods
capable of mapping the sequence–function relation-
ship in the mutational neighborhood of target geno-
types, i.e., the local fitness landscape. This would
allow us to read adaptive dynamics from landscape
topography, an idea extended to study long-term
adaptation in changing environments [69].

Directed evolution in the lab may test the pre-
dicted environmental correlations and timescales that
robustly evolve generalists, based on recently devel-
oped generative [69] or phenomenological [48] mod-
els of evolution in time-varying multi-peaked fit-
ness landscapes (figure 9). In this framework, rel-
ative placement of fitness peaks encodes tunable
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correlations in features across environments. A key
insight is that time variations should be slow enough
so that appreciable changes can be accumulated to
discover generalists, but fast enough to minimize spe-
cialization of generalists that have emerged. The exis-
tence and range of intermediate timescales depend
on the degree and structure of environmental cor-
relations, which potentially offer a way to charac-
terize whether, and where, one would expect non-
equilibrium fitness seascapes [70].

Time-resolved measurements of genetic compo-
sition along with ecological dynamics are needed to
infer phylogenies and account for demographic influ-
ence. Corresponding phenotypic studies (e.g. anti-
body binding and neutralization assays) would allow
one to construct low-dimensional theories of eco-
evolutionary dynamics, thereby associating pheno-
typic patterns with population fate. More broadly, we
must develop new representations of the sensing and
recognition space that captures distinctive proper-
ties (e.g. cross-reactivity) and reveals essential learn-
able features, which are not yet available for immune
recognition.

Understanding how information processing in the
immune system is integrated across scales counts
on interdisciplinary approaches that parallel this
goal. Biophysical and physiological measurements are
informative of how immune cells sense, distinguish
and acquire antigens using energy-consuming active
processes. A combination of live imaging and single-
cell sequencing would enable simultaneous tracking
of cell movement and clonal dynamics in multiple
populations. Sampling from different locations in the
tissue is needed to study how spatial heterogeneity
and connectivity affect the collective response of a
population ensemble.

8.4. Concluding remarks
Investigating how the immune system learns from
changing circumstances presents outstanding oppor-
tunities at multiple fronts. Conceptually, it will
advance our understanding of truly non-equilibrium
regimes of eco-evolutionary dynamics. Such under-
standing can, in turn, offer novel strategies to allevi-
ate constraints inherent in equilibrium or steady-state
conditions. Further, these studies can shed light on
information acquisition under dynamic feedbacks, in
favor of pathways and outcomes otherwise hard to
obtain. General concepts learned will likely generalize
to other evolutionary contexts and sensory systems.
After all, learning from experiences is much in the
timing.
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9.1. Status
Antibiotic resistance is a growing threat to public
health. Bacteria exploit a diverse store of genetic
and phenotypic defences to counter antibiotics, and
the rapid pace of microbial adaptation makes the
long-sought goal of ‘resistance-proof’ drugs appear
increasingly unlikely. As a result, there is signifi-
cant interest in developing evolution-based strategies
for slowing, or reversing, resistance by judiciously
applying currently available drugs. One possible
approach is to use multiple-component therapies,
which force bacteria to adapt to antibiotics targeting
different cellular processes. The simultaneous use of
multiple drugs is particularly promising because the
effects of the drugs are often coupled so that each drug
either strengthens or counteracts the other. These
drug interactions have the potential to enhance thera-
pies by partially decoupling the short-term inhibitory
effects of drugs from their propensity to select for
resistance [71]. A second strategy is to use multi-
ple drugs in sequence, forcing bacteria to adapt to
time-varying environments. These antibiotic cycling
approaches have so far achieved mixed results, par-
ticularly when applied at the hospital level [72]. How-
ever, recent studies have reinvigorated interest in tem-
poral strategies based on collateral sensitivity (CS),
an evolutionary ‘side-effect’ of acquired resistance
[73–78]. CS occurs when a population evolves resis-
tance to one drug (the ‘selecting drug’) while simul-
taneously exhibiting increased sensitivity to a dif-
ferent drug [79]. CS appears to be ubiquitous—at
least in vitro—underscoring the notion that path-
ways for adaptation to different drugs, even those
from different classes, are inextricably linked. In
the context of drug cycling, these collateral effects
couple adaptation at different time points, poten-
tially forcing cells into a time-dependent version of
multi-task optimization. Cells exposed to dynamic
environments are known to adopt phenotypic or
genetic strategies to exploit statistical features of the
changing environment. The question, for antibiotic
cycling, is in some sense just the opposite: is it
possible, by systematically manipulating the envi-
ronment over time, to steer evolution toward a
desired state? More specifically, can we use particular
sequences of drugs to slow resistance by harnessing
the correlations that link resistance levels to different
antibiotics?
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9.2. Current and future challenges
There are many practical obstacles to overcome before
new multi-drug strategies can be deployed in the
clinic. The barriers range from technological (opti-
mized approaches may require, for example, new
tools for rapid diagnostics) to translational (e.g. val-
idation of in vitro approaches in patient samples
and animal models) and even economical. In addi-
tion to these practical hurdles, there are a number
of conceptual challenges to designing drug sequences
that potentially limit resistance evolution. These chal-
lenges represent open basic science questions that
potentially link fundamental concepts from evolu-
tionary biology to an eminently practical issue in
medicine and public health.

First, the molecular mechanisms of CS are often
unknown, meaning that collateral sensitivities are
difficult to predict and must be identified empir-
ically [75]. In addition, experiments suggest that
collateral effects often appear stochastic—that is,
adaptation in replicate populations frequently leads
to different phenotypic profiles of collateral resis-
tance, even when starting from a common ances-
tral strain [74, 76, 77]. Furthermore, collateral effects
are not limited to sensitivity; indeed, collateral resis-
tance (often termed ‘cross-resistance’) is common
and could limit the utility of simple cycling strategies.
Phenotypic profiling in multiple species also indi-
cates that collateral effects are often asymmetric—for
example, adaptation to drug 1 may lead to increased
sensitivity to drug 2, while adaptation to drug 2 leads
to increased resistance to drug 1—and they may
depend sensitively on the genetic background—and
hence, the adaptation history—of a given population
[76, 77]. The picture that emerges is enticing, as col-
lateral effects offer a new dimension for systematically
tuning multi-component therapies. Yet despite the
apparent ubiquity of CS, designing drug sequences
that exploit these correlations to slow evolution is an
ongoing challenge.

9.3. Advances in science and technology to meet
challenges
The increased interest in CS was sparked, in
part, by innovative work aimed at identifying ‘CS
cycles’—periodic sequences of antibiotics in which
the drug applied at one timestep is expected to induce
sensitivity to the drug applied at the next step [73]
(figure 10(A)). Network analysis of empirical CS
profiles identified hundreds of potential cycles, many
involving three or more drugs. In addition, switching
between two drugs can also lead to transient changes
in resistance levels, a type of phenotypic memory
recently termed ‘cellular hysteresis’ [80]. Taken
together, these results suggest that time-varying
drug sequences may be sufficiently flexible to slow
resistance while allowing for fine-tuning of additional
clinical or practical objectives.

However, identifying optimized drug sequences
is complicated by the variability in CS profiles,
which can differ across species and even replicate-
to-replicate, in part because of the stochastic nature
of adaptation on the underlying fitness landscapes
[74, 76]. Despite these challenges, recent findings in
both the laboratory and clinic point to some mea-
sure of stability in the evolutionary dynamics [77, 78],
offering hope that there are actionable trends buried
beneath the complexity. One option for exploiting
these trends is the use of likelihood scores, which place
evolutionary therapies in a probabilistic framework
[76].

In a similar spirit, recent work from our group
drew on theoretical tools from stochastic control to
design optical drug sequences for slowing resistance
[74]. To do so, we derived data-driven optimal drug
policies that assign a single drug to every possi-
ble CS profile (figure 10(B)). Drug sequences based
on these profiles reduced growth and slowed adap-
tation in lab evolution experiments, outperforming
treatments using single drugs or small (N = 2, 3)
cycles. The approach revealed a new conceptual strat-
egy for slowing resistance by interspersing frequent
steps of instantly effective drugs—which provide
short-term inhibition of pathogen growth—with rare
steps of relatively ineffective drugs, which shep-
herd the population to a more vulnerable future
state.

9.4. Concluding remarks
Given the slow pace of drug development and the
seemingly infinite adaptive capacity of bacteria,
antibiotic resistance is likely to pose an increasing
threat to public health in the decades ahead. There
are no ‘magic bullet’ solutions on the horizon, and
the battle against resistance calls for innovative
strategies spanning multiple disciplines and a range
of length scales, from the molecular scale to the
level of hospitals and communities. Translating new
approaches to the clinic will require much addi-
tional work, including an improved understanding
of the evolutionary forces that shape adaptation
in human hosts. Nevertheless, recent progress
offers hope that multi-drug sequences may one
day form the basis of therapies designed to exploit
time-dependent evolutionary trade-offs of drug
adaptation.

10. Memory and adaptation in time
varying environments
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Figure 10. Time-varying drug sequences for slowing the evolution of resistance. (A) Drugs A and B induce reciprocal CS:
adaptation to A increases sensitivity to B, and adaptation to B increases sensitivity to A. Right panel: schematic showing resistance
to each drug (A, black; B, red) over time during the cyclic application of drugs A and B (see [71, 73]). (B) Left panel: an optimal
drug policy uses stochastic control algorithms to assign each CS profile (i.e. a set of values that define the resistance of the
population to each of N testing drugs) to a single applied drug. Policies designed to minimize long-term resistance generate
aperiodic drug sequences (top right). These optimized sequences correspond to frequent periods of low resistance interspersed
with rare periods of high resistance (red dots). The drugs corresponding to periods of high resistance (in this case, drug B)
provide little instantaneous inhibition but steer the population to a more vulnerable future state (see [74]).

10.1. Status
Quantitative studies of cellular physiology have led to
new understanding of growth and size control mech-
anisms, including general principles that operate in
proliferating populations [81–83]. In contrast, lit-
tle is known about how such mechanisms evolved,
for example (i) whether there exist specific environ-
mental pressures that select for the observed growth
modes, (ii) whether growth control mechanisms opti-
mize some cost/benefit tradeoff and if so over what
timescales, and (iii) how do genetic networks evolve to
achieve robust growth and how are they maintained
over evolutionary timescales.

Long-term laboratory evolution experiments have
provided illuminating, and often surprising, insights
on how evolution works in practice [84], but were
not designed to answer the types of questions

outlined above. In particular, gene regulatory net-
works enable survival in time-varying environments,
thus studying the relevant principles requires both the
experimental capacity to measure growth under con-
trolled, external fluctuations, as well as new theory
that will provide a framework for designing powerful
experiments.

Recent technological advances [85] have shown
new and promising insights into how cells have
evolved their responses to changes in their environ-
ments. In fluctuating environments (figure 11), bacte-
ria utilize physiological memory as a way to minimize
metabolic [86] and antibiotic stress [87]. These exper-
iments coupled with theoretical work, can determine
the environmental conditions in which such mem-
ory is beneficial for cells, and how such memory can
evolve.
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Figure 11. (a) The chemoflux microfluidic device, in which
growth of a population of cells contained in 10 μm wide
chambers is continuously monitored. By flowing different
media through a main flow channel, the environment
inside the chambers can be quickly exchanged from one
nutrient type to another, or from a condition of stress to
growth. Data represents a typical response to fluctuating
sugars glucose (G) and lactose (L). In the first fluctuation,
cells go through a lag phase, followed by recovery to
exponential growth. During the lag phase cells produce and
accumulate metabolic proteins. Upon repeated fluctuations
the lag phase disappears. This effect has been explained
through inheritance of very long-lived lac proteins, which
provide the physiological memory of the cell. (Adapted
from [86]). (b) The phase diagram of optimal response
strategies in fluctuating environments. Strategies are
separated by solid (dashed) curves corresponding to first
order (continuous) evolutionary phase transitions, with
their intersections shown at the triple point and a critical
point. A finite memory response is optimal exclusively
under random fluctuations. (Adapted from [88]).

This approach has led to predictive theories that
establish optimal response strategies for survival
under fluctuating stress, depending on how vari-
able or unpredictable is the environment [88]. By
analogy to condensed matter systems, the space of
optimal responses can be represented in a phase
diagram (figure 11(b)) where different strategies
are separated by continuous and first order evolu-
tionary phase transitions, and which correspond to

different ways of evolving the optimal response in a
gene circuit.

10.2. Current and future challenges
Such approaches can also be used to study the emer-
gence and spread of antibiotic resistance across a pop-
ulation of bacteria, a pressing public health concern
and a major challenge in the field of evolutionary
biology.

Cellular response to fluctuating antibiotic stress,
where a period of growth is followed by a period
of exposure to tetracycline, a bacteriostatic antibi-
otic, shows how the metabolic state of a cell affects
its ability to evolve resistance (figure 12) [87]. Dur-
ing tetracycline pulses, cells exhibit strongly reduced
cell division and elongation rates. Once tetracycline
is removed, cells slowly recover, which is reflected in
the increased rate of elongation. The cells’ elonga-
tion rate thus provides an instantaneous readout of
cellular stress. Remarkably, for low elongation rates
the treatment is ineffective, indicating that the cel-
lular stress response that halts cell growth confers
physiological protection against the antibiotic. While
treatment is effective for high elongation rates, bac-
terial cells undergoing treatment are rarely found in
such rapidly proliferating states. A more realistic sce-
nario lies between the two extremes, at intermediate
elongation rates.

Surprisingly, however, cells recover fastest at inter-
mediate physiological stress, rendering a large range
of treatments not only ineffective, but also allowing
cells ample time to acquire resistance. Physiological
memory, over which cells time-average the antibiotic
dose, strongly impacts the elongation rate dynam-
ics and thereby influences rate at which resistance
emerges. A more detailed understanding of these pro-
cesses and how they contribute to the evolution of
resistance could lead to more successful strategies
for mitigating or reversing the spread of antibiotic
resistance.

10.3. Advances in science and technology to meet
challenges
Memory is a basic principle that governs the behav-
ior of single cells in changing environments across
a wide range of timescales. To move along chem-
ical gradients, E. coli use memory of their previ-
ous sensory inputs in a feedback that regulates their
flagellar motor. Bistable switches can induce distinct
stable expression states that can persist for many
generations. In fluctuating environments, cells uti-
lize physiological memory to reduce metabolic and
antibiotic stress. The examples in figures 11 and 12
show that cost-benefit tradeoffs, which classically are
assessed at the level of single cell metabolism, need to
be accounted for throughout individual cells’ histo-
ries [83], across a heterogenous population [87], and
between distinct populations that experience different
time-varying environments [88, 90].
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Figure 12. The agn43 promoter driving the T7 RNA polymerase stochastically generates tetracycline-resistant cells, switching
epigenetically between transcriptional ON and OFF states, with rate 0.1%–1% per cell division (panel a), which is visualized by a
GFP reporter (panel b) [87, 89]. Single cell measurements of elongation rate dynamics (panel c) show dependence of killing
efficiency on physiological stress response. (Adapted from [87].)

Current experimental methods enable all of the
above measurements and analyses, and in fact greatly
surpass existing theoretical understanding of these
biological processes. Due to the complexity of bio-
logical systems, it remains challenging to recog-
nize the general principles that determine which
strategies will evolve and how changes in the envi-
ronment drive the evolution of cellular physiol-
ogy and impact population heterogeneity. There-
fore, new theories—that span from individual behav-
iors to heterogeneous populations to larger-scale
ecological structures—are needed to provide strong
predictions, while new experimental designs are
required to isolate and test those ideas in model
systems.

10.4. Concluding remarks
In this article we highlighted the advantage of
studying synthetic biological systems in the lab as a
testing ground for the development of evolutionary
theory. The ability to precisely control and fluctuate
the environment, in combination with synthetic
biology, can enable rigorous, quantitative testing
of theoretical predictions. Bacteria exhibit a wide
range of behaviors, including memory, responsive-
ness, sensing, and stochasticity, each of which have
distinct benefits in time varying environments. By
perturbing these mechanisms experimentally, it may
be possible to study some of the general principles of
evolution at lab accessible timescales, and to test new
theoretical approaches that are sufficiently powerful
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to enable evolutionary predictions over longer
timescales.

11. The origins of allostery
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11.1. Status
Allostery—the functional coupling of distantly posi-
tioned amino acid residues in proteins—plays a
key role in nearly all cellular processes. In different
manifestations, it represents information flow within
and between proteins, control of protein activities
through regulatory modifications, and cooperativity
in oligomeric assemblies [91]. For these reasons, a sig-
nificant body of work has been focused on elucidating
the phenomenological, mechanistic, and generative
principles of protein allostery. The goal is to develop
models for the physics of long-range intramolecu-
lar couplings within proteins consistent with their
evolutionary origin.

However, the problem has been a difficult one.
Understanding allostery in any general sense starts
with defining the pattern of energetic interactions
between all amino acids in a protein in all relevant
configurational states. This pattern specifies both the
structure (the mean position of all atoms) and its
dynamics (fluctuations, both independent and collec-
tive) over the evolutionarily selected reaction coordi-
nate. But, proteins are held together by an extraordi-
narily subtle balance of forces that produce marginally
stable structures [92], and deducing the net value of
residue interactions remains a challenge for exper-
imental and computational approaches. An added
complication is that long-range couplings fundamen-
tally arise from the nonlinear (epistatic) interactions
of amino acid residues [91, 93]. The full theoreti-
cal combinatorial complexity of such interactions is
inaccessible to any scale of experimental analysis.

In recent years, a different approach to understand
allostery has been to leverage the growing databases
of protein sequences to make statistical models for
the pattern of amino acid interactions. The simple
idea is that evolution has been mutating and select-
ing proteins for a long time and given enough sam-
ples of extant sequences that have survived this pro-
cess, we might be able to infer the relevant inter-
actions between amino acids by measuring the cor-
related evolution of those positions [94–96]. This
‘statistical genomics’ approach has revealed two qual-
itatively different kinds of amino acid interactions
within proteins: (1) a large number of coevolving
pairs of amino acids (∼L/2, where L is the length of

Figure 13. (a) Examples of pairwise coevolving amino
acids (blue) in the S1A family of serine proteases,
comprising direct contacts in the tertiary structure. Data
are shown on the structure of rat trypsin (PDB 3TGI). (b)
Three sectors (red, green, and blue) in the S1A family,
demonstrating physically connected coevolving networks
within the structure. (c) A sector (blue spheres) in DHFR
(PDB 1RX2), connecting the active site (marked by bound
substrate, yellow stick bonds) to several distant surface sites
(marked in red).

the protein sequence) and (2) a few (1–3, in work
to date) collectively evolving groups of amino acids,
called ‘sectors’. The coevolving pairs often corre-
spond to direct contacts in protein tertiary structures
(figure 13(a)), while sectors correspond to more dis-
tributed networks of amino acids that connect pri-
mary functional sites of proteins to a few distantly
positioned surface sites (figures 13(b) and (c)). Sec-
tors correspond to known allosteric mechanisms [97],
have predicted previously unknown allostery in pro-
teins [96], and have been used to engineer allosteric
regulation in proteins [98].

It is important to say that like any purely phe-
nomenological analysis, the pattern of coevolution
provides no intrinsic information about either the
physical mechanism of allostery or its origins in
the course of evolution. Nevertheless, the statistical
genomics approaches provide models for the global
pattern of amino acid interactions that motivate new
experiments to probe mechanisms of allostery. This
work is ongoing and may help to better understand
the physics of long-range couplings in proteins.

11.2. Current and future challenges
But, how does allostery arise in evolution? The finding
that coevolving networks of amino acids (sectors) cor-
respond to regulatory mechanisms would itself seem
to imply a causal principle of origin. That is, if sec-
tors mediate allosteric regulation, it is perhaps natural
to think that they arose in evolution due to selection
for the regulatory function. However, further con-
siderations cast serious doubts about this possibility.
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Figure 14. (a) The spatial distribution of adaptive mutations in the PDZ domain in response to a class-switching T–2F mutation
in the ligand (shown as stick bonds); green spheres mark positions harboring CN mutations. Two views of the domain (PDB
1BE9) are shown, demonstrating that CN mutations exclusively occur along allosteric networks extending through the protein
structure. (b) A two-dimensional spin lattice model for a protein, with the ‘ligand’ represented by an external field acting at a
single boundary node (the ‘binding site’). (c) Evolving the parameters of the spin model under conditions where the lattice must
discriminate a right ligand from a wrong ligand produces a final model in which the right ligand specifically triggers an allosteric
conformational change through the model protein (red nodes, with the size of the node indicating the strength of the
conformational change). Data in (b) and (c) are from reference [102].

First, there is the finding that sectors also occur in
proteins in which there is no evidence for allosteric
communication or regulation. For example, in the
metabolic enzyme dihydrofolate reductase (DHFR),
the sector connects the active site to a specific sub-
set of surface positions distributed widely through-
out the tertiary structure (figure 13(c)). Experimen-
tal studies confirm that these sites are indeed capable
of supporting allostery in the sense that engineered
regulatory inputs at those sites can selectively con-
trol enzyme activity [98]. However, DHFR has no
known natural allosteric regulators and no role in
signal transmission.

It is possible to sweep this problem under the
proverbial rug by simply asserting that these sites
reflect yet undiscovered regulatory mechanisms or
reflect residual constraints from a past history of
allosteric regulation. However, further complications
arise from considering the evolutionary process that
would be necessary to build allosteric networks within
proteins if their origin lies in selection for regula-
tion. Allostery implies epistasis along evolutionary
trajectories, such that the effect of mutation at one
site in an allosteric network is conditional on muta-
tions at other positions. For long-range allostery, the
capacity of a distant surface site to control the pri-
mary functional site will depend on a long series of
conditional mutations, with no guarantee that inter-
mediates along the path can support regulation. In
such a scenario, it is entirely unclear how allostery
could originate as a causal result of direct selection for
regulation.

It is also possible to sweep this problem under the
rug by invoking global forms of epistasis in which
every perturbation in a protein influences every other

position, but it is clear that this represents only a spe-
cial case. What then is a plausible model for the origin
of allostery in proteins? Two lines of work have now
supplied potential answers.

The first comes from recognizing that natural pro-
teins are constrained by not just the physics of folding
and function but also the need to adapt as conditions
of selection fluctuate in the environment. In princi-
ple, adaptability places unique constraints on the pat-
tern of amino acid interactions. One such constraint
is functional connectivity, meaning that all interme-
diates along an adaptive path must maintain func-
tion above a selection threshold [99]. Recent studies
in the PDZ domain, a protein interaction module,
show that this constraint depends on the availabil-
ity of a special class of mutations called ‘conditionally
neutral (CN)’ [100]. Such mutations are neutral for
the current condition of selection (and therefore can
accumulate as standing genetic variation in popula-
tions) but display significant gain-of-function in new
conditions of selection. CN enhances adaptation by
essentially uncoupling the generation of phenotypic
diversity from the need for that diversity. Thus, when
selection pressures randomly vary, pre-existing CN
mutations in the population can initiate a path of
adaptation.

With regard to allostery, the key finding is that
all CN mutations in proteins are allosteric and inti-
mately associated with sectors (figure 14(a)) [100].
Thus, in addition to functional regulation, another
role for allostery (and protein sectors) is the capacity
to adapt. Turned around, this logically implies that the
origin of allostery in proteins could be simply in the
need to adapt to fluctuating conditions of selection.
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In this model, allosteric networks get built in evolu-
tion not by direct selection for regulation, but because
they generate CN mutants that facilitate adaptation
in time-varying environments. The use of allosteric
networks for signaling or regulation is then a deriva-
tive of this more fundamental process. A key predic-
tion of this model is that the existence, architecture,
and conservation of allosteric networks depends fun-
damentally on the nature and temporal structure of
environmental fluctuations in conditions of selection.

A distinct but non-exclusive model for the origin
of allostery has also been recently proposed. Using
simplified lattice models of proteins, the proposal is
that allostery can also evolve in proteins as a natu-
ral solution to the problem of achieving specificity in
molecular recognition (figures 14(b) and (c)) [101].
The intuitive explanation is that specificity requires
fine control over energetic states to distinguish right
and wrong substrates at protein functional sites, and
that such fine control is statistically more likely from
allosteric networks rather than from orthosteric posi-
tions alone.

In general, both adaptability to time-varying envi-
ronments and binding specificity could collaborate to
produce and sustain allosteric networks within pro-
teins. The salient point is that in both cases, allostery
emerges in evolution purely as a constraint acting on
the primary functional site of proteins. Once built,
this architecture can then be co-opted to enable sig-
naling, regulation, and other classical manifestations
of allostery. This represents a model for the evolution
of allostery that is consistent with a Darwinian process
of stepwise variation and selection.

11.3. Advances in science and technology to meet
challenges
How can we test these new models for the origin of
allostery in proteins? The key is to carry out forward
evolution of protein molecules with full control over
the essential parameters—mutation rate, population
size, and the statistics of applied selective pressures.
If this can be achieved, the idea is to conduct many
independent trajectories of evolution while selecting
proteins for binding affinity or specificity in constant
or time-varying conditions of fitness. With appro-
priate controls, deep sequencing of these trajectories
and deep mutational scanning of evolved proteins can
provide estimates of both the standing variation and
the pattern of allostery. In principle, such experiments
could provide a rigorous test of the necessity and suf-
ficiency of selection for specificity and/or adaptabil-
ity to sustain allosteric networks in proteins without
direct selection for regulation.

Are such forward evolution studies feasible? In
recent years, powerful experimental methods for
rapid, continuous, automated forward evolution of
proteins have been reported [102, 103]. With fur-
ther developments to enable continuous evolution for

binding specificity and adaptability, it should be pos-
sible to carry out the required studies. A complemen-
tary approach is to extend the network models for
protein stability and function [101] to computation-
ally probe the role of binding specificity and/or evolu-
tion under fluctuating environments in shaping pat-
terns of allostery. The combination of experiments
in real proteins and computational ‘toy’ models may
represent a powerful strategy to converge on minimal
models for the origin of allostery.

11.4. Concluding remarks
Models for biological systems must go beyond just
explaining mechanism to provide a description of
their origin through the process of evolution. In gen-
eral, this means understanding how functional con-
straints at the current moment collaborate with adap-
tation in time-varying environments to specify the
design of biological systems. For the classical problem
of allostery, the hope is that the new ideas and emerg-
ing technologies described here can help produce gen-
erative models for long-range intramolecular cou-
plings within proteins.
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12.1. Status
Evolution is increasingly being recognized as a cen-
tral component of two of the most urgent societal
problems [104]. While the physics of global climate
change is relatively well-understood, the response of
the biosphere is harder to predict, especially the extent
to which microbial evolution can influence the feed-
back between soil and marine systems to the car-
bon and other biogeochemical cycles [105–107]. Even
the sign of this feedback effect is hard to assess. The
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emerging world-wide health crisis due to the unex-
pectedly rapid evolution and proliferation of antibi-
otic resistant strains of pathogenic bacteria is our sec-
ond example, one that underscores how imperfectly
we understand the mechanisms of evolution [108].
In fact, it is even the case that climate change can
accentuate the problem of antibiotic resistance [104].

Evolution is often thought of as the product of two
independent classes of process: (1) the generation of
mutations; (2) the dynamics within a fixed environ-
ment that selects and ultimately conveys genetic vari-
ation to fixation or dominance in a population. This
narrative assumes a separation of timescales between
(1) and (2) but neglects the fact that many ecosys-
tems, especially those with microbes, show rapid
genetic adaptivity through strong selective stress aris-
ing either from environmental conditions or antago-
nistic predation [109, 110]. The resulting phenotypic
diversity [109] contains individuals with new traits
that in some cases have been documented to further
induce new links or forms of interaction with others
[111]. For a constant driving force, either a chemical
potential difference across the ecosystem, or a con-
stant flux of energy, the resulting long time dynam-
ics is an ecosystem in a non-equilibrium steady state
[111], characterized by constant change and the gen-
eration of new niches [112], as opposed to one that is
in a static equilibrium steady state, characterized by a
fixed community structure. In other systems, such as
methanogenic bioreactors [113] and the global ocean
microbiome [114], it is known that there is a non-
equilibrium steady state, characterized by a constant
production rate, but constant taxonomic turnover,
suggesting the emergence of a collective metabolism
for the community.

Whether or not there is a phase transition between
these two classes of stationary states as a function of
driving force is an interesting but unresolved funda-
mental question. When the interactions between ecol-
ogy and evolution are strong enough, such that the
evolutionary timescale is comparable to the ecological
timescale, qualitatively new phenomena arise: rapid
and successive emergence of evolved traits interfere
with the ecosystem, resulting in significant changes in
population dynamics and spatiotemporal patterns.

The purpose of this roadmap article is to draw
attention to two recent highly simplified examples of
these phenomena, which are sometimes called rapid
evolution. The first focuses primarily on population
dynamics: anomalies in population cycles can reflect
the influence of strong selection and the interplay
with mutations (standing variation or de novo). The
second focuses primarily on the way in which ecolog-
ical structure can potentially be influenced by what is
arguably the most powerful source of genetic novelty:
horizontal gene transfer (HGT). Our understanding
of the role of HGT in shaping ecosystems, and vice
versa, is in its infancy, but we now have the tools to
begin to not only understand these phenomena but

to ask the pertinent question of how one manages
such dynamic ecosystems. It is well-documented that
HGT as well as population flow is central to the antibi-
otic resistance crisis [108] and one would expect that
it plays a role in the biological response to climate
change. To achieve a full understanding of rapid evo-
lution in all its manifestations will require a concerted
experimental and theoretical effort.

12.2. Anomalous population dynamics in rapid
evolution
The first example focuses on anomalous popula-
tion dynamics due to rapid evolution. The anoma-
lous dynamics is characterized by abnormal phase
relationships and periodicity in population cycles.
Certain predator–prey ecosystems systems, such as
rotifer–algae [115] and phage–bacteria ecosystems
[116], exhibit a π phase difference between the time
series of predator and prey populations, together with
a longer period for their population cycle, as opposed
to the typical predator–prey phase difference of π/2.
This abnormal phase difference is associated with
the emergence of a mutant prey which has a defense
against the predator but at some metabolic cost (so-
called evolutionary cycle). What is more bizarre is that
in some systems, following a mutation, the phase dif-
ference disappears as the prey population becomes
almost constant in time while the predator population
still oscillates but with a longer period than before the
mutation arose (the so-called cryptic cycle). Whether
or not the evolutionary cycle or cryptic cycle occurs
depends on the metabolic cost of defense [117].

Due to the necessarily small numbers of mutants
at least during the initial stages of these processes,
one must properly take into account the discreteness
of populations and their spatial extent [118]. The
mathematical tools to do this properly use stochas-
tic individual-level models to describe the interac-
tions between members of the ecosystem, and sta-
tistical mechanics techniques to deduce the result-
ing dynamics at the population level [119, 120]. By
including the trade-off between selection on repro-
duction and the metabolic cost of defense against pre-
dation, a minimal stochastic individual-level model
[117] reproduces the rapid evolution that was found
in chemostat experiments of rotifer–algae [115] and
phage–bacteria ecosystems [116]. Under strong pre-
dation selection, a defended prey can arise from
mutation, causing the population dynamics to tran-
sition from the normal cycle with a π/2 phase shift to
the evolutionary cycle with aπ phase shift between the
predator and the total prey. The additional π/2 phase
delay comes from the fact that the wild-type prey,
which is mostly consumed by the predator, can only
grow back after the defended sub-population starts
to decrease due to the depletion of food. When the
metabolic cost of the defended prey is low enough,
the regrowth of the wild-type prey is delayed more.
If the delay is so great that the wild-type prey can
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Figure 15. Rapid evolution individual-level simulations capture the eco-evolutionary dynamics characterized by anomalous
phase relationship in the experiments, e.g. (a) a transition from the conventional π/2 phase difference to the out-of-phase
oscillations between predator (red) and total prey (green) densities and (b) a case with a constant total prey density [117].

only resume growth after the defended prey popu-
lation has decreased sufficiently, the phase delay of
the wild-type prey behind the defensive prey can
become π so that the total prey population looks
almost constant with time, leading to a cryptic cycle.
The individual-level model shows that the anomalous
dynamics can arise from demographic noise in rapid
evolution, without special assumptions or fine tun-
ing (figure 15). Deterministic models are problematic,
as they cannot even capture regular population cycles
in a qualitative way without introducing phenomena
extra to the Lotka–Volterra description, such as func-
tional response [119]. So far, we have focused pri-
marily on well-mixed systems. However, in practice,
one may be interested in invasion fronts, regime shifts
or range expansion. In these cases, the need for cor-
rect treatment of demographic stochasticity is even
greater, because of the presence of fronts where the
populations are necessarily small. The study of the
potentially interesting spatio-temporal patterns [120]
forming in rapid evolution is a rich topic for future
work.

12.3. Collective rapid evolution
Our second example is from marine microbial
ecology, and involves a case where spatio-temporal
dynamics emerges from the eco-evolutionary
feedback at various scales. In such cases, dif-
ferent evolutionary mechanisms intertwine and
lead to scale-dependent feedback, manifested by
coevolution from genetic variations, spatio-temporal
population dynamics and spatially-varying selection
pressure from the environment.

We will focus on a phage–microbe ecosys-
tem, which is usually modeled simply through
Lotka–Volterra dynamics. However, in the microbial
world, ecological relationships are more complicated
than this due to rapid evolution at the genomic scale.
In fact, it seems that phage are multifunctional: now
only do they exert predation pressure that reduces the

bacteria population, but they also transfer genes that
can help increase the bacteria population. The way in
which this happens in detail is a possible instance of
multi-level selection: at the level of the individual bac-
teria, phage attack is a strong selection pressure. But
at the level of the community, there is an emergent fit-
ness benefit which allows the population to grow and
even expand its range.

A remarkable example showing the significance of
HGT-involved multiscale feedback as a driving force
for evolutionary complexity and stability is the most-
abundant phototropic organism, Prochlorococcus spp.
[61]. This marine cyanobacterium experiences preda-
tion from cyanophages that, surprisingly, were found
to carry photosynthesis genes. Phylogenetic study
showed that these genes had been horizontally trans-
ferred first from cyanobacteria to cyanophages and
back and forth multiple times [121]. Interactions
with cyanophage are assumed to be important for
the evolutionary pattern and diversity of Prochlorococ-
cus. Specifically, Prochlorococcus exhibits niche strat-
ification of two dominant ecotypes: the high light-
adapted ecotype near the sea surface evolved 150 mil-
lion years ago from the ancestral low light-adapted
ecotype at the lower sea level. Due to the depth-
dependent absorption spectrum of light, the different
ecotypes utilize distinct light intensities and spectra.

What were the environmental and genetic drivers
of the evolution of the high light-adapted ecotype?
Prochlorococcus has a highly streamlined genome, and
lives at low density in a nutrient-deficient environ-
ment. Thus, the required spatial adaptations were
the result of novel genes that presumably were dis-
tributed through viral-mediated HGT. Consistent
with this interpretation, Prochlorococcus does not
possess standard defense mechanisms against phage
attack, such as CRISPR or prophages (for restriction-
modification, the situation is not clear) [61]. It seems
that their principle means of defense against phage
is modification of cell surface molecules that prevent
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Figure 16. Illustration of collective coevolution between
bacteria and viruses via HGT: (1) phages acquire beneficial
(+) and inferior (−) genes from bacteria. (2) Phages have
high mutation rate and create a rapidly evolving reservoir
of genes for the host bacteria. (3) Bacteria create a slowly
evolving, stable repository of beneficial genes for phages by
filtering out inferior genes. The collective state results in
emergent mutualism despite of individual antagonism.

phage attachment. These molecules are expressed
from genes that have been rapidly modified through
mutations and HGT with other bacteria phyla. These
genes reside in genomic islands and constitute the
majority of the genetic diversity [61]. In recent work,
we have performed a calculation from a minimal
stochastic model to show how HGT leads to col-
lective coevolution of the bacteria and their phages,
leading to the emergence of stratified ecotypes in the
euphotic zone [122]. Through HGT from bacteria,
phages acquire both beneficial and inferior genes that
are responsible respectively for efficient and ineffi-
cient photosynthesis in a certain environment. Since
phages have a relatively higher mutation rate, they
create a rapidly evolving reservoir of genes for the
host bacteria. On the other hand, bacteria with highly
streamlined genomes create a slowly evolving, stable
repository of beneficial genes for phages by filtering
out inferior genes under selection. By carrying and
transferring beneficial photosynthesis genes, there is
evidence that phage improve their fitness, e.g. by opti-
mizing their burst size, by supplementing the host
cell’s metabolism [123] (figure 16). In reality most
mutations are neutral or deleterious; but HGT is blind
to this. Thus in HGT with host bacteria, on a fast
time scale, phages evolve deleterious mutations, but
can be rescued by bacteria whose genome preserves
genes on a longer time scale. Eventually bacteria and
phage form a collective state, enabling the rapid adap-
tation and range expansion to the environment nearer
the ocean’s surface. This emergent mutualism occurs
despite the intrinsic antagonism between bacteria and
phages. In short, HGT-driven collective coevolution
provides a natural unified explanation for the features

of Prochlorococcus system, including highly stream-
lined small genome but huge pan-genome, lack of
defense mechanisms against viral attack, niche strati-
fication of ecotypes and phage predator carrying pho-
tosynthesis genes. It is expected that this type of mech-
anism can appear in other spatially-stratified systems,
where genes that benefit the evolution of both host
and parasite could be present.

12.4. Current and future challenges
A generic framework to study rapid eco-evolutionary
dynamics with multi-scale feedback requires not
only population dynamics and genetic evolutionary
mechanisms but also the understanding of the ori-
gin of genetic variations. One related long-standing
puzzle is: did the selected phenotypes already pre-
exist or were encoded in the phenotypic variation
in the ecosystem prior to the selection, or do they
arise through stress-induced mutagenesis—de novo
mutations induced by strong selection pressure at
a higher rate (and perhaps at different loci) [124]?
How does stress-induced mutagenesis feed back into
niche construction? A crucial role is played by the
genotype–phenotype map, but how is it influenced
by selection in spatially and temporally varying
environments?

12.5. Concluding remarks
We have primarily focused on the rapid evolution
of microbial ecosystems, which occurs through the
interplay between gene flow, spatial variation, and
feedbacks between the organisms in the ecosystem
and the physical characteristics of the environment.
These phenomena are critical to understanding such
critical issues as the emergence of antibiotic resis-
tance [108] and the ongoing dynamics of global cli-
mate change [105–107]. Another extreme example of
ecological-evolutionary feedback is the growing real-
ization that the cancer tumor microenvironment pro-
vides a strong source of heterogeneity that under-
lies the rapid evolution of chemotherapy resistance
[125] and the emergence of collective sensing and
decision-making [126]. Theoretical modeling of these
important classes of problem requires explicit han-
dling of spatial structure and demographic fluctua-
tions. To understand how scale-dependent ecological-
evolutionary feedback drives the spatio-temporal
evolution of ecosystem structure is a truly grand chal-
lenge that requires a trans-disciplinary approach to be
successful.
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