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The origin of biological morphology and form is one of the
deepest problems in science, underlying our understanding of
development and the functioning of living systems. In 1952, Alan
Turing showed that chemical morphogenesis could arise from a
linear instability of a spatially uniform state, giving rise to periodic
pattern formation in reaction–diffusion systems but only those
with a rapidly diffusing inhibitor and a slowly diffusing activator.
These conditions are disappointingly hard to achieve in nature,
and the role of Turing instabilities in biological pattern formation
has been called into question. Recently, the theory was extended
to include noisy activator–inhibitor birth and death processes.
Surprisingly, this stochastic Turing theory predicts the existence
of patterns over a wide range of parameters, in particular with
no severe requirement on the ratio of activator–inhibitor diffu-
sion coefficients. To explore whether this mechanism is viable
in practice, we have genetically engineered a synthetic bacterial
population in which the signaling molecules form a stochastic
activator–inhibitor system. The synthetic pattern-forming gene
circuit destabilizes an initially homogenous lawn of genetically
engineered bacteria, producing disordered patterns with tun-
able features on a spatial scale much larger than that of a
single cell. Spatial correlations of the experimental patterns agree
quantitatively with the signature predicted by theory. These
results show that Turing-type pattern-forming mechanisms, if
driven by stochasticity, can potentially underlie a broad range
of biological patterns. These findings provide the groundwork
for a unified picture of biological morphogenesis, arising from
a combination of stochastic gene expression and dynamical
instabilities.
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A central question in biological systems, particularly in devel-
opmental biology, is how patterns emerge from an initially

homogeneous state (1). In his seminal 1952 paper “The chemi-
cal basis of morphogenesis,” Alan Turing showed, through linear
stability analysis, that stationary, periodic patterns can emerge
from an initially uniform state in reaction–diffusion systems
where an inhibitor morphogen diffuses sufficiently faster than an
activator morphogen (2). However, the requirements for realiz-
ing robust pattern formation according to Turing’s mechanism
are prohibitively difficult to realize in nature. Although Turing
patterns were observed in a chemical system in 1990 (3), the gen-
eral role of Turing instabilities in biological pattern formation
has been called into question, despite a few rare examples (ref. 4
and references therein).

Recently, Turing’s theory was extended to include intrin-
sic noise arising from activator and inhibitor birth and death
processes (5–8). According to the resulting stochastic Turing
theory, demographic noise can induce persistent spatial pat-
tern formation over a wide range of parameters, in particular,
removing the requirement for the ratio of inhibitor–activator
diffusion coefficients to be large. Moreover, stochastic Turing
theory shows that the extreme sensitivity of pattern-forming
systems to intrinsic noise stems from a giant amplification result-
ing from the nonorthogonality of eigenvectors of the linear

stability operator about the spatially uniform steady state (8).
This amplification means that the magnitude of spatial patterns
arising from intrinsic noise is not limited by the noise amplitude
itself, as one might have thought naively. These developments
imply that intrinsic noise can drive large-amplitude stochastic
Turing patterns for a much wider range of parameters than the
classical, deterministic Turing theory. In particular, it is often
the case in nature that the activator and inhibitor molecules
do not have widely differing diffusion coefficients; neverthe-
less, stochastic Turing theory predicts that, even in this case,
pattern formation can occur at a characteristic wavelength that
has the same functional dependence on parameters as in the
deterministic theory.

To explore how global spatial patterns emerge from local
interactions in isogenic cell populations, we present here a syn-
thetic bacterial population with collective interactions that can
be controlled and well-characterized (an introduction to this
perspective is in ref. 9), where patterning is driven by activator–
inhibitor diffusion across an initially homogeneous lawn of cells.
Synthetic systems can be forward-engineered to include rela-
tively simple circuits that are loosely coupled to the larger natural
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system into which they are embedded. This makes it easier to
design and control the molecular underpinnings of the biological
pattern phenomenon (10) and even front propagation phenom-
ena (11). Previous pattern formation efforts in synthetic biology
have focused on oscillations in time (12) or required either an
initial template (13) or an expanding population of cells (14),
neither of which show a Turing mechanism.

Experimental Results
Synthetic Biology of a Bacterial Community. In our synthetic gene
network design, which was guided by computational modeling
(SI Appendix, section 1), we used two artificial diffusible mor-
phogens: the small molecule N-(3-oxododecanoyl) homoserine
lactone, denoted here as A3OC12HSL, and the small molecule
N-butanoyl-L-homoserine lactone, denoted here as IC4HSL,
from the Pseudomonas aeruginosa las and rhl quorum sensing
pathways, respectively, in P. aeruginosa (15). A3OC12HSL serves
as an activator of both its own synthesis and that of IC4HSL,
while IC4HSL serves as an inhibitor of both signals (Fig. 1 A
and B and SI Appendix, section 1). A3OC12HSL activates its
own synthesis and synthesis of IC4HSL by binding regulatory
protein LasR to form a complex that activates the hybrid pro-
moter PLas−OR1. This promoter regulates expression of LasI,
an A3OC12HSL synthase, and RhlI, an IC4HSL synthase. To
increase the sensitivity of A3OC12HSL self-activation, LasR is
regulated by a second copy of PLas−OR1. IC4HSL inhibits syn-
thesis of A3OC12HSL and itself by forming a complex with the
regulatory protein RhlR. This complex activates expression of
lambda repressor CI, which in turn, represses transcription of
LasI, RhlI, LasR, and RhlR. Pattern formation in our system
can be modulated by altering the concentration of isopropyl
β-D-1-thiogalactopyranoside (IPTG), a small molecule inducer
that binds LacI and alleviates repression of PRhl−lacO. GFP
and red fluorescent protein (RFP) are expressed from the rhl
and las hybrid promoters, respectively, to aid in experimental
observation (SI Appendix, section 2).

In our experimental setup, the A3OC12HSL activator diffuses
more slowly than the IC4HSL inhibitor (SI Appendix, section 3).
The estimated diffusion coefficient for A3OC12HSL is 83 µm2/s,
and for IC4HSL, it is 1,810 µm2/s. The experimentally deter-
mined ratio of diffusion rates in our system of 21.6 is much
higher than the value of 1.5 predicted by Wilke–Chang corre-
lation in water (16), likely due to partitioning of A3OC12HSL
in the cell membrane, which slows its diffusion from cell to cell
(17). The slower diffusion rate of A3OC12HSL coupled with
positive feedback regulating its synthesis allows A3OC12HSL to
aggregate in local domains, leading to formation of visible red
fluorescent spots (cellular lawn illustration is shown in Fig. 1C).
Within these red domains, both A3OC12HSL and IC4HSL are
found in high concentrations, but because A3OC12HSL compet-
itively binds RhlR (SI Appendix, section 4 and Fig. S8), GFP is
attenuated (18). The faster diffusion rate of IC4HSL allows it
to diffuse into regions outside of the red fluorescent domains.
Here, IC4HSL is free to bind RhlR, activating GFP expres-
sion. Collectively, these processes lead to green regions between
red spots.

Experimental Patterns and Controls. To study pattern-forming
behavior, engineered cells are first cultured in liquid media, and
then, they are concentrated and plated on a petri dish to form an
initially homogeneous “lawn” of cells (Materials and Methods).
After plating, the petri dish is incubated for 24 h at 30 ◦C, and
microscope fluorescence images are captured as needed. Before
the self-activation of the A3OC12HSL synthase positive feed-
back loop, the cell lawn exhibits no fluorescence. However, over
time, red fluorescent spots emerge with sizes much larger than
that of a single cell (10–1,000×). Simultaneously, green fluores-
cence develops in a pattern with dark voids positioned precisely
in the locations of the intense red fluorescence (Fig. 2A). Time
series microscopy reveals that patterns begin to emerge after
approximately 16 h (SI Appendix, Fig. S12).
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Fig. 1. Design of a synthetic multicellular system for emergent pattern
formation. (A) Abstractly, the system consists of two signaling species
A3OC12HSL and IC4HSL. A3OC12HSL is an activator catalyzing synthesis of
both species, while IC4HSL is an inhibitor repressing their synthesis, with
additional repression by A3OC12HSL via competitive binding. (B) Genetic
circuit implementation. Promoter regions are indicated by white boxes,
while protein coding sequences are indicated by colored boxes. IPTG is an
external inducer modulating system dynamics. (C, Top) Illustration of sig-
naling species concentrations in 1D space. The dashed orange and blue
lines correspond to A3OC12HSL and IC4HSL, respectively. (C, Middle) Spa-
tial profiles of reporter proteins. RFP expression (red line) correlates with
A3OC12HSL concentrations, while GFP expression (green line) roughly mir-
rors RFP expression. (C, Bottom) A vertical slice of cell lawn. Cells express
fluorescence proteins according to the profiles above and produce a global
multicellular pattern.

In control experiments, we show that our patterns are not sim-
ply a result of the outward growth of clusters of differentially
colored cells (Fig. 2 B and C and SI Appendix, section 5). Also,
by performing an experiment with cells that harbor independent
bistable green/red toggle switches, we test whether observable
patterns would emerge if individual cells autonomously made cell
fate decisions at some point after plating (SI Appendix, section
5). The fluorescence fields after 24 h of incubation at 30 ◦C in
both control experiments are uniform, showing no emergence of
patterns.

Next, we examine how changes in the strengths of localized
interactions lead to different global outcomes in our pattern-
forming gene circuit. In our system, IPTG can be used to
modulate the inhibitory efficiency of IC4HSL in individual cells
by affecting CI expression from PRhl−lacO. Specifically, IPTG
relieves LacI repression of CI and GFP reporter. The increased
range of CI ultimately increases inhibition of both morphogens,
which is expected to decrease activator spot sizes, while causing
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Fig. 2. Experimental observations of emergent pattern formation mea-
sured by green fluorescence intensity (GFI) and red fluorescence intensity
(RFI). (A) Representative microscope images (based on six technical repli-
cates) of a typical field of view showing a fluorescent pattern formed by
an initially homogeneous isogenic lawn of cells harboring the Turing cir-
cuit with no IPTG. Spots and voids appear in the red fluorescence (RF)
and green fluorescence (GF) channels, respectively. (Scale bar: 100 µm.) (B)
Microscope images of cell lawns with constitutive expression of fluorescent
proteins. (Left) Cells expressing RFP, (Center) cells expressing GFP, and (Right)
mixed population of red and green cells. (C) Fluorescence density plots com-
puted from the images above (from left to right: red, green, red/green, and
Turing). Color intensity is in log scale [arbitrary units (a.u.)].

the field of CI and GFP reporter to be more strongly expressed.
Our data show that mean GFP levels increase sigmoidally
with inducer concentration, while the overall area of red spots
decreases (Fig. 3 A and C). In addition to offering further
support that our gene circuit gives rise to emergent patterns,
these results show how pattern formation characteristics can
potentially be tuned to fit future application needs.

Theoretical Results
Having established that our system forms emergent patterns, we
proceeded to study the mechanisms driving these patterns. We
formulated deterministic and stochastic models and analyzed our
data to assess agreement with the theory of stochastic Turing
patterns.

Deterministic Model. We first developed a detailed deterministic
reaction–diffusion model (SI Appendix, section 7). The model
explicitly describes chemical reactions for the LasI and RhlI
synthases, regulatory protein CI, and synthesis and diffusion
of the morphogens A3OC12HSL and IC4HSL. As the overall
system involves a large number of reactions with rate con-
stants that span multiple timescales, we made two commonly
used simplifying assumptions. First, we assume that operator
states of a promoter fluctuate much faster than protein degra-
dation rates. Second, we assume that mRNA half-life is much
shorter than protein half-life. These assumptions allow us to
eliminate operator fluctuation and mRNA kinetics and model

the system at the communication signals and protein levels as
follows:

∂U

∂t
=αuIu − γuU +Du∇2U [1]

∂V

∂t
=αv Iv − γvV +Dv∇2V [2]

∂Iu
∂t

=αiuF1(X1,C )− γiuIu [3]

∂Iv
∂t

=αivF1(X1,C )− γiv Iv [4]

∂C

∂t
=αcF2(X2,L)− γcC , [5]

where U and V are the concentrations of the two diffusible
morphogens A3OC12HSL and IC4HSL, respectively; Iu and Iv
are the concentrations of corresponding acyl homoserine lactone
(AHL) synthases, respectively; and C refers to CI.

We model the hybrid promoters using the following Hill
functions:
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Fig. 3. Mathematical modeling and correlation between pattern mod-
ulation experiments and simulations. (A) Experimental results for IPTG
modulation of pattern formation with microscopy images corresponding
to specific IPTG concentrations in B. The same display mappings were
used for all images in A. (B) Collectivity, metric parameter Θ is influ-
enced by IPTG modulation. (C) Pattern statistics over IPTG modulation for
experimental results. (D) Pattern obtained from simulating a determinis-
tic reaction–diffusion model with Dv/Du = 100. (E) Pattern statistics over
IPTG modulation for deterministic modeling. (F) Patterns obtained from
simulating our deterministic model (Upper) and stochastic spatiotempo-
ral model (Lower) at the measured diffusion ratio of Dv/Du = 21.6. (G)
Pattern statistics over IPTG modulation for stochastic modeling. a.u., arbi-
trary unit.
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F1(X1,C )=

[
1+ f1

(
X1
Kd1

)θ1][
1+ f −1

2

(
C

Kd2

)θ2]
[
1+

(
X1
Kd1

)θ1][
1+

(
C

Kd2

)θ2] [6]

F2(X2,L)=

[
1+ f3

(
X2
Kd3

)θ3][
1+ f −1

4

(
L

Kd4

)θ4]
[
1+

(
X2
Kd3

)θ3][
1+

(
L

Kd4

)θ4] , [7]

where F1(X1,C ) and F2(X2,L) are the production rates of the
promoters PLas−OR1 and PRhl−lacO, respectively; X1 and X2 are
the LasR-A3OC12HSL complex and the RhlR-IC4HSL com-
plex, respectively; and L is the concentration of unbound LacI
protein. We use the definitions

X1 =RuU [8]

X2 =
RvV

(1+U /Kc3)
[9]

L=λl

(
1+ f −1

6 (I /Kd6)
θ6

1+ (I /Kd6)
θ6

)
, [10]

where I is the IPTG concentration and Ru and Rv are the
regulatory proteins LasR and RhlR, respectively:

Ru =λuIu [11]

Rv =λv

(
1+ f −1

5 (C/Kd5)
θ5

1+ (C/Kd5)
θ5

)
. [12]

A summary of the variables used in our model is available in SI
Appendix, Table S5, and definitions of the rate constants are in
SI Appendix, Tables S6 and S7. Hill functions used in this model
have a shared form of Y = 1+f (X/K)θ

1+(X/K)θ
, where X and Y corre-

spond to the input and output of the function, respectively; K
is the dissociation constant; θ is the Hill coefficient; and f is the
fold change of Y on full induction by X .

We initially ran simulations of this model using a high diffu-
sion rate ratio ( Dv

Du
) of 100. These simulations yield patterns of

red spots and green voids (Fig. 3D), suggesting that the under-
lying dynamics of our system are Turing-like, with the potential
for Turing instabilities. Deterministic simulations of IPTG mod-
ulations also correlate well with the trends of the experimental
results (Fig. 3E and SI Appendix, section 6).

While the overall behavior of our system is reminiscent of
classical Turing patterns (19), there are key differences. In par-
ticular, when we ran simulations at the measured diffusion rate
ratio of Dv

Du
≈ 21.6, patterns did not arise (Fig. 3F). For some

two-node implementations of Turing systems, this rate would
be sufficient for pattern formation (20). In addition, certain
networks with more nodes can allow small or even equal mor-
phogen diffusion rate ratios to generate Turing instabilities (21).
However, a practical biological implementation imposes certain
dynamics, such as delays associated with protein production,
that can strongly impact pattern formation (22, 23). Indeed, our
deterministic modeling results suggest that the ratio of diffusion
constants for the activator and inhibitor in our system is either
barely within the range required for a Turing instability or even
outside the range, depending on the precise medium in which
signal diffusion is measured (SI Appendix, section 7). In addition,
whereas in the deterministic simulation, spots are identical and
evenly distributed, those in the experimental systems vary in size,
shape, fluorescence intensity, and the intervals between them.

Stochastic Model. The deterministic modeling results indicate
that our system may be beyond the regime where classical Turing

patterns are formed but still within the regime where stochastic
Turing patterns occur (5–8). Indeed, gene expression in microbes
is inherently noisy due to the small volume of cells and the fact
that many reactants are present in low numbers, suggesting that
stochastic Turing patterns could be present in our system (24).

Noise in stochastic Turing patterns expands the range of
parameters in which patterns form, in contrast to the usual
expectation that noise serves as a destabilizing agent. The pat-
terns observed in stochastic Turing systems correspond to the
slowest decaying mode of the fluctuations. Similar noise stabi-
lization phenomena can be observed in other systems that are
out of equilibrium. For example, in predator–prey systems, fluc-
tuations can drive temporal oscillations of populations (25, 26).
Noise-driven stabilization has also been recently discovered in
the clustering of molecules on biological membranes (27, 28)
and in models that exhibit Turing-like pattern formation (7). In
particular, whereas spatial symmetry breaking and pattern for-
mation via the original Turing design require two morphogens
with diffusion rates that differ by a large factor on the order of 10
or 100 (1), the requirements to form stochastic Turing patterns
are less stringent. For example, in a pattern-forming plankton–
herbivore ecosystem, the noise associated with discrete random
birth and death processes reduces the required ratio of diffusion
constants for pattern formation from a threshold of 27.8 for nor-
mal Turing patterns to a threshold of 2.48 for stochastic Turing
patterns (5–8).

To determine whether noise in the chemical reactions underly-
ing gene expression and morphogen diffusion in our system can
cause the emergence of patterns over a wider range of param-
eters than a deterministic model, we constructed a stochastic
spatiotemporal model using the same biochemical reactions, dif-
fusion, and rate constants used in our deterministic model (SI
Appendix, section 8). This model captures stochastic effects in
the production and degradation of the proteins and morphogens
in our system but approximates diffusion as deterministic. Simu-
lations of the stochastic model generically produce patterns with
large variability in spot size, shape, intensity, and intervals, which
are similar to the patterns observed in our experiments and dif-
ferent from those predicted for the deterministic model (Fig.
3F). We have compared the experimental patterns with stochas-
tic simulations in both real space and in 2D Fourier transform
(2DFT) space (SI Appendix, section 8). Neither the experimen-
tal 2DFT nor the simulated 2DFT contain pronounced peaks
that would be present in a deterministic honeycomb Turing
pattern. Moreover, as the IPTG concentration is increased,
both experimental and simulated patterns become more regular
(Fig. 3G).

To further test the hypothesis that we are observing stochas-
tic Turing patterns, we measured the power spectrum for both of
our fluorescent reporters. Theory predicts that the power spec-
trum will have a power law tail as a function of wavenumber, k ,
for large wavenumbers, with an exponent characteristic of the
noise source (7, 25). The exponent values are −2 and −4 for
stochastic Turing patterns and deterministic Turing patterns with
additive noise, respectively, and can be interpreted simply as fol-
lows. The −2 arises, because at small frequency or wavenumber,
the random variable (i.e., concentration) is simply diffusing and
therefore, follows the behavior of a random walk, which has a
power spectrum that exhibits a −2 power law. The −4 arises,
because for a system that is executing deterministic damped peri-
odic motion but driven by additive white noise, the response of
the random variable is a Lorentzian, with an asymptotic behavior
for the power spectrum that exhibits a −4 exponent.

For the GFP channel, we observe a power law tail with an
exponent of −2.3± 0.4 (Fig. 4B and SI Appendix, section 9A).
For the RFP channel, we also observe a power law tail with
an exponent of −3.9± 0.4 (SI Appendix, section 9A). To bet-
ter understand the implications of these tails, we examined
our detailed stochastic model of the genetic systems and also
developed a reduced stochastic model that explicitly includes
only the morphogens (SI Appendix, section 9B). Both models
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Fig. 4. Spectral analysis and parameter analysis. (A) Pattern-forming regimes in parameter space and estimated parameters for our system. Parameters
above the green surface of neutral stochastic stability can form stochastic patterns, and parameters above the blue surface of deterministic neutral stability
can form deterministic Turing patterns. The ratio of the diffusion coefficients ν/µ, the ratio of degradation rate to production rate d/p, and the ratio of
production rates are estimated for our system by the yellow ellipsoid. The parameters for our system are mostly in the regime where stochastic patterns
form and outside the region where deterministic Turing patterns form. Example stochastic simulations are shown for parameters drawn from a deterministic
parameter region with Dν/Dµ = 100 (Upper Right) and a stochastic region with Dν/Dµ = 21.6 (Lower Right). (B) Radial power spectrum of green fluores-
cence and best fit power law tail with an exponent of −2.3± 0.2. (C) Radial power spectrum for eight trials of our stochastic simulation, their mean, and
the best fit power law tail.

predict that our experimental parameters will produce a stochas-
tic pattern with a power law tail of −2 for both the activator
and the inhibitor at asymptotically large wavenumbers (Fig 4C
and SI Appendix, section 9C). However, in the range of param-
eters likely to correspond to the experiments (Fig. 4A and SI
Appendix, section 9C), the detailed stochastic model predicts that
the exponent of the power law tail for the activator will be −4
over a large range of intermediate wavenumbers before it even-
tually undergoes a cross-over to a power law with an exponent
−2 at high wavenumbers (SI Appendix, Fig. S24). This behavior
once again agrees with our experimental data and supports our
identification of stochastic Turing patterns. In summary, spectral
analysis of the patterns of activator and inhibitor is consistent
with a model in which fluctuations in the amount of signaling
morphogens drive stochastic Turing patterns.

Our analysis of the stochastic Turing model predicts that
stochastic patterns form over a wide range of parameters (SI
Appendix, section 8). Indeed, our stochastic model predicts that
stochastic Turing patterns are possible at the measured ratio
of diffusion rates for A3OC12HSL and IC4HSL (Figs. 3F and
4A). In addition, to determine the sensitivity of the stochastic
model to the parameters chosen, we individually varied parame-
ters from 0.5× their nominal value to 1.5× their nominal value
while keeping all other parameters fixed at their best estimated
value. For each set of parameters, we calculate the analytical
power spectrum and the eigenvalues of the Jacobian (linear sta-
bility matrix) of the stochastic model evaluated at a fixed point
found numerically. Based on this analysis (SI Appendix, section
8), we classify each set of parameters as producing an unstable
homogeneous state at wavenumber k =0, a stable homogeneous
state, a stochastic Turing pattern, or a deterministic Turing pat-
tern. Specifically, we classify a set of parameters as producing a
pattern if they produce a peak in the calculated power spectrum
at a nonzero wavenumber. To distinguish between stochastic
Turing patterns and deterministic Turing patterns, we examine
the eigenvalues of the corresponding Jacobian. If the real part
of all of the eigenvalues is negative for all wavenumbers, then
the pattern must be due to stochasticity. If there is any range
of wavenumbers that have corresponding positive real parts of
their eigenvalues, then the pattern is produced by the tradi-
tional Turing mechanism. The results of this analysis are shown
in SI Appendix, Fig. S22 and illustrate the significant ranges
for each parameter that can lead to stochastic Turing patterns.
Indeed, the estimated parameter values yield stochastic Turing
patterns and variation of Du , Dv , and IPTG, and several other
parameters never produce deterministic patterns; therefore, our
results are very insensitive to estimation error of these important

parameters. Overall, varying the parameters one at a time, 68%
of the values yield stochastic Turing patterns.

To quantify the way in which stochasticity enlarges the pattern-
forming regime of parameter space, we simultaneously varied all
model parameters and performed the classification used above.
Specifically, we used Latin hypercube sampling to randomly gen-
erate 500 parameter sets, where all of the parameters were
allowed to vary between 0.5× and 1.5× their nominal value. For
this analysis, we found that 24.8% of parameters produced unsta-
ble fixed points, 43.2% produced stable homogeneous states,
13.2% produced stochastic Turing patterns, and 18.8% produced
Turing patterns. Thus, over this arbitrarily large range of param-
eters, pattern formation occurs only 18.8% of the time in the
absence of stochasticity but 32% of the time when stochasticity is
included. By including stochasticity, the range in which patterns
can form has been increased by 70%.

Discussion
Alternative Hypotheses. Now, we consider alternative hypothe-
ses to our claim that the theory of stochastic Turing patterns
explains our experimental observations. We consider the dura-
tion and dynamics of our pattern formation experiments. One
may expect to observe early events in Turing pattern formation,
such as splitting of clusters or increases in intercluster distances.
These processes may be, in fact, be taking place but may be dif-
ficult to observe due to weak reporter expression in the earlier
stages. In addition, we must consider the limited duration of our
experiments and the possibility that, theoretically, longer obser-
vations may result in different patterns if nonlinear processes
eventually began to dominate dynamics. Indeed, we do not feed
fresh nutrients to sustain the system for extremely long dura-
tions. However, as confirmed by analysis of the dynamics in SI
Appendix, Fig. S12, cluster size growth and spacing between clus-
ters appear to be stabilizing toward the end of the experiment. In
addition, domains are neither created nor destroyed in the later
time periods. Essentially, it appears that the patterns are close to
stabilizing within the 32-h observation period.

Another alternative hypothesis is that cell growth dynamics
primarily drive the observed pattern formation. Our control
experiments with mixtures of red and green cell populations (SI
Appendix, Fig. S9) along with our bistable switch control (SI
Appendix, Fig. S10) suggest that cell growth does not explain
our patterns. Moreover, our ability to tune pattern character-
istics offers support for the fact that our patterns are not a
simple consequence of natural biofilm growth morphologies but
rather, are driven by our genetic circuit. However, growth may
indeed impact regularity and may likely explain the fact that our
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experimental patterns are less regular than those observed in
our stochastic models (Fig. 3F). Indeed, future experiments to
show different classes of patterns (e.g., labyrinth patterns) would
offer further support, but collectively, our experiments strongly
support our hypothesis that a Turing mechanism driven by our
genetic circuit explains our observed patterns.

Summary of Evidence for Stochastic Turing Patterns. We summa-
rize our evidence for showing stochastic Turing patterns and not
showing amplification of random noise as follows. Our control
experiments with mixtures of red and green cells (Fig. 2B and
SI Appendix, Fig. S9) along with a bistable switch (SI Appendix,
Fig. S10) did not produce the patterns that we observe with our
genetic circuit (Fig. 2A). Our ability to tune pattern character-
istics offers further support that pattern formation is driven by
our genetic circuit. In addition to our experimental controls, we
identify patterns in the stochastic model but not in the deter-
ministic model of our system for the experimentally observed
ratio of diffusion rates (Fig. 3F). These model patterns resem-
ble the experimentally observed patterns in real space, exhibit
no peaks in the 2DFT (SI Appendix, Figs. S13 and S20), and
recapitulate the observed trend with IPTG variation. Analyses
of our experimental data are also in accord with the theory
of stochastic Turing patterns. The exponents in the tails of
the experimental radial power spectra agree with theoretical
predictions (Fig. 4B and SI Appendix, Fig. S13). In addition,
although spatial regularity is weak, we observe a radial spectral
peak for our experimental patterns (Fig. 4B and SI Appendix,
Fig. S13), indicating a characteristic length scale. Furthermore,
exploration of the large parameter space of the stochastic model
indicates that the experimental parameters are most likely to
be in the regime where only stochastic patterns can form (SI
Appendix, section 8). Collectively, this body of evidence suggests
that our experiments indeed exhibit stochastic Turing pattern
formation.

Materials and Methods
Strains and Conditions. Our patterning system was constructed using two
plasmids that correspond to the upper and lower portions of the cir-
cuit diagram in Fig. 1B: pFNK512 and pFNK806 in Fig. 2A and pFNK512
and pFNK804lacOlacI in Fig. 3. The two-color bistable toggle switch plas-
mid pTOG-1 was constructed from plasmid pIKE-107. All plasmids were

constructed using standard cloning and DNA recombination techniques.
Plasmid construction details are described here and in SI Appendix, section
2. Escherichia coli strain MG1655 was used for all experiments.

Code Availability. Custom code used in this manuscript is currently avail-
able at https://www.dropbox.com/sh/di3hbaaubx5qd0q/AADpSOMfJtm F
lEDRFoch0sa?dl=0.

Experimental Procedure. Cells harboring appropriate plasmids were initially
grown in LB liquid media with corresponding antibiotics at 30 ◦C until
OD at 600 nm was reached 0.1− 0.3. Cells were then concentrated and
resuspended in M9 media with appropriate antibiotics (29); 0.5 mL of con-
centrated cell solutions (OD600 = 2.0) were poured onto a 2% M9 agar plate
(60× 15-mm petri dish) to form a cellular lawn. Plates were incubated at
30 oC, and fluorescence images were captured periodically. To examine the
single-cell fluorescence evolution of toggle switch cell populations, we per-
formed flow cytometry at the beginning of the experiment (0 h) and the
end of the experiment (24 h).

Data Analysis. Fluorescence density plots, power spectrum of green fluo-
rescence, averaged green fluorescence, total area of red spots, collectivity
metric, and Moran’s I were all computed by analyzing the experimental
time-lapse microscopy data with custom Matlab software.

Mathematical Modeling. The patterning system was simulated by numeri-
cally integrating differential equations using in house-developed C soft-
ware. We also developed stochastic spatiotemporal models using a hybrid
stochastic simulation algorithm (30). SI Appendix has details about the
models and the simulation environments.

Note Added in Proof. After the completion and acceptance of this work, an
independent observation of stochastic Turing patterns in the cyanobacteria
colonies of Anabaena sp. was reported (31).
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